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Abstract: We focus on recurrent random walks in random environment (RWRE) on Galton-
Watson trees. The range of these walks, that is the number of sites visited at some fixed time,
has been studied in three different papers [AC18], [AdR17] and [dR16]. Here we study the
heavy range: the number of edges visited at least α times for some real α. The asymptotic
behavior of this process when α is a power of the number of steps of the walk is given for
all the recurrent cases. It turns out that this heavy range plays a crucial role in the rate of
convergence of an estimator of the environment from a single trajectory of the RWRE.

MSC : Primary 60K37, 60J80; Secondary 62G05.
Keywords and phrases: randomly biased random walks, branching random walks, range,
non-parametric estimation.

1. Introduction

Here we are interested in random walks in random environment (RWRE) on a supercritical Galton-
Watson tree, the random environment is then a branching random walk.The aim of this paper is
first to study the number of edges visited by the walk more than α times for some α > 0; we call
this random variable heavy range in the paper. This can be seen in some sense as an extension of
the works of [AC18], generalized to the whole class of recurrent walks on trees. A second aim is to
apply our control on the heavy range to a problem of non-parametric estimation for the distribution
of the environment extending this time the work of [DL17] in the one-dimensional case.

Let us first give a precise definition of the process we are interested in. Consider a supercritical
Galton-Watson tree T with offspring distributed as a random variable ν, such that E [ν ] > 1 as
T is supercritical. In the paper, we adopt the following usual notations for tree-related quantities:
the root of T is denoted by e, for any x ∈ T, νx denotes the number of descendants of x, the parent
of a vertex x is denoted by x∗ and its children by {xi, 1 ≤ i ≤ νx }. For technical reasons, we add
to the root e, a parent e∗ which is not considered as a vertex of the tree. We also denote by Jx, yK
the sequence of vertices realizing the unique shortest path between x and y, by |x| the generation
of x, that is the length of the path Je, xK and we write x < y when y is a descendant of x that
is when x is an element of Je, yK. Finally, we write Tn for the tree truncated at generation n. We
then introduce a real-valued branching random walk indexed by T: (V (x), x ∈ T ). We suppose
that V (e) = 0 and we denote the increments of V (x) by ωx := V (x)− V (x∗). For any generation
n and conditionally to En = {Tn, (V (x), x ∈ Tn)}, the variables (ωxi , i ≤ νx ) where x is a vertex
of T such that |x| = n are assumed to be i.i.d. distributed as a random variable (ωi, i ≤ ν ). We
denote by P the distribution of E = {T, (V (x), x ∈ T )}.

For a given realization of the environment E , we consider the Markov chain (Xn)n∈N on T∪{e∗ }
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which transition probabilities are defined by the following relations:

PE(Xn+1 = e|Xn = e∗ ) = 1 ,

∀x ∈ T \ {e∗ } , PE(Xn+1 = x∗|Xn = x ) =
e−V (x)

e−V (x) +
∑νx
i=1 e

−V (xi)
=

1

1 +
∑νx
i=1 e

−ωxi
,

∀j ≤ νx, PE(Xn+1 = xj |Xn = x ) =
e−V (xj)

e−V (x) +
∑νx
i=1 e

−V (xi)
=

e−ωxj

1 +
∑νx
i=1 e

−ωxi
.

The measure PE is usually referred to as the quenched distribution of the walk (Xn)n∈N in contrast
to the annealed distribution P, the measure PE integrated with respect to the law of E :

P( · ) =

∫
PE( · )P(dE ) .

For x ∈ T∪{e∗ }, we use the notation PEx for the conditional probability PEx(·|X0 = x); when there
is no subscript, the walk is supposed to start at the root e. We finally introduce P∗, the annealed
probability conditioned on the survival set of the tree T.

The walk (Xn)n∈N, called biased random walk on a tree, was first introduced by R. Lyons (see
[Lyo90] and [Lyo92]). In our case where the bias is random, the first references go back to R.
Lyons and R. Pemantle [LP92] and M.V. Menshikov and D. Petritis [MP02]. Random walks in
random environment on trees form a subclass of canonical models in the more general framework
of random motions in random media that are widely used in physics. They are a natural extension
of the one dimensional model, originally introduced in the works of [Che62]. These models have
been intensively studied in the last four decades, mostly in the physics and probability theory
literature.

The behaviors of randomly biased walks on trees differ deeply from the behaviors of the RWRE in
the one-dimensional case. In particular there are several regimes for both recurrent and transient
cases. A complete classification for the recurrent cases is given by G. Faraud [Far11] (for the
transient cases, see E. Aidekon [Aı̈d08]). It can be determined from the fluctuations of log-Laplace

transform ψ(s) := logE
[∑

|z|=1 e
−sV (z)

]
as resumed in Figure 1.

> 0 Positive recurrent

= 0

ψ′(1)

inf
[0,1]

ψ

> 0

≤ 0

Transient

Positive Recurrent

< 0

= 0 Null recurrent

< 0 Null recurrent

Figure 1: Recurrence criteria for (Xn)n∈N on Galton-Watson trees

Here we focus on the recurrent cases that is to say when infs∈[0,1] ψ(s) ≤ 0. They present
essentially three different asymptotic regimes which depend on the fluctuation of ψ. In the paper,
we need a bunch of classical assumptions which are summarized here:
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Assumption A1.

• the Galton-Watson tree is supercritical: E
[∑

|x|=1 1
]

= E[ν ] ∈ (1,∞).

• the log-Laplace transform ψ is well defined on a neighborhood of [0, 1]:

∃r1, r2 > 0, ∀s ∈ [−r1, 1 + r2], ψ(s) <∞ . (1)

• infs∈[0,1] ψ(s) ≤ 0 (so (Xn)n∈N is recurrent).
• let t0 := inf {s ≥ 0, ψ(s) = 0} then:

E
[( ∑
|z|=1

e−t0V (z)
)2]

< +∞. (2)

and if t0 = 1:

– if ψ′(1) ≥ 0, there exists δ > 0 such that E[ν1+δ] < +∞,
– if ψ′(1) < 0, let

κ := inf{s > 1, ψ(s) = 0} ∈ (1,+∞], (3)

when κ <∞,

E
[ ∑
|z|=1

e−κV (z) ·max(−V (z), 0)
]
< +∞ . (4)

Let us briefly describe the different recurrent cases (assuming the above conditions).

1 11

C : sub-diffusive and diffusive case

ψ(t) ψ(t)ψ(t)

000
κ < +∞

κ = ∞

A : very slow case B : slow cases

Figure 2: Log-Laplace ψ and corresponding behaviors of (Xn)n∈N.

First, when infs∈[0,1] ψ(s) < 0 (Figure 2: A), the walk is positive recurrent and the largest
generation visited up to an instant n, X∗n := maxk≤n |Xk| is of the order log n ([HS07b]), this is
the slowest case, even slower than one dimensional Sinai’s random walk ([Sin82]).

If infs∈[0,1] ψ(s) = 0 (Figure 2: B and C), then different behaviors appear depending on the sign
of ψ′(1). When ψ′(1) ≥ 0 (Figure 2: B), there are again two possible cases: if ψ′(1) > 0 then the
walk is positive recurrent whereas when ψ′(1) = 0 the walk is null recurrent. However these two
cases lead to the same asymptotic behavior for X∗n (up to some multiplicative constant) which is
of the order (log n)3 (see [HS07a] and [FHS11]).

Finally, when ψ′(1) < 0 (Figure 2: C), the walk is null recurrent and X∗n is of the order
n1−1/min(κ,2) where κ is defined in (3) (see [HS07b], [Far11], [AdR17], [dR16]).
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In this paper we study the heavy range: the number of edges of the tree which are visited more
than α times in n steps. Precisely, for x ∈ T, let Nn

x be the number of times, the walk (Xn)n∈N
visits the edge (x∗, x) before time n:

Nn
x :=

n∑
k=1

1Xk−1=x∗,Xk=x .

Then, for any α > 0 the heavy range is the random variable

Rnα :=
∑
x∈T

1Nnx≥α . (5)

Note that for α = 1, the above random variable is the usual range. In this case, the asymptotic
behavior is known for all null recurrent cases, see [AC18], [AdR17] and [dR16]. The heavy range is
then a natural generalization of the usual range which helps to understand how the random walk
spreads on the tree. In the following subsection we describe first the asymptotic behavior of the
heavy range at random time and then the behavior of Rnα properly. Then in subsection 1.2, we
see how the heavy range controls the error rate of a natural estimator of the distribution of the
environment via a single trajectory of the RWRE.

1.1. The behavior of heavy range Rn
nθ

Let T (n) denote the nth return to e∗:

T (0) := 0 and ∀n ≥ 1, T (n) := inf{k > T (n−1), Xk = e∗} .

The following theorem gives the behavior of the heavy range taken at time T (n) in all recurrent
cases. Note that in these cases, T (n) is almost surely finite for every integer n. For the sake of

simplicity, in all the paper we write R
(n)
α for RT

(n)

α and N
(n)
x for NT (n)

x , we also use the notation
log+ x for log(max(1, x)).

Theorem 1.1. Assume A1. For any θ ≥ 0,

log+ R
(n)

nθ

logn converges in P∗-probability to a constant ξθ.

Moreover, when θ ≥ 1, ξθ = 0 and, when θ < 1,

• if infs∈[0,1] ψ(s) < 0 or infs∈[0,1] ψ(s) = 0 with ψ′(1) ≥ 0, then

ξθ = t0(1− θ), with recall t0 = inf{s > 0, ψ(s) = 0} ≤ 1, (6)

• if infs∈[0,1] ψ(s) = 0 with ψ′(1) < 0, then

ξθ = κ(1− θ), if 1 < κ ≤ 2, (7)

ξθ = max
(

2− κθ, 1− θ
)
, if κ ∈ (2,∞]. (8)

The proof of Theorem 1.1 for θ < 1 is given in Section 3. The cases θ ≥ 1 are then easily obtained

using the results in the cases θ < 1 and the fact that, for any n ≥ 1, R
(n)

nθ
is a non-increasing function

of θ.
Note that (6) corresponds to the slower cases, that is when Xn behaves like a power of log n.

Also t0 < 1 if and only if the random walk is positive recurrent whereas t0 = 1 corresponds to the
so called boundary case for the branching potential (ψ(1) = ψ′(1) = 0).



Andreoletti, Diel/The heavy range of randomly biased walks on trees 5

For the diffusive cases, that is if κ > 2 for small θ ≤ 1/(κ− 1), the heavy range is of the order
n2−κθ+o(1), larger than n1−θ . Conversely, for larger values of θ, that is to say if we are interested
on sites often visited by the walk then the range is of the order n1−θ. We will see in the proof that
this fact depends deeply where the edges sufficiently visited are localized on the tree.

The heavy range in deterministic times will be easier to interpret in terms of the behavior of
the walk. For this purpose it is important to control T (n), the time of the nth return to e∗. It has
been studied in [AD14b] and more precisely in [HS16] and [Hu17], for completeness we recall these
results in the following remark; note that in these papers the results are given for the nth-return
time to the root e and not to e∗ but this does not change the rates of convergence.

Remark 1.2.

1. If infs∈[0,1] ψ(s) = 0, with ψ′(1) = 0 then in probability T (n)/(n log n) converges in probability
to a positive limit (see [HS16], Proposition 2.5).

2. If infs∈[0,1] ψ(s) = 0, ψ′(1) < 0 and κ 6= 2, T (n)/nmin(κ,2) converges in law to a positive limit

and if κ = 2, (T (n) log n)/n2 converges in law to a positive limit (see [Hu17], Corollary 1.2).
3. Finally if ψ′(1) > 0 with infs∈[0,1] ψ(s) = 0 or infs∈[0,1] ψ(s) < 0 then T (n)/n converges in

probability to a positive limit (both are positive recurrent random walks).

We can now obtain the behavior of the heavy range in deterministic time:

Corollary 1.3. Assume A1. For any θ ∈ [0, 1],

log+ Rn
nθ

logn converges in P∗-probability to a constant ξ̃θ.

Moreover,

• if infs∈[0,1] ψ(s) ≤ 0 with ψ′(1) ≥ 0, then ξ̃θ = ξθ = t0(1− θ),
• if infs∈[0,1] ψ(s) = 0 with ψ′(1) < 0 and

– if 1 < κ ≤ 2, then ξ̃θ = 1− κθ for θ ≤ 1/κ and 0 otherwise,

– if κ ∈ (2,∞], then ξ̃θ = max(1− κθ , 1/2− θ) for θ ≤ 1/2 and 0 otherwise.

Let us compare, for null recurrent cases, the heavy range Rnnθ for θ > 0 and regular range, that

is Rn1 . It is proved in [AC18] that for the slow case, when ψ(1) = ψ′(1) = 0, logn
n R

(n)
1 converges in

probability to an explicit positive constant, whereas for the sub-diffusive and diffusive case, when
ψ(1) = 0, ψ′(1) < 0, it is proved in [AdR17] and [dR16] that the correct normalization for the

convergence in probability of R
(n)
1 is simply 1/n. So for the regular range we observe that sub-

diffusive and diffusive cases spread more than in the slow case. For the heavy range the opposite
appears, indeed when ψ(1) = ψ′(1) = 0, t0 = 1 and ξ̃θ = 1−θ which is larger than 1−κθ for κ > 1.
This tells us that the environment of the slow null recurrent case creates much more vertices where
the walk spends larger amount of time than in the other cases.

As this corollary is a direct consequence of the above theorem and remark, we only give a short
proof in one case.

Proof. We only give a proof for the case infs∈[0,1] ψ(s) = 0 with ψ′(1) < 0 and κ ∈ (2,∞] for θ > 0
such that 1−κθ > 1/2− θ; the others ones can be treated with the same arguments. According to
Remark 1.2, for any ε > 0,

lim
n→∞

P∗
(
T (bn(1+ε)/2c) ≥ n

)
= 1. (9)
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Then fix some ε > 0 and denote θε = 2θ/(1 + ε). Suppose that ε is small enough to have 2− κθε ≥
1− θε. For n ≥ 2,

P∗
(

log+Rnnθ

log n
≥ 1− κθ + 2ε

)
≤ P∗

 log+R
(bn(1+ε)/2c)
nθ

log n
≥ 1− κθ + 2ε

+ P∗
(
T (bn(1+ε)/2c) < n

)
.

And, as θ = 1+ε
2 θε,

P∗
 log+R

(bn1/2+εc)
nθ

log n
≥ 1− κθ + 2ε

 = P∗

 log+R
(bn(1+ε)/2c)
(n(1+ε)/2 )

θε

log n(1+ε)/2
≥ 2(1− κ((1 + ε)/2)θε + 2ε)

1 + ε


≤ P∗

 log+R
(bn(1+ε)/2c)
bn(1+ε)/2cθε

log n(1+ε)/2
≥ 2− κθε +

2ε

1 + ε

 .

Then (9) and Theorem 1.1 show that for any ε small enough,

lim
n→∞

P∗
(

log+Rnnθ

log n
≥ (1− κθ + 2ε)

)
= 0 .

The lower bound and the other cases can be obtained with similar arguments.

Here we obtain the first order for the asymptotic expansion of the heavy range for any recurrent
cases and of course a natural question is now to obtain the correct normalization for this range.
Even if we succeed to treat all the cases at once here, we do not expect that this can be reproduced
for more precise normalization due the deep difference that appears between cases.

1.2. Non-parametric estimation of the law of the environment

The study of the heavy range has been partly motivated by the statistical problem we present
here. The statistical study of random processes in random environment has been overlooked in the
literature until recently, when new biophysics experiments produced data that can be modeled (at
least in an ideal-case setup) by RWRE. For example in [VBM06], RWRE are used as a mathematical
model of a mechanical denaturation of DNA. Consequently, a new series of works appeared on
statistical procedures aiming at estimating the distribution of the environment from a RWRE
trajectory.

We start with a brief resume of what has been done recently in the one dimensional discrete
case. Recall that for RWRE on Z, the environment is a sequence of random variables (ρx)x∈Z.
When the environment is i.i.d., the estimation of the distribution of ρ0 observing only the RWRE
(Xn)n∈N is a natural problem. The first theoretical result appears in [AE04] which treats the
problem in a general settings with no quantitative purpose, then in [And11] and [AD12] particular
cases are detailed. Recently more attention has been paid to the one dimensional case: the aim
was to provide a parametric estimation of the distribution of the environment with the help of a
single trajectory of random walk (Xn)n∈N ([CFL+14], [FLM14], [FGL14], [CFLL16]). When the
environment is a Markov chain a parametric approach can also be found in [ALM15]. The problem
of non-parametric estimation has been studied in [DL17], the aim of the result we present below is
to extend their studies to the more delicate case of randomly biased random walks on supercritical
Galton-Watson trees.



Andreoletti, Diel/The heavy range of randomly biased walks on trees 7

Indeed, the next step after the model of RWRE for mechanical denaturation of DNA in [VBM06],
is to construct a similar model for mechanical denaturation of RNA. But while DNA molecules are
quite linear, RNA molecules present a more complicated geometry with secondary structure (see
[GBH01]). It seems then natural to describe RNA molecules with trees and to mimic its mechanical
denaturation by a random walk in random environment on a tree.

However, the estimation of the distribution of the environment for a random walk on a tree is
much more complicated as we have to study the law of the transitions of a branching random walk
and not only a real random variable. Therefore, we only consider here a very particular and simple
case; this part of the paper has to be seen as a first step to understand how the methods used for
the one-dimensional case can be generalized. So, for all the statistical results in this part and in
Section 4, we add to A1 the following assumptions:

Assumption A2.

• the reproduction law of the Galton-Watson is bounded: ∃K > 0, P(ν ≤ K ) = 1 .
• given the tree up to generation n and the number of children νx of some x ∈ T such that
|x| = n, the variables (ωxi )1≤i≤νx are i.i.d. with the same distribution as some variable ω.

Our aim is then to estimate the distribution of ω given the observation of a single trajectory
of the walk (Xn)n∈N up to time T (n). In particular we need T (n) to be finite which is the case by
recurrence of X. Precisely, we give an estimation of the c.d.f F of

ρ := (1 + e−ω)−1 (10)

instead of the one of ω, but this is of course equivalent as conversely ω = log[ρ/(1− ρ)].

Remark 1.4. It is possible to relax the condition on ν: if we suppose that the distribution is not
bounded but only subgaussian, we still have the same rates of convergence in the following theorems.
However the proof is more technical and for the sake of clarity we have chosen to present only the
bounded case.

Our first theorem gives the existence of the estimator and the rates of convergences, in a second
theorem we give more details on how this estimator is constructed.

Theorem 1.5. Assume A1, A2 and that the c.d.f. F of ρ is γ-Hölder for some γ ∈ (0, 2]. There

exists an estimator F̂n of F , which is a function of the trajectory (Xk )0≤k≤T (n) , such that for any
ε > 0,

nr−ε‖F̂n − F‖∞ tends to 0 in P∗-probability where

i) r = γt0
γ+t0

if infs∈[0,1] ψ(s) < 0, infs∈[0,1] ψ(s) = 0, with ψ′(1) ≥ 0,

ii) r = γκ
γ+κ if infs∈[0,1] ψ(s) = 0, ψ′(1) < 0 and κ ≤ 2,

iii) r = 2γ
γ+κ if infs∈[0,1] ψ(s) = 0, ψ′(1) < 0 and 2 < κ ≤ 2 + γ,

iv) r = γ
γ+1 if infs∈[0,1] ψ(s) = 0, ψ′(1) < 0 and κ > 2 + γ.

In the previous theorem, the rate of convergence is given as a function of the parameter n, it is
more natural to give a rate depending on T (n). This is done in the following corollary which is a
direct consequence of Theorem 1.5 and Remark 1.2.

Corollary 1.6. Assume conditions of Theorem 1.5. The estimator F̂n is such that for any ε > 0,(
T (n)

)r−ε
‖F̂n − F‖∞ tends to 0 in P∗-probability where

i) r = γt0
γ+t0

if infs∈[0,1] ψ(s) < 0, infs∈[0,1] ψ(s) = 0, with ψ′(1) ≥ 0,
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ii) r = γ
γ+κ if infs∈[0,1] ψ(s) = 0, ψ′(1) < 0 and κ ≤ 2 + γ,

iii) r = γ
2(γ+1) if infs∈[0,1] ψ(s) = 0, ψ′(1) < 0 and κ > 2 + γ.

The corollary shows that for our estimator the best rate is obtained in the limit case t0 = 1
which corresponds to the best compromise between the number of visited sites and the number of
times most of the sites are visited. A remarkable difference if we compare our result on a tree to the
recurrent one dimensional random walk of [DL17] is the error rate. Indeed, in this paper, the time of
observation used instead of T (n) is τn, the first time the coordinate n is reached by the walk. They
obtain (see Corollary 2 in [DL17]) for the recurrent case an error rate of the order log log τn/ log τn.
This is very large compared to what is obtained here in Corollary 1.6, so (recurrent) walk on the
tree naturally yields a better rate for the error. The reason for that comes from the range of the
different walks: for the one dimensional recurrent case very few coordinates are visited before a
given instant (around (log n)2, for an instant n), whereas (see Theorem 1) for the walk on the tree
the range is much larger (of the order of a power of n, for the same instant n).

We now give a more explicit description of F̂n. For this purpose, let us introduce the following
family of estimators

F̂αn (u) :=
1

R
(n)
α E[ν ]

∑
x∈T

ψbαucα

(
N

(n)
x∗ , N

(n)
x

)
(11)

where

ψlα(i, j) :=
1i≥α(
i−1+j
α−1

) l−1∑
k=0

(
i

k

)(
j

α− 1− k

)
,

using the conventions 0/0 = 0 and
(
n
k

)
= 0 if 0 ≤ n < k. The logic behind the definition of the

F̂αn will become clear in Section 4. The following theorem shows that (F̂αn )n are estimators of the

c.d.f. F with an error rate depending on the variables R
(n)
α .

Theorem 1.7. Assume A1, A2 and that the c.d.f. F of ρ is in Cγ for some γ ∈ (0, 2]. Then for
any integers α, n ≥ 1, and any real z > 0, we have

P

‖F̂αn − F‖∞ ≥ K

E[ν ]

√
z + logα+ 2 logR

(n)
α

2R
(n)
α

+
2‖F‖γ
αγ/2

 ≤ Ce−z .

Theorem 1.7 shows that the random part of the error rate our estimator is a function of the
heavy range introduced in the previous subsection. To obtain the optimal F̂αn for the estimation of
F , a compromise must be done between considering sites which have been sufficiently visited, that
is choosing a large α, and considering a sufficiently large number of sites, that is choosing α small
enough.

Remark that, in this theorem, we work with probability P and not P∗. Theorem 1.7 will be
proved in Section 4. But we can directly explain how it implies 1.5.

Proof of Theorem 1.5. The estimator F̂n given in Theorem 1.5 is obtained from the collection(
F̂αn

)
α≥1

via Goldenshluger-Lepski’s method (see [GL08]). Using arguments similar to the ones

presented in the proof of Lemma 3 in [DL17], we can show that for any integer n ≥ 1, and any real
z > 0, there exists a r.v. α̂z,n depending only on (Xk )0≤k≤T (n) such that

P

‖F̂ α̂z,nn − F‖∞ ≥ inf
α≥1

4K

E[ν ]

√
z + 3 logα+ 2 logR

(n)
α

2R
(n)
α

+
6‖F‖γ
αγ/2

 ≤ Ce−z .
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Theorem 1.5 is now easily obtained using the estimations of R
(n)
α given in Theorem 1.1.

The rest of the paper is organized as follows. In Section 2 we present tools related to the
environment together with estimates for potential V that will be used in Section 3. More specifically
we study the number of vertices with low potential which have a great importance for the slow
cases. Section 3 is the heart of the paper, we study the heavy range and prove Theorem 1.1. This
section is decomposed into two subsections the first one deals with an upper bound for the heavy
range and the second one with a lower bound. Note that the proof of the lower bound is more
technical and need in particular to estimate the fluctuations of the environment, these estimates
are more complex for the sub-diffusive and diffusive cases than for the slow cases. Then, in Section
4, we prove Theorem 1.5 on the non-parametric estimation problem of the environment.

Finally, throughout the paper, the letter C stands for a universal constant which value can
change from line to line.

2. Preliminaries on the environment

In this section we present results related to the environment which are used in Section 3 to prove
Theorem 1.1. Like in the whole paper, we assume in this section that Assumptions A1 are valid.
In a first subsection we give useful technical lemmata and in a second one, we state and prove a
result concerning the number of vertices with low potential V . We also introduce some notation
specific to the environment. For u ∈ T, we denote the maximum of V between e and u by V and
the minimum of V between e and u by V :

V (u) := max
x≤u

V (x) and V (u) := min
x≤u

V (x).

We also denote by Vu the environment centered at u: for any x ≥ u, Vu(x) := V (x) − V (u).
Remark that if u and v are different vertices of the same generation `, then, given T`, (Vu(x) )x≥u
and (Vv(x) )x≥v are i.i.d. and distributed as V under P.

2.1. Technical estimates

First recall the many-to-one Formula (see [Shi15] Chapter 1, and [FHS11] equation 2.1). It is used
several times in the paper to compute different expectations related to the environment.

Lemma 2.1 (Many-to-one Formula). For any t > 0,

E
[ ∑
|x|=m

f(V (xi), 1 ≤ i ≤ m)
]

= E
[
etSm+ψ(t)mf(Si, 1 ≤ i ≤ m)

]
.

where (Sn)n∈N is the random walk starting at 0 and such that the increments (Sn+1 − Sn )n∈N are
i.i.d. and for any measurable function h : Rm → [0,∞),

E[h(S1) ] = e−ψ(t)E

 ∑
|x|=1

e−tV (x)h(V (x))

 .
The next lemma deals with a key random variable which appears in the study of the heavy

range (via the edge local time of random walk (Xn)n∈N, see below (27)) after that Many-to-one
Formula is applied.
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Lemma 2.2. Assume ψ(1) = 0 and ψ′(1) < 0 and that the parameter κ defined in (3) is finite.
Let us consider the random walk (Sn)n∈N of the Many-to-one Lemma with t = 1 and define for
any ` ≥ 0, the random variable:

HS
` :=

∑̀
k=0

eSk−S` . (12)

Then, we can find three constants C ≥ c and A > 0 such that

∀m ≥ 1, ∀` ∈ N, P
(
HS
` ≥ m

)
≤ C

mκ−1
,

and
∀m ≥ 1, ∀` ≥ A logm, P

(
HS
` ≥ m

)
≥ c

mκ−1
.

Proof. By definition of S1, E[−S1 ] = ψ′(1) < 0 and E
[
e−(κ−1)S1

]
= eψ(κ) = 1. According to

Lemma 1 in [KKS75] for the lattice case and to Theorem 2 in [Gri75] for the non-lattice case,∑+∞
j=0 e

−Sj is P-a.s. finite and there are some constants c, C, such that for m ≥ 1,

c

mκ−1
≤ P

(+∞∑
j=0

e−Sj ≥ m
)
≤ C

mκ−1
.

As for any ` ∈ N, HS
`
L
=
∑`
k=0 e

−Sk where
L
= stands for the equality in law, this leads directly to

the upper bound of the lemma.
For the lower bound, we remark that

P
(
HS
` ≥ m

)
≥ P

( ∞∑
k=0

e−Sk ≥ 3

2
m
)
− P

( ∞∑
k=`+1

e−Sk >
m

2

)
.

And we only have to prove that for ` large enough, P
(∑∞

k=`+1 e
−Sk > m/2

)
is negligible compared

to 1/mκ−1. Indeed, consider the event A` := {∀k ≥ `+ 1, e−Sk ≤ m
2k2 }. On A`,

∞∑
k=`+1

e−Sk ≤ m

2

∞∑
k=`+1

1

k2
≤ m

2`
.

Therefore, Markov inequality yields

P
( ∞∑
k=`+1

e−Sk > m/2
)
≤ P

(
A`
)

= P
( ⋃
k≥`+1

{
e−Sk >

m

2k2

})
≤
∑
k≥`+1

P
(
e−(κ−1)Sk/2 >

( m

2k2

)(κ−1)/2 )

≤
(

2

m

)(κ−1)/2 ∑
k≥`+1

kκ−1ekψ(κ+1
2 ) ≤ Cm−(κ−1)/2`κ−1e`ψ(κ+1

2 ),

As ψ(κ+1
2 ) < 0, we can find a constant A such that for ` ≥ A logm, the above expression is

o(m−(κ−1)). This concludes the proof of the lemma.

We give now a control of the maximum of V at the very first generations of the tree.
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Lemma 2.3. For any δ > 0, we can find two constants ε1, ε2 such that for n large enough,

P
(

max
|u|≤ε1 logn

|V (u)| ≥ δ log n
)
≤ n−ε2 .

Note that the optimal bound, that is to say the one that leads to the almost-sure behavior of
max|u|≤ε logn V (u), is well known (see for example [AD14a]) but its exact value has no importance
here.

Proof. Recall the definition of r1 in (1), for any ε > 0,

P
(

max
|u|≤ε logn

V (u) ≥ aε log n
)
≤

∑
j≤ε logn

E
[ ∑
|v|=j

1V (v)≥aε logn

]
≤

∑
j≤ε logn

E
[ ∑
|v|=j

er1V (v)−r1aε logn
]

≤
∑

j≤ε logn

e−r1aε logn+jψ(−r1) ≤ Ce−ε logn(r1a−ψ(−r1))

for some constant C > 0. Then choosing a large enough so that r1a > ψ(−r1) and taking ε = δ/a,
we obtain the bound for maxV . For minV , the proof is the same except we work with t0 instead
of r1:

P
(

min
|u|≤ε logn

V (u) ≤ −aε log n
)
≤

∑
j≤ε logn

E
[ ∑
|v|=j

1V (v)≤−aε logn

]
≤

∑
j≤ε logn

E
[ ∑
|v|=j

e−t0V (v)−t0aε logn
]
≤

∑
j≤ε logn

e−t0aε logn ≤ Cn−aεt0 log n.

The above lemma is used in the following section to obtain independence between the different
branches of the tree. It will be used together with the following concentration lemma.

Lemma 2.4. Consider two integers ` ≤ L and L − ` + 1 measurable sets A`, . . . , AL. Consider,
for any u ∈ T such that |u| = `, the variable

Zu :=
∑

u≤x,|x|≤L

e−t0Vu(x)1(Vu(y), u≤y≤x )∈A|x| .

There exist two constants C > 0 and a > 1 depending only on the reproduction distribution ν such
that

P
( ∑
|u|=`

Zu < E[Z ]
)
≤

E
[
Z2
]

E[Z ]
2 Ca

−` .

where
Z =

∑
|x|≤L−`

e−t0V (x)1(V (y), y≤x )∈A|x| .

Proof. We first work with the conditional probability P(·|T`). The (Znu , |u| = `) are hence indepen-
dent and identically distributed as Z under P. Denote by D` the number of vertices at generation
`; Tchebychev’s inequality gives:

P
(∣∣∣ ∑
|u|=`

Zu −D`E[Z ]
∣∣∣ > D`

2
E[Z ]

∣∣∣T`) ≤ 4

D`

E
[
Z2
]

E[Z ]
2 .

Now, Theorem A.3 in [AD14a] tells us that for some a, b > 1, ∀` ≥ 1, P
(
D` ≤ a`

)
≤ b−` which is

enough to conclude the proof.
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2.2. Number of vertices with low potential

Fix some constant c > 0. In this subsection we are interested in a lower bound for the random
variable ∑

|x|≤(logn)3

1V (x)≤c logn.

It counts the number of sites x with generation smaller than (log n)3 such that the potential in the
path from the root to x remains below c log n. We will see in the next section that this random
variable is naturally related to the heavy range.

The proof we propose here is based on Lemma 2.3 which implies that the very first generations of
the tree have no important impact on the value of V . This point can be used to obtain independence
and to apply Lemma 2.4.

Proposition 2.5. Assume A1. Let c > 0 and 0 < δ < 1 ∧ c and t0 := inf{s > 0, ψ(s) = 0}. There
exists a > 0 such that for large n,

P
( ∑
|x|≤(logn)3

1V (x)≤c logn ≥ n
t0(c−δ)

)
≤ n−aδ .

Proof. We first use Lemma 2.3 to control V (u) on the very first generations of the tree: there exist
two positive constants b and ε such that

P
(

max
|u|=εn

V (u) ≥ δ

4
log n

)
≤ n−b where εn = bε log nc . (13)

The strategy is then similar for the different cases (depending on ψ), the only difference is the
generation we have to work with. Let us take some constant B ≥ 0 and a sequence of integers
(`n)n∈N such that for nlarge enough, `n is smaller than (log n)3; the exact choice of the sequence
depends on ψ and will be explicitly given later. Consider now the collection of random variables:

∀n ≥ 1, ∀u ∈ T, Znu :=
∑
x>u

|x|=`n+εn

e−t0Vu(x)1(c−δ/2) logn≤Vu(x),V u(x)≤(c−δ/4) logn, V u(x)≥−B .

For n large enough, on the event An := {max|u|=εn V (u) < δ
4 log n},∑

|x|≤(logn)3

1V (x)≤c logn ≥
∑
|u|=εn

∑
x≥u

1V u(x)≤(c−δ/4) logn ≥ n
t0(c−δ/2)

∑
|u|=εn

Znu .

Hence, concentration Lemma 2.4 implies that there exists a constant ε1 such that for n large
enough,

P

 ∑
|x|≤(logn)3

1V (x)≤c logn ≤ n
t0(c−δ/2)E[Zn ]

 ≤ E
[

(Zn )
2
]

E[Zn ]
2 n−ε1 + P

(
An
)
. (14)

where
∀n ≥ 1, Zn :=

∑
|x|=`n

e−t0V (x)1(c−δ/2) logn≤V (x),V (x)≤(c−δ/4) logn, V (x)≥−B .

So we only have to control E[Zn ] and E
[

(Zn )
2
]

to obtain the bound of the proposition.

• First for the mean E[Zn ] the proof is different depending on the value of ψ′(t0):
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Case 1: ψ′(t0) < 0: recall that in this case either t0 = 1 and ψ(1) = infs∈[0,1] ψ(s) = 0, or
t0 < 1 and infs∈[0,1] ψ(s) < 0. Moreover, we choose `n = b` log nc with ` = (c − 3δ/8)/|ψ′(t0)|.
Using Many-to-one formula of Lemma 2.1 with t = t0, gives

E[Zn ] = P
(

(c− δ/2) log n ≤ S`n , S`n ≤ (c− δ/4) log n, S`n ≥ −B
)

≥ 1− P( (c− δ/2) log n > S`n )− P
(
S`n > (c− δ/4) log n

)
− P

(
S`n < −B

)
.

For any B ≥ 0 and λ > 0 such that ψ(t0 + λ) < 0, Markov inequality yields

P
(
S`n < −B

)
≤
∑
k≤`n

P(Sk < −B ) ≤
∑
k≤`n

e−λBeψ(t0+λ)k ≤ e−λB

1− eψ(t0+λ)
,

so taking B large enough, for any n, P(S`n < −B) ≤ C < 1. And, as the process S is the sum
of i.i.d. random variables with mean |ψ′(t0)| and c − δ/2 < |ψ′(t0)|` < c − δ/4, using exponential
Markov inequality we can also prove that for some constant a > 0,

P( (c− δ/2) log n > S`n ) ≤ n−a and P
(
S`n > (c− δ/4) log n

)
≤ n−a .

Combining these bounds, we obtain that for any n ≥ 1,

E[Zn ] ≥ C > 0 . (15)

Case 2: ψ′(t0) = 0: in this case either t0 < 1 or ψ(1) = ψ′(1) = 0. We can basically use the same
method as in the case ψ′(t0) < 0 except that, for this case, important generations (see [AD14b],
[AC18]) are the ones of the order (log n)2, so essentially we take this time `n = b(` log n)2c for
some ` > 0, and we can choose B = 0. Many-to-one Lemma yields like above

E[Zn ] = P
(

(c− δ/2) log n ≤ S`n , S`n ≤ (c− δ/4) log n|S`n ≥ 0
)
P
(
S`n ≥ 0

)
.

We know (see [AS14] equation (2.8)) that the limit, limn→+∞ `n
1/2P(S`n ≥ 0) = d > 0 exists, also

by invariance principle (see [Bol76]),

lim
n→∞

P
(

(c− δ/2) log n ≤ S`n , S`n ≤ (c− δ/4) log n
∣∣ S`n ≥ 0

)
= lim
n→∞

P
(

(c− δ/2)(σ`)−1 ≤ S`n/σ
√
`n, S`n/σ

√
`n ≤ (c− δ/4)(σ`)−1

∣∣ S`n ≥ 0
)

= P
(

(c− δ/2)(σ`)−1 ≤M, M≤ (c− δ/4)(σ`)−1
)
≥ C > 0.

whereM is the Brownian meander and σ2 := Var(S1) = E(
∑
|x|=1 V

2(x)e−V (x)) < +∞ by (1). So
finally we obtain in this case: for n large enough,

E[Zn ] ≥ C(log n)−1 (16)

for some constant C > 0.

• For E
[
(Zn)2

]
, we first introduce the sequence of variables

∀k ∈ N, Mk :=
∑

|x|=|y|=k

e−t0V (x)−t0V (y)1V (x)∧V (y)≥−B .
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For any k ∈ N,

Mk+1 ≤
∑

|u|=|v|=k

e−t0V (u)−t0V (v)1V (u)∧V (v)≥−B
∑

x s.t. x∗=u
y s.t.y∗=v

e−t0Vu(x)−t0Vv(y)

=
∑
u6=v

|u|=|v|=k

e−t0V (u)−t0V (v)1V (u)∧V (v)≥−B
∑

x s.t. x∗=u
y s.t.y∗=v

e−t0Vu(x)−t0Vv(y)

+
∑
|u|=k

e−2t0V (u)1V (u)≥−B
∑

x,y s.t.
x∗=y∗=u

e−t0Vu(x)−t0Vu(y) .

Then taking conditional expectation with respect to Ek := σ (Tk, (V (x), |x| ≤ k) ) , the above
expression gives

E[Mk+1|Ek ] ≤MkE

 ∑
|x|=1

e−t0V (x)

2

+
∑
|u|=k

e−2t0V (u)1V (u)≥−BE

 ∑
|x|=|y|=1

e−t0V (x)−t0V (y)


≤Mk + C

∑
|u|=k

e−t0V (u) .

Note that E
[∑

|x|=|y|=1 e
−t0V (x)−t0V (y)

]
= E

[
(
∑
|x|=1 e

−t0V (x))2
]

is finite thanks to (4). And we

get recursively, as M0 = 1,

E[Mk+1 ] ≤ 1 + CE

 ∑
|u|≤k

e−t0V (u)

 = 1 + C(k + 1).

This gives the bound for the second moment: E
[
(Zn)2

]
≤ E[M`n ] ≤ C`n. Collecting this bound

together with the one for E[Zn ] in (14), this concludes the proof.

3. Lower and Upper bound for the heavy range of recurrent walks

In this section, we prove Theorem 1.1 by considering separately the lower and upper bounds.
The upper bounds are easier to obtain than the lower ones so they are treated for every cases
at the beginning of this section in Proposition 3.1. For the lower bounds we treat separately the
contribution coming from vertices with low potential in Proposition 3.3 and the contribution coming
from vertices with high potential in Proposition 3.4. It turns out that for slow random walks, that
is to say random walks with logarithmic behavior, the contribution coming from vertices with low
potential is sufficient to obtain the asymptotics for the log-heavy range. Conversely, for fast but
sub-diffusive cases, that is to say when 1 < κ < 2, then only vertices with high potential contribute.
Finally for diffusive cases, that is to say for κ ≥ 2 then either vertices with low or high potential
contribute depending on the value of θ.

Remind that PEx stands for the probability where the environment is fixed and the index x stands
for the starting point of the random walk. To obtain the bounds, an environment-related variable
is essential:

∀x ∈ T, Hx :=
∑
y≤x

eV (y)−V (x) . (17)
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Indeed some important probabilities, for a fixed environment, are related to Hx. For any x ∈ T, let
Tx := inf{k > 0, Xk = x} be the hitting time of vertex x. As the walk (Xn)n∈N is recurrent, the
expressions of the probability of hitting x before e∗ starting from the root and the probability of
hitting x before the root starting from x∗ are the same as for a one-dimensional walk: the restriction
of (Xn)n∈N to the path Je, xK. So a standard result for one-dimensional random walks in random
environment (see [Gol84]) yields:

ax := PEe (Tx < Te∗ = 1/
∑

z∈Je,xK

eV (z) =
e−V (x)

Hx
(18)

and

bx := PEx∗(Tx < Te∗) =
∑

z∈Je,x∗K

eV (z)/
∑

z∈Je,xK

eV (z) = 1− 1

Hx
. (19)

3.1. Upper bounds

The main results of this section is the following proposition, which gives the upper bounds for R
(n)

nθ

depending on the value of θ. The proof is quite short compared to the lower bound and gives a
good idea of what can be expected for the lower bounds.

Proposition 3.1. Assume A1 and fix θ ∈ [0, 1). For any δ > 0, there is a constant ε > 0 such
that, for n large enough,

• in all cases but ψ(1) = 0 and ψ′(1) < 0,

P∗
(
R

(n)

nθ
> nt0(1−θ)+δ

)
≤ n−ε ,

• if instead ψ(1) = 0 and ψ′(1) < 0,

– if 1 < κ ≤ 2, P∗
(
R

(n)

nθ
> nκ(1−θ)+δ

)
≤ n−ε ,

– if κ ∈ (2,∞], P∗
(
R

(n)

nθ
> n(2−κθ)∨(1−θ)+δ

)
≤ n−ε .

To prove the proposition, we have to control the largest generation visited by the walk before n
returns to e∗: X∗

T (n) = max0≤k≤T (n) |Xk|. To study the different behaviors of this random variable
depending on ψ was the purpose of [HS07a], [HS07b] and [FHS11]. In the following lemma we
present a simpler version of their results adapted to our purpose:

Lemma 3.2. If infs∈[0,1] ψ(s) = 0 and ψ′(1) ≥ 0 there exists B, b > 0 such that for n large enough,

P∗
(
X∗T (n) ≥ Ln

)
≤ n−b ,with Ln = B(log n)3,

otherwise if ψ′(1) < 0 for any ε > 0, there exists b > 0 such that, for n large enough,

P∗
(
X∗T (n) ≥ Ln

)
≤ n−b with Ln = nmin(κ−1,1)+ε.

Finally if infs∈[0,1] ψ(s) < 0 there exists B > 0 and b > 0 such that for n large enough,

P∗
(
X∗T (n) ≥ Ln

)
≤ n−b, with Ln = B log n .
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Proof. By the strong Markov property, PE
(
X∗
T (n) ≥ Ln

)
= 1 −

(
1− PE

(
T|Ln| < Te∗

))n
where

T|Ln| is the hitting time of generation Ln:

T|Ln| = inf { t ≥ 0 / ∃x ∈ T, Xt = x and |x| = Ln } .

As for any x ∈ [0, 1], 1 − (1 − x)n ≤ nx, integrating the previous equality with respect to the
distribution of E gives

P∗
(
X∗T (n) > Ln

)
≤ nP∗

(
T|Ln| < Te∗

)
.

This probability has been intensively studied in [HS07a], [HS07b], [FHS11] and [Hu17] (replacing
the return time in e∗ by the return time in e but this does not change the normalization rate).
More precisely, when infs∈[0,1] ψ(s) = 0: if ψ′(1) ≥ 0 then Equations (5.4) in [FHS11] gives the
existence, for B large enough, of a constant c1 > 1 such that

lim sup
n→+∞

1

log n
logP∗

(
T|Ln| < Te∗

)
≤ −c1, (20)

If instead ψ′(1) < 0 then Proposition 4.2 (ii and iii) in [HS07b] implies

lim sup
n→+∞

1

log n
logP∗

(
T|Ln| < Te∗

)
≤ −1− ε/2, (21)

(note that Proposition 4.2 is written for regular trees, but the proof also works in our case). Finally,
if infs∈[0,1] ψ(s) < 0, according to the proof of Theorem 1.1 in [HS07b], for B large enough there
exists c2 > 1 such that,

lim sup
n→+∞

1

log n
logP∗

(
T|Ln| < Te∗

)
≤ −c2. (22)

The different results of the lemma are now direct consequences of (20), (21) and (22).

We are now ready to prove the proposition.

Proof of Proposition 3.1. We first restrict the sum over the whole tree to the first Ln generations
where Ln is the sequence introduced in Lemma 3.2 corresponding to the assumptions about ψ:

P∗
(
R

(n)

nθ
> nt0(1−θ)+δ

)
≤ P∗

(
X∗T (n) ≥ Ln

)
+ n−t0(1−θ)+δE∗

∑
|x|≤Ln

PE
(
N (n)
x ≥ nθ

)
(23)

where the second term in the above upper bound comes from Markov inequality. Thanks to Lemma

3.2, we only have to bound the last expectation E∗
[∑

|x|≤Ln P
E(N

(n)
x ≥ nθ)

]
. The proof is different

whether Ln is a power of n or a power of log n.
Case 1: Ln is of the order (log n)p, p > 0.
We split the sum into two terms depending on the value of V (x): define

Σ1 := E∗
[ ∑
|x|≤Ln

PE(N (n)
x ≥ nθ)1V (x)≤(1−θ) logn

]
and

Σ2 := E∗
[ ∑
|x|≤Ln

PE(N (n)
x ≥ nθ)1V (x)>(1−θ) logn

]
.
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For Σ1, we just say that PE(N (n)
x ≥ nθ) ≤ 1 and use the Many-to-one Formula, Lemma 2.1, with

t = t0:

Σ1 ≤ E∗
[ ∑
|x|≤Ln

1V (x)≤(1−θ) logn

]
≤ CE

[ ∑
|x|≤Ln

et0((1−θ) logn−V (x))
]

= Cnt0(1−θ)
Ln∑
i=0

E
[
et0(Si−Si)

]
= Cnt0(1−θ)(Ln + 1).

For Σ2, we first compute the expectation of N
(n)
x at fixed environment:

EE
[
N (n)
x

]
=

n∑
i=1

EE
[
N (i)
x −N (i−1)

x

]
= nEE

[
N (1)
x

]
= n

ax
1− bx

= ne−V (x) (24)

where ax and bx have been defined in (18) and (19). Now we can apply Markov inequality to

PE(N (n)
x ≥ nθ) and use Many-to-one formula with t = t0 ≤ 1:

Σ2 ≤ Cn(1−θ)E
[ ∑
|x|≤Ln

e−V (x)1V (x)>(1−θ) logn

]
≤ Cn(1−θ)e(t0−1)(1−θ) lognE

[ ∑
|x|≤Ln

e−t0V (x)1V (x)>(1−θ) logn

]
≤ Cnt0(1−θ)(Ln + 1).

Inserting the upper bounds of Σ1 and Σ2 in (23) concludes the proof in this first case.

Case 2: Ln is of the order np, p > 0.
Note that in this case, ψ satisfies infs∈[0,1] ψ(s) = 0 with ψ′(1) < 0, so t0 = 1. We assume in the
definition of Ln that ε = δ/2 and take some real d > 0 which value will be fixed later. First we

split the expectation E∗
[∑

|x|≤Ln 1N(n)
x ≥nθ

]
into two parts Σ1 and Σ2, depending on the values of

V (x):

Σ1 := E∗
[ ∑
|x|≤Ln

PE
(
N (n)
x ≥ nθ

)
1V (x)≤d logn

]
and

Σ2 := E∗
[ ∑
|x|≤Ln

PE
(
N (n)
x ≥ nθ

)
1V (x)>d logn

]
.

We first deal with Σ1. Equality (24), Markov inequality and Many-to-one Formula, Lemma 2.1
with t = 1 yield

Σ1 ≤ CE
[ ∑
|x|≤Ln

ne−V (x)n−θ1V (x)≤d logn

]
= Cn1−θ

Ln∑
j=1

P
(
Sj ≤ d log n

)
.

As ψ′(1) < 0 we can choose a r > 0 in such way that ψ(1 + r) < 0. Let A > 0. When Ln is larger
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than A log n,

Ln∑
j=1

P
(
Sj ≤ d log n

)
≤
A logn∑
j=1

P
(
Sj ≤ d log n

)
+

Ln∑
j=A logn

P
(
Sj ≤ d log n

)
≤ A log n+

Ln∑
j=A logn

P
(
e−rSj ≥ e−rd logn

)
(25)

≤ A log n+

Ln∑
j=A logn

erd logneψ(1+r)j ,

where we have used the equality E
[
e−rS1

]
= eψ(1+r) obtained from Many-to-one Formula. So the

above sum is smaller than Cerd logneAψ(1+r) logn, and choosing A large enough, this converges to
0. Therefore when ψ′(1) < 0, the following bound holds

Σ1 ≤ Cn1−θ log n . (26)

We now have to deal with Σ2. For any x ∈ T, consider E
(n)
x :=

∑n
i=1 1{∃k∈[T i−1,T i), Xk=x}

the number of excursions between two returns to e∗. We split once again Σ2 into two other sums

depending on the value of E
(n)
x :

Σ2,1 = E∗
[ ∑
|x|≤Ln

1
N

(n)
x ≥nθ

1V (x)>d logn1E(n)
x ≥2

]
and

Σ2,2 = E∗
[ ∑
|x|≤Ln

1
N

(n)
x ≥nθ

1V (x)>d logn1E(n)
x =1

]
.

We first prove that, for d large enough, the walk will be able to reach a vertex x satisfying V (x) >

d log n during a unique excursion [T i−1, T i). Under PE , E(n)
x follows the binomial distribution

B(n, ax), thus

PE
(
E(n)
x ≥ 2

)
≤ EE

[
E(n)
x

]
− PE

(
E(n)
x = 1

)
= nax(1− (1− ax)n−1) ≤ n2a2

x ≤ n2e−2V (x)

and Many-to-one Formula yields

Σ2,1 ≤ Cn2
Ln∑
j=1

E
[
eSj−2Sj1Sj>d logn

]
≤ CLnn2−d ≤ 1 (27)

for d large enough. For Σ2,2, we first notice that

PE
(
N (n)
x ≥ nθ, E(n)

x = 1
)

=

n∑
i=1

PE(N (i)
x −N (i−1)

x ≥ nθ, ∀j 6= i, N (j)
x −N (j−1)

x = 0).

In particular, PE(N (n)
x ≥ nθ, E(n)

x = 1) ≤ nax(bx)n
θ

and thanks to Many-to-one Formula, we get

Σ2,2 ≤ CnE
[ ∑
|x|≤Ln

ax(bx)n
θ

1V (x)>d logn

]
≤ Cn

Ln∑
j=1

E

[
1

HS
j

(
1− 1

HS
j

)nθ ]
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where HS
j =

∑j
m=1 e

Sm−Sj is the random variable defined in Lemma 2.2. Now remark that if

HS
j ≤ nθ/(3 log n), then

(
1− 1/HS

j

)nθ
≤ 1/n3 and so

Ln∑
j=1

E

[
1

HS
j

(
1− 1

HS
j

)nθ
1Hj≤nθ/(3 logn)

]
≤ Ln/n3

and according to Lemma 2.2,

E

[
1

HS
j

(
1− 1

HS
j

)nθ
1Hj>nθ/3 logn)

]
≤ 3 log n

nθ
P
(
HS
j >

nθ

3 log n

)
≤ C (log n)κ

nκθ
.

Finally,

Σ2,2 ≤ C(log n)κLnn
1−κθ. (28)

The bounds obtained for Σ1, Σ2,1 and Σ2,2 in (26), (27), (28) and Markov inequality give the result
in this second case.

3.2. Lower bounds

In this section, we prove two propositions: the first one gives a lower bound for the heavy range

R
(n)

nθ
for any cases but is only optimal for the slowest cases, that is to say for random walks with

logarithmic behavior. This first proposition is obtained by studying only vertices with low potential
(see definition of set An below). The second one, Proposition 3.4, which is more technical to obtain,
deals only with the fast cases, that is to say when ψ(1) = 0 and ψ′(1) < 0 and focuses on vertices
with high potential.

Proposition 3.3. Assume A1 and fix θ ∈ [0, 1). For any 0 < δ < t0(1− θ), there exists a constant
ε > 0 such that for n large enough,

P∗
( ∑
|x|≤(logn)3

1
N

(n)
x ≥nθ

< nt0(1−θ)−δ
)
≤ n−ε .

Remark that the upper bound for R
(n)

nθ
given in Proposition 3.1 for the case infs∈[0,1] ψ(s) = 0

and ψ′(1) < 0 can be larger than the lower bound obtained in the above proposition. This means
that we ignore too much vertices with high potential that are of great importance. They are treated
in Proposition 3.4.

Proof. Consider the subset

∀n ≥ 1, An :=
{
x ∈ T, V (x) ≤ (1− θ − δ) log n, and |x| ≤ (log n)3

}
.

We will prove that for n large enough,

P∗
( ∑
x∈An

1
N

(n)
x <nθ

≥ 1
)
≤ e−n

θ

. (29)

Accepting this bound, we have

P∗
( ∑
|x|≤(logn)3

1
N

(n)
x ≥nθ

< nt0(1−θ)−δ
)
≤ P∗

(
|An| < nt0(1−θ)−δ

)
+ e−n

θ
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and the control on the cardinal of An given in Proposition 2.5 taking c = 1− θ − δ concludes the
proof.

Let us now prove (29). Fix an environment E = (T,ω) and consider a vertex x ∈ T. By the

strong Markov property, the sequence (N
(i)
x −N (i−1)

x , i ≥ 1) is, under PE = PEe , an i.i.d. sequence

with law given by N
(1)
x (remark that N

(0)
x = 0). Applying exponential Markov inequality, we have

for any η > 0 and α > 0,

PE
(
N (n)
x ≤ α

)
= P

( n∑
i=1

[N (i)
x −N (i−1)

x ] < α
)

= PE
(
e−η

∑n
i=1[N(i)

x −N
(i−1)
x ] > e−ηα

)
≤ exp

(
ηα+ n logEE

[
e−ηN

(1)
x )
])

. (30)

It is easy to see, by the strong Markov property, that the distribution ofN
(1)
x under PEx is geometrical

with parameter 1− bx, so that

logEE
[

exp(−ηN (1)
x )

]
= log

(
(1− ax) + axEEx

[
exp(−ηN (1)

x )
])

= log (1− ax + ax(1− bx)/(eη − bx) )

≤ −ax + ax(1− bx)/(1 + η − bx) .

Then coming back to (30) with η = (1− bx), we obtain

PE
(
N (n)
x ≤ α

)
≤ exp

(
−nax

2
+ (1− bx)α

)
. (31)

The equations of ax and bx given in (18) and (19) imply that ax/(1− bx) = e−V (x). Together with
(31), this gives

PE
(
N (n)
x ≤ α

)
≤ e−

ax
2 (n−eV (x)α ) .

As for any x ∈ An, e−V (x) ≥ n−(1−θ−δ) and ax ≥ 1/(n1−θ−δ(log n)3), the above inequality implies
that

PE
( ∑
x∈An

1
N

(n)
x <nθ

≥ 1
)
≤
∑
x∈An

PE
(
N (n)
x ≤ n1−δe−V (x)

)
≤ |An|e−n

θ+δ(1−n−δ)/(logn)3

.

Integrating with respect to the distribution of E , we obtain for n large enough:

P∗
( ∑
x∈An

1
N

(n)
x <nθ

≥ 1
)
≤ CE[ |An| ] e−n

θ+δ/2

.

Then we only need an appropriate upper bound for E[ |An| ] to complete the proof. This is a direct
consequence of Many-to-one Formula. Indeed, taking t = t0 in Lemma 2.1, we get

E[ |An| ] =E
[ ∑
|x|≤(logn)3

1V (x)≤(1−θ−δ) logn

]

=

b(logn)3c∑
k=1

E
[
et0Sk+kψ(t0)1Sk≤(1−θ−δ) logn

]
≤ (log n)3nt0(1−θ−δ) .

The following proposition deals with the rapid cases (ψ(1) = 0, ψ′(1) < 0): we treat the vertices
with large potential which were left aside in the previous proposition. Quite technical, the proof is
decomposed in essentially four Lemmata.
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Proposition 3.4. Assume A1 and suppose we are in the case

inf
s∈[0,1]

ψ(s) = ψ(1) = 0 , ψ′(1) < 0 and κ = inf {s > 1, ψ(s) = 0} <∞ .

Define ζ := (κ− 1)−1 ∧ 1 and consider a real θ ∈ [0, ζ). For any constant 0 < δ < (κ− 1)(ζ − θ),
there exists a positive number ε such that for n large enough,

P∗
(
R

(n)

nθ
≤ n2∧κ−κθ−δ

)
≤ n−ε.

In the sequel it is enough to consider generations slightly smaller than typical visited generations
for this cases (that is n(κ−1)∧1, as recalled in Lemma 3.2), so we define

Lδn := n(κ−1)∧1−δ/2 = n(κ−1)ζ−δ/2 .

First let us introduce the set Γn = Γ1
n ∩ Γ2

n where

Γ1
n =

{
x ∈ T / nθ ≤ Hx ≤ nθ+δ/16, V (x) ≥ 4 log n

}
and

Γ2
n =

{
x ∈ T /

∑
z≤x

Hz ≤ n1−7δ/16 and ∀z ≤ x, Hz ≤ nζ
}

(recall the definition of Hx in (17)). The set Γn contains the vertices which are the main contributors
to the heavy range. Remark that, when κ ≤ 2, the condition

{
∀z ≤ x, Hz ≤ nζ

}
is implied by the

condition on the sum
∑
z≤xHz and is therefore useless in this case.

The set Γn is such that the walk visits most of these vertices more than nθ times with a large
probability. Then, as

R
(n)

nθ
≥

∑
|x|≤Lδn

1
N

(n)
x ≥nθ

1x∈Γn ,

we only have to obtain a lower bound for the above last sum. We first prove in the following lemma
that, with a large probability, the walk reaches a given vertex of Γn during a single excursion
[T i−1, T i)

Lemma 3.5. For any x ∈ T, consider E
(n)
x :=

∑n
i=1 1{∃k∈[T i−1,T i), Xk=x} the number of excursions

where the walk hits vertex x. Then, for n large enough,

P∗
( ∑
|x|≤Lδn

1
E

(n)
x ≥2

1x∈Γn ≥ 1
)
≤ n−1 .

Proof. Under PE , E(n)
x follows the binomial distribution B(n, ax) = B(n, e−V (x)/Hx) so

PE
(
E(n)
x ≥ 2

)
≤ EE

[
E(n)
x

]
− PE

(
E(n)
x = 1

)
= nax(1− (1− ax)n−1) ≤ n2a2

x .

Moreover, for x ∈ Γn, n2a2
x = n2e−2V (x)H−2

x ≤ n−2e−V (x) and

E∗
[ ∑
|x|≤Lδn

PE
(
E(n)
x ≥ 2

)
1x∈Γn

]
≤ Cn−2E

[ ∑
|x|≤Lδn

e−V (x)
]
≤ Cn−2Lδn ≤ n−1 .

And Markov inequality gives the result of the lemma.

The previous lemma shows that there is independence between the contributions of the different
excursions. The following one shows that the sum of these contributions is close to the sum of the
quenched mean of one contribution.
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Lemma 3.6. There is a constant C such that for n large enough,

PE
 n∑

i=1

∑
|x|≤Lδn

1
N

(i)
x −N(i−1)

x ≥nθ1x∈Γn ≤ n1−θ−δ/8
∑
|x|≤Lδn

e−V (x)1x∈Γn


≤ C

n1−δ/8

∑
|x|,|y|≤Lδn

Hx∧ye
−V (x)−V (y)+V (x∧y)1x,y∈Γn(∑

|x|≤Lδn
e−V (x)1x∈Γn

)2 , P∗-a.s.

Proof. As the excursions are i.i.d. under PE , we first use Tchebytchev inequality with probability
measure PE to obtain:

PE
 n∑

i=1

∑
|x|≤Lδn

1
N

(i)
x −N(i−1)

x ≥nθ1x∈Γn ≤
n

2

∑
|x|≤Lδn

PE
(
N (1)
x ≥ nθ

)
1x∈Γn


≤ 4

n

∑
|x|,|y|≤Lδn

PE
(
N

(1)
x ∧N (1)

y ≥ nθ
)
1x,y∈Γn(∑

|x|≤Lδn
PE
(
N

(1)
x ≥ nθ

)
1x∈Γn

)2 . (32)

Remark now that for any x ∈ T, PE(N (1)
x ≥ nθ) = ax(bx)dn

θe, with ax and bx given in respectively
(18) and (19) (and dnθe stands for the smallest integer larger than nθ). As for x ∈ Γn, Hx ∈
[nθ, nθ+δ/16], there is a constant C such that for any n ≥ 1,∑

|x|≤Lδn

PE(N (1)
x ≥ nθ)1x∈Γn ≥

C

nθ+δ/16

∑
|x|≤Lδn

e−V (x)1x∈Γn . (33)

To bound the numerator in (32), we use Markov-type inequality:∑
|x|,|y|≤Lδn

PE
(
N (1)
x ∧N (1)

y ≥ nθ
)
1x,y∈Γn ≤

1

n2θ

∑
x,y≤Lδn

EE
[
N (1)
x N (1)

y

]
1x,y∈Γn

≤ 2

n2θ

∑
|x|,|y|≤Lδn

e−V (x)−V (y)+V (x∧y)Hx∧y1x,y∈Γn .

The last bound of the previous equation is obtained by the control of the covariances EE
[
N

(1)
x N

(1)
y

]
.

This result is similar to the ones presented in Lemma 5.2 in [HS16], we give here a short proof for
completeness.

Lemma 3.7. For any x, y ∈ T,

if x ≤ y, EE
[
N (1)
x N (1)

y

]
= e−V (y) (2Hx − 1) (34)

else EE
[
N (1)
x N (1)

y

]
= 2e−V (x)−V (y)+V (x∧y)Hx∧y. (35)

Proof. A direct calculation leads to (34) when x = y. We proceed by induction on the generations
for the general case. The result is obvious for x = y = e. Suppose now that Equations (34) and
(35) are true for any |x| ∨ |y| ≤ m for some integer m and consider two vertices x and y such that
|x| ∨ |y| ≤ m+ 1. If |x| ∨ |y| ≤ m, the result is direct. If |x| ≤ m and |y| = m+ 1, we consider the
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σ-algebra Gm = σ
(
E , (N (1)

x , |x| ≤ m)
)

. Given Gm, N
(1)
y follows the negative binomial distribution

BN(N
(1)
y∗ , 1/(1 + e−(V (y)−V (y∗)))). Then,

EE
[
N (1)
x N (1)

y

∣∣Fm ] = N (1)
x N

(1)
y∗ e

−(V (y)−V (y∗)).

Taking the expectation leads to (34). Finally, if |x| = |y| = m+ 1, same kinds of arguments show
that

EE
[
N (1)
x N (1)

y

∣∣Fm ] = N
(1)
x∗ N

(1)
y∗ e

−(V (x)−V (x∗))−(V (y)−V (y∗)),

if x∗ 6= y∗ and otherwise

EE
[
N (1)
x N (1)

y

∣∣Fm ] = N
(1)
x∗ (N

(1)
x∗ + 1)e−(V (x)−V (x∗))−(V (y)−V (y∗)) .

The result is now easily obtained considering (34).

The following two lemmata control the numerator and the denominator of the bound obtained in
Lemma 3.6.

Lemma 3.8. For n large enough,

Gn := E
[ ∑
|x|,|y|≤Lδn

Hx∧ye
−V (x)−V (y)+V (x∧y)1x,y∈Γn

]
≤ Cn1+2(κ−1)(ζ−θ)−23δ/16.

Proof. Remark first that Gn can be written in the following way

Gn =

Lδn∑
i=1

E
[ ∑
|u|=i

e−V (u)Hu

(
1u∈Γn +

∑
v 6=ṽ

v∗=ṽ∗=u

e−Vu(v)−Vu(ṽ)
∑
x≥v

∑
y≥ṽ

e−Vv(x)e−Vṽ(y)1x,y∈Γn

)]

where we recall that for any z ≥ w, Vw(z) := V (z)− V (w) is the potential centered at w. Further-
more, for any x ∈ Γn and any ancestor v ≤ x, the variable Hx can be decomposed as follows

Hx = e−Vv(x)Hv +H(v)
x ≤ e−Vv(x)nζ +H(v)

x

where H
(v)
x =

∑
z∈Kv,xK e

Vv(z)−Vv(x). Now remark that

{x, y ∈ Γn } ⊂
{
nθ ≤ e−Vv(x)nζ +H(v)

x , nθ ≤ e−Vṽ(y)nζ +H(ṽ)
y ,

∑
z≤u

Hz ≤ n1−7δ/16
}

and {u ∈ Γn } ⊂
{∑
z≤u

Hz ≤ n1−7δ/16
}
.

The new variable H
(v)
x depends only on the values of the potential centered at v and are therefore

independent of the other branches and of the potential of the vertices before v. The same is true

for H
(ṽ)
y . Therefore, conditioning to variables up to generation i and using Many-to-one Formula

of Lemma 2.1 with t = 1, we obtain

Gn ≤
Lδn∑
i=1

E
[
HS
i 1

∑
j≤iH

S
j ≤n1−7δ/16

](
1 + E

[ ∑
v 6=ṽ

v∗=ṽ∗=e

e−V (v)−V (ṽ)
]( Lδn−i−1∑

k=0

φk,ζ

)2
)

(36)
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where for any 1 ≥ b > θ, φk,b := P
(
e−Sknb +HS

k > nθ
)
. The upper bound of φk,b will be use several

times in the sequel so we start by giving a general estimation. First, φk,b ≤ P
(
e−Sknb > nθ/2

)
+

P
(
HS
k > nθ/2

)
. According to Lemma 2.2, there is a constant C > 0 such that for any n large

enough, P
(
HS
k > nθ/2

)
≤ Cn−(κ−1)θ. And, by Markov inequality, for any 0 < δ < (κ− 1)(b− θ),

P
(
e−Sk >

1

2nb−θ

)
≤ Cn(κ−1)(b−θ)−δ/2E

[
e−(κ−1− δ

2(b−θ) )Sk
]

= Cekψ(κ− δ
2(b−θ) )n(κ−1)(b−θ)−δ/2.

Therefore, as ψ
(
κ− δ

2(b−θ)
)
< 0, there exists d > 0 such that

φk,b ≤ C(n−(κ−1)θ + e−dkn(κ−1)(b−θ)−δ/2). (37)

Then applying this inequality in our case that is to say when b = ζ, this gives, as Lδn = n(κ−1)ζ−δ/2 ,
for n large enough,

∀i < Lδn,

Lδn−i−1∑
k=0

φk,ζ ≤ Cn(κ−1)(ζ−θ)−δ/2.

Moreover, by Assumption (2), E
[∑

v 6=ṽ,|v∗|=|ṽ∗|=1 e
−V (v)−V (ṽ)

]
is finite. Hence, to conclude the

proof of the lemma, we only have to remark that
∑Lδn
i=1H

S
i 1

∑
j≤iH

S
j ≤n1−7δ/16 ≤ n1−7δ/16. Indeed

we add terms to the sum only while the sum stays smaller than n1−7δ/16 so the final result has to
be smaller too.

We now give a lower bound for the denominator.

Lemma 3.9. There is a constant ε > 0, such that for n large enough,

P
( ∑
|x|≤Lδn

e−V (x)1x∈Γn < n(κ−1)(ζ−θ)−5δ/8
)
≤ n−ε .

Proof. We use the same strategy as in the proof of Proposition 2.5: we cut the tree at an early
generation to obtain independence and then use concentration Lemma 2.4. We first use Lemma 2.3
to control V (u) on the very first generations of the tree: there exist b, ε > 0 such that P

(
An
)
≤ n−b

where An =
{
∀u ∈ Tεn , |V (u)| ≤ δ

8 log n
}

and εn = bε log nc. So for n large enough, on the event
An,

∀u ∈ Tεn , Hu ≤ n2δ/8εn ≤ n3δ/8 and ∀y ≥ u, H(u)
y ≤ Hy ≤ H(u)

y + e−Vu(y)n3δ/8 (38)

Recall that for any u ≤ x, Vu(x) = V (x)− V (u) and H
(u)
x =

∑
u≤y≤x e

Vu(y)−Vu(x). Fix now some
constant B > 0, we can consider the collection of random variables :

∀n ≥ 1, ∀u ∈ T, Znu =
∑
x>u
|x|≤Lδn

e−Vu(x)1x∈Γn,u , with Γn,u = Γ1
n,u ∩ Γ2

n,u

where the Γin,u are the following new sets of constraints on the environment

Γ1
n,u =

{
x ∈ T / nθ ≤ Hu

x ≤ nθ+δ/16/2, Vu(x) ≥ 2 log n
}

and

Γ2
n,u =

{
x ∈ T /

∑
z≤x

Hu
z ≤ n1−3δ/8/2 and ∀u ≤ z ≤ x, Vu(z) ≥ −B and Hu

z ≤ nζ/2
}
.
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The definitions of Γn and Γn,u and inequalities in (38) imply that on An,∑
|x|≤Lδn

e−V (x)1x∈Γn ≥ n−δ/8
∑
|u|=εn

Znu ,

so concentration Lemma 2.4 shows that, for some ε > 0, for n large enough

P
( ∑
|x|≤Lδn

e−V (x)1x∈Γn ≤ n−δ/8E[Zn ]
)
≤

E
[

(Zn )
2
]

E[Zn ]
2 n−ε + P

(
An
)
, (39)

where Zn =
∑
|x|≤Lδn−εn

e−V (x)1x∈Γn,e . The next step is to control E[Zn ] and E
[

(Zn )
2
]
.

• A lower bound for the mean E[Zn ]. Here Many-to-one Formula of Lemma 2.1 with t = 1, gives :

E[Zn ]

=

Lδn−εn∑
i=0

P
(
nθ ≤ HS

i ≤ nθ+δ/8/2, Si ≥ 2 log n,
∑
j≤i

HS
j ≤ n1−3δ/8/2, H

S

i ≤ nζ/2, Si ≥ −B
)

≥
Lδn−εn∑
i=dn

(
P
(
nθ ≤ HS

i

)
−

5∑
m=1

pm,i

)
,

where rn := maxj≤n rj and rn := minj≤n rj for any sequence (rn)n∈N and dn = dd log ne with d a
constant which can be chosen as large as needed. Finally, the pm,i are defined by

p1,i := P(Si < 2 log n ) , p2,i := P
(
nθ+δ/16/2 ≤ HS

i

)
, p3,i := P

(
nθ ≤ HS

i , Si < −B
)

p4,i := P
(
nθ ≤ HS

i ≤ nθ+δ, H
S

i > nζ/2
)

and p5,i := P
(
nθ ≤ HS

i ,
∑
j≤i

HS
j ≥ n1−3δ/8/2

)
.

By Lemma 2.2, for n large enough, P
(
nθ ≤ HS

i

)
≥ cn−(κ−1)θ, so we only have to prove that the

other terms are small compared to n−(κ−1)θ. The probability p1,i has already been bounded in this
paper, see (25): we get as i ≥ dn, p1,i ≤ n−D with D as large as needed if d is large enough. By
Lemma 2.2, p2,i ≤ Cn−(κ−1)(θ+δ/16). The case of the other p.,i are a bit more delicate. At the end,
the calculus for p3,i, p4,i and p5,i are very similar so we detail the one for p5,i and then sketch the
proofs for p3,i and p4,i.

Fix some A > 0 and let in = max(0, di − A log ne). Then HS
i = HS

in
e−Sin,i + HS

in,i
where for

k ≤ `,

Sk,` = S` − Sk and HS
k,` :=

∑̀
j=k+1

eSk,j−Sk,` .

Note that HS
in

is independent of (Sin,i, H
S
in,i

). First, we have that p5,i is smaller than

P
(
H̃n,i ≥ nθ,

∑
j≤in

HS
j ≥ n1−3δ/8/4, HS

in ≤ n
2
)

+ P
(
HS
in ≥ n

2
)

+ P
( ∑
in<j≤i

HS
j ≥ n1−3δ/8/4

)
with H̃n,i := n2e−Sin,i +HS

in,i
. By independence, the first term above is smaller than

P
(
H̃n,i ≥ nθ

)
P
( ∑
j≤in

HS
j ≥ n1−3δ/8/4

)
.
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As H̃n,i has the same distribution as the random variable n2e−Si−in +HS
i−in , then P

(
H̃n,i ≥ nθ

)
=

φi−in,2 where φk,b was defined previously and estimated in (37). So for A large enough

P
(
H̃n,i ≥ nθ

)
≤ Cn−θ(κ−1).

Moreover, as ζ ≤ 1, E
[(
HS
j

)(κ−1)ζ−δ/16
]

is bounded and as (κ− 1)ζ ≤ 1,

E

[( ∑
j≤in

HS
j

)(κ−1)ζ−δ/16
]
≤
∑
j≤in

E
[(
HS
j

)(κ−1)ζ−δ/16
]
≤ CLδn .

And Markov inequality yields, for any i ≤ Lδn,

P
( ∑
j≤in

HS
j ≥ n1−3δ/8/4

)
≤ CLδnn−((κ−1)ζ−δ/16)(1−3δ/8) ≤ Cn−δ/16 .

Similarly P
(∑

in<j≤iH
S
j ≥ n1−3δ/8/4

)
≤ Cn−((κ−1)ζ−δ/16)(1−3δ/8) log n and finally by Lemma 2.2,

P
(
HS
in
≥ n2

)
≤ Cn−2(κ−1). As ζ > θ, for δ small enough, this yields

p5,i ≤ Cn−(κ−1)θ−δ/16 .

Same kind of arguments give the same bound for p4,i. And finally, for p3,i, with the same decom-
position as above we easily get that

p3,i ≤ P
(
H̃n,i ≥ nθ, Sin < −B

)
+ P

(
HS
in ≥ n

2
)

+ P
(

min
in≤k≤i

Sk ≤ −B
)

and by independence, P
(
H̃n,i ≥ nθ, Sin < −B

)
= P

(
H̃n,i ≥ nθ

)
P
(
Sin < −B

)
. Let us now de-

note λ = (κ− 1)ζ − δ. As ψ(1 + λ) < 0, for any 0 ≤ l < i,

P
(

min
l≤k≤i

Sk ≤ −B
)
≤ e−λB eψ(1+λ)l

1− eψ(1+λ)

and then

p3,i ≤ C
(
e−λBn−(κ−1)θ + n−2λ + eψ(1+λ)A logn

)
≤ Ce−λBn−(κ−1)θ .

Collecting the different upper bounds of the p.,i, we obtain for large n,

5∑
m=1

pm,i ≤ Cn−(κ−1)θ
(
n−δ/16 + e−λB

)
.

Therefore for B and n large enough,

E[Zn ] ≥
Lδn−εn∑
i=dn

(
P
(
nθ ≤ HS

i

)
−

5∑
m=1

pm,i

)
≥ CLδnn−(κ−1)θ = Cn(κ−1)(ζ−θ)−δ/2.

• An upper bound for E
[
(Zn)2

]
. We barely use the same arguments as in the proof of Lemma 3.8:

first E
[
(Zn)2

]
can be written as

Lδn∑
i=1

E
[ ∑
|u|=i

e−2V (u)
(
1u∈Γn +

∑
v 6=ṽ

v∗=ṽ∗=u

e−Vu(v)−Vu(ṽ)
∑
x≥v

∑
y≥ṽ

e−Vv(x)e−Vṽ(y)1x,y∈Γn

)]
.
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Then in the same way as we have obtained (36) we get

E
[
(Zn)2

]
≤

Lδn∑
i=1

E
[
e−Si1Si≥−B

](
1 + E

[ ∑
v 6=ṽ

v∗=ṽ∗=e

e−V (v)−V (ṽ)
]( Lδn−i−1∑

k=0

φk,ζ

)2
)

and same arguments as in the proof of Proposition 3.8 (see Equation (37) and below) show that

E
[
(Zn)2

]
≤ Cn2(κ−1)(ζ−θ)−δ

Lδn∑
i=1

E
[
e−Si1Si≥−B

]
.

So all that is left to do is to control the first part of the sum, again by a Markov inequality: as
ψ(2 ∧ κ− δ) < 0,

Lδn∑
i=1

E
[
e−Si1Si≥−B

]
≤ eB

Lδn∑
i=1

E
[
e−(1∧(κ−1)−δ)Si

]
≤ eB

∞∑
i=1

eiψ(2∧κ−δ)) <∞

and finally E
[
(Zn)2

]
≤ Cn2(κ−1)(ζ−θ)−δ. The bounds obtained for E[Zn ], E

[
(Zn)2

]
and Inequal-

ity (39) conclude the proof.

Proof of Proposition 3.4. We only have to collect all the previous results. Thanks to Lemma 3.5
we can separate the excursions and, as κ ∧ 2− κθ = 1− θ + (κ− 1)(ζ − θ), thanks to Lemma 3.9

we can introduce the variable Σ̃n :=
∑
|x|≤Lδn

e−V (x)1x∈Γn . So these two Lemmata imply

P
(
R

(n)

nθ
≤ nκ∧2−κθ−δ

)
≤ n−1 + n−ε

+ P
( n∑
i=1

∑
|x|≤Lδn

1
N

(i)
x −N(i−1)

x ≥nθ1x∈Γn ≤ n1−θ−3δ/8Σ̃n , Σ̃n ≥ n(κ−1)(ζ−θ)−5δ/8
)

for some constant ε > 0. Using now the quenched concentration Lemma 3.6, the probability of the
right-hand side of the previous equation can be bounded by

C

n1−δ/8E

( Σ̃n

)−2 ∑
|x|,|y|≤Lδn

Hx∧ye
−V (x)−V (y)+V (x∧y)1x,y∈Γn1Σ̃n≥n(κ−1)(ζ−θ)−5δ/8


≤Cn−1−2(κ−1)(ζ−θ)−11δ/8Gn .

And finally, the bound of Gn given in Lemma 3.8 shows that

P
(
R

(n)

nθ
≤ nκ∧2−κθ−δ

)
≤ 1

n
+

1

nε
+

1

nδ/16
.

This concludes the proof of the proposition.

4. Estimation of the c.d.f.

In this section we mainly prove Theorem 1.7. For that purpose, we use the same global strategy as
in [DL17], that is to say we begin by estimating the moments of ρ (defined in (10)) and we then

use these estimators to build the family of estimators F̂αn of the c.d.f. The important difference
comparing to [DL17] is that in our case the state space is now a Galton-Watson tree instead of Z.
Recall that in this part, we assume not only A1 but also A2:
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• the reproduction law of the Galton-Watson is bounded: ∃K > 0, P(ν ≤ K ) = 1 .
• given the tree up to generation n and the number of children νx of some x ∈ T such that
|x| = n, the variables (ωxi )1≤i≤νx are i.i.d. with the same distribution as some variable ω.

4.1. Estimation of the moments of ρ

First remark that the marked tree (x ∈ T, N
(n)
x ) is a sufficient statistic for the trajectory

(Xt )t∈[0,T (n)]. Indeed for any admissible sequence (ak )k∈{ 0,...,t(n) }, the likelihood is

P
(
X0 = a0, . . . , XT (n) = at(n)

∣∣T) =
∏
x∈T

E

[(
1

1 +
∑νx
i=1 e

−ωxi

)n(n)
x

νx∏
i=1

(
e−ωxi

1 +
∑νx
i=1 e

−ωxi

)n(n)
xi
∣∣∣T]

where n
(n)
x :=

∑t(n)

k=1 1{ak−1=x∗, ak=x}. It is then natural to construct our estimator using these
random variables. A second important point is that, for fixed environment and tree, that is to say
under PE , for any x ∈ T,

PE
(
N (n)
x = j

∣∣∣ (N (n)
y

)
|y|<|x|

)
=

(
N

(n)
x∗ + j − 1

j

)
ρix(1− ρx)j

where ρx = (1 + e−ωx )
−1

. So the moments of ρ are convenient quantities to estimate and we first
focus on them. The estimator of mα,β = E

[
ρα(1− ρ)β

]
is constructed following the same strategy

as in [DL17]. Let us first introduce the function Φα,β ,

∀α, β, i, j ≥ 0, Φα,β(i, j) = 1i≥α+1,j≥β

(
i+j−(α+1+β)
i−(α+1)

)(
i+j−1
j

) . (40)

To estimate the moments mα,β of ρ, we use the following random variable:

m̂α,β
n =

1

E[ν ]R
(n)
α+1

∑
x∈T

∑
y,s.t.
y∗=x

Φα,β(N (n)
x , N (n)

y )

where we use the convention: 0/0 = 0. Remark that the series here are in fact simple sums as only

a finite number of N
(n)
x are non zero. These estimators satisfy a concentration property:

Proposition 4.1. Assume A1 and A2 and fix α, β ∈ Z+. There is a positive constant C, such that
for any integer n ≥ 0 and any real number z > 0,

P

∣∣m̂α,β
n −mα,β

∣∣ ≥ α!β!

(α+ β)!

K

E[ν ]

√√√√z + 2 logR
(n)
α+1

2R
(n)
α+1

 ≤ Ce−z .

Proof. We first introduce the sequence (yk)k∈N which designates the vertices of the tree T ∪ {e∗ }
in level order, generation by generation: we start with y0 = e∗, y1 = e and then we move to the
first generation, the first vertex (on the left) is called y2, the second one y3 and so on. Once no
more vertices are present at this generation, we move to the next one and so on (see Figure 3).
Using the sequence (yk)k∈N, the estimators m̂α,β

n have the following expression

m̂α,β
n =

1

E[ν ]R
(n)
α+1

∞∑
k=1

∑
y,s.t.
y∗=yk

Φα,β(N (n)
yk
, N (n)

y ) .
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y3

y0 = e∗

y1

y2

y6y4 y5

Figure 3: Vertices numbering

Denote by (Fk)k∈N the following filtration: F0 = σ
(
N

(n)
e

)
and for k ≥ 0,

Fk+1 = σ
(
Fk, σ

(
νyk+1

, (N (n)
y , y∗ = yk+1)

))
. (41)

In the following lemma we introduce a martingale which the main tool to obtain Proposition
4.1.

Lemma 4.2. Let α, β ∈ Z+. For probability measure P, the sequence
(
Zα,βk

)
k≥0

defined, for all

integer k ≥ 0, by

Zα,β0 = 0 and ∀k ≥ 1, Zα,βk = 1
N

(n)
yk
≥α+1

( ∑
y,y∗=yk

Φα,β

(
N (n)
yk
, N (n)

y

)
− E[ν ]mα,β

)
are martingale difference sequence with respect to (Fk )k∈N.

Proof. First recall the following result which is a slight variation of Lemma 3.1 in [AdR17], which

can be proved using the same arguments: for any n ≥ 1, under P the marked tree
(
x ∈ T, N (n)

x

)
is a multi-type Galton-Watson tree. Its initial type is n and its mean matrix is given by:

∀i, j ≥ 0, mi,j = E
[ ∑
|x|=1

1
N

(i)
x =j

]
=

(
i− 1 + j

j

)
E
[ ∑
|x|=1

e−jωx

(1 + e−ωx )
i+j

]
(42)

=

(
i− 1 + j

j

)
E[ν ]E

[
(1− ρ)

j
ρi
]

Now, Zα,βk is obviously an integrable and Fk-measurable random variable. Moreover, according
to (42), for any i ≥ α+ 1 and any k ≥ 1,

E
[
1
N

(n)
yk

=i

∑
x,x∗=yk

Φα,β

(
N (n)
yk
, N (n)

x

) ∣∣∣Fk−1

]
= 1

N
(n)
yk

=i
E
[ ∑
|x|=1

Φα,β

(
i,N (i)

x

) ]
= 1

N
(n)
yk

=i

∞∑
j=0

Φα,β (i, j)E
[ ∑
|x|=1

1
N

(i)
x =j

]

= 1
N

(n)
yk

=i

∞∑
j=β

(
i− (α+ 1) + j − β

i− (α+ 1)

)
E[ν ]E

[
(1− ρ)

j
ρi
]

= 1
N

(n)
yk

=i
E[ν ]mα,β .

From this last equality we easily obtain E
[
Zα,βk

∣∣Fk−1

]
= 0 which completes the proof of the

lemma.
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We can now prove Proposition 4.1. We only have to show that:

∀z > 0, P

(∣∣∣∣∣
∞∑
k=1

Zα,βk

∣∣∣∣∣ ≥ α!β!

(α+ β)! )
K

√
R

(n)
α+1

(
z + 2 logR

(n)
α+1

))
≤ Ce−z . (43)

We know, according to Lemma 4.2 that the process (Mk)k∈N defined by

M0 = 0 and ∀k ≤ 1, Mk =

k∑
i=1

Zα,βi

is a martingale with respect to (Fk)k∈N. We could directly apply a concentration inequality but to

obtain a better bound we first remark that some of the increments Zα,βk are zero so we consider
the sequence of stopping times (with respect to the filtration (Fk)k∈N):

τ0 = 0 and ∀m ≥ 1, τm+1 = inf
{
k > τm, N

(n)
yl
≥ α+ 1

}
(44)

where inf ∅ = ∞. As the other variablesZα,βk are null, we have that Mτm =
∑m
i=1 Z

α,β
τi and

R
(n)
α+1 =

∑∞
m=1 1τm<∞. Now an elementary combinatoric argument shows that, for i ≥ α + 1 and

j ≥ β, (
i− 1 + j − α− β

i− 1− α

)(
α+ β

α

)
≤
(
i− 1 + j

i− 1

)
.

Thus, for any i, j ≥ 0,

0 ≤ Φα,β(i, j) ≤
(
α+ β

α

)−1

= Φα,β(α+ 1, β) ≤ 1

and for any m ≥ 0, |Zα,βm | ≤ K where K is the upper bound for the support of ν as described in
Theorem 1.7. Moreover, for any m ∈ N, the stopped process (Mτm∧l )l≥0 is still a martingale. For
any m ∈ N, |Mτm∧l| ≤ mK. Therefore the stopped martingale (Mτm∧l )l≥0 is uniformly integrable
and Doob’s optional sampling theorem implies that (Mτm)m∈N is a martingale. As for any m ≥ 0,

Mτm−1
− E[ν ]mα,β ≤Mτm ≤Mτm−1

− E[ν ]mα,β +K,

Mc Diarmid’s inequality (see Theorem 6.7 in [McD89]) leads now to the following concentration
result: for any integer m ≥ 0 and any real z > 0,

P
(
|Mτm | ≥

(
α+ β

α

)−1

K
√
mz/2

)
≤ 2e−z .

And a union bound concludes the proof:

P

(∣∣∣ ∞∑
m=1

Zα,βm

∣∣∣ ≥ α!β!

(α+ β)! )

√
R

(n)
α+1

(
z + 2 logR

(n)
α+1

))

=P

( ∞⋃
m=1

{
R

(n)
α+1 = m ; |Mτm | ≥

(
α+ β

α

)−1

K

√
m
z + 2 logm

2

})

≤
∞∑
m=1

P

(
|Mτm | ≥

(
α+ β

α

)−1

K

√
m
z + 2 logm

2

)
≤ 2e−z

∑
m≥1

e−2 logm =
π2

3
e−z .
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4.2. Estimation of the cumulative distribution function

In this section we prove Theorem 1.7. For that purpose, we use the estimation of the moments mα,β

to approximate the cumulative distribution function F of ρ. It is a straightforward consequence of
Lemma 4.3 and Lemma 4.4.

Define for any u ∈ [0, 1] and any α ∈ N∗,

Fα(u) =

bαuc−1∑
k=0

(
α− 1

k

)
mk,α−1−k ,

where x → bxc is the floor function and
∑−1
k=0 = 0. When the function F is regular enough, it is

a classical result that it is well approximate by Fα. A precise statement is given in Lemma 6 of
[DL17] which we recall here.

Lemma 4.3. Suppose that the function F ∈ Cγ for some γ ∈ (0, 2]. For any integer α ≥ 1,

max
0≤`≤α

|F (`/α)− Fα(`/α)| ≤ ‖F‖γ
2γ(α+ 1)γ/2

.

According to the results of the previous section, it is then natural to use the estimator defined
in (11):

F̂αn (u) =
1

R
(n)
α E[ν ]

∑
x∈T

ψbαucα

(
N

(n)
x∗ , N

(n)
x

)
with ψlα(i, j) =

1i≥α(
i−1+j
α−1

) l−1∑
k=0

(
i− 1

k

)(
j

α− 1− k

)
.

Indeed, for any i ≥ α, ψlα(i, j) =
∑l−1
k=0

(
α
k

)
Φk,α−1−k(i, j), where Φk,α−1−k is defined in (40).

Thus, this estimator is essentially the one obtained from the moment estimators of the previous

subsection, but using only the sites x satisfying N
(n)
x ≥ α. Notice that for any 1 ≤ l ≤ α and

i ≥ α, j ≥ 0,

l−1∑
k=0

(
i

k

)(
j

α− 1− k

)
≤
α−1∑
k=0

(
i− 1

k

)(
j

α− 1− k

)
=

(
i− 1 + j

α− 1

)
,

thus ψlα ∈ [0, 1]. Moreover, Vandermonde’s identity:

∀i, j ≥ 0,

α−1∑
k=0

(
i− 1

k

)(
j

α− 1− k

)
=

(
i− 1 + j

α− 1

)

shows that any F̂αn is a (random) c.d.f. We now have to prove that F̂αn estimates correctly Fα.
This is done in the following lemma.

Lemma 4.4. For any integers α, n ≥ 1 and any real z > 0,

P

 max
0≤`≤α

∣∣∣F̂αn (`/α )− Fα (`/α )
∣∣∣ ≥ K

E[ν ]

√
z + logα+ 2 logR

(n)
α

2R
(n)
α

 ≤ Ce−z .
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Proof. The proof follows the same lines as the one of Proposition 4.1. We introduce the sequence:

∀0 ≤ ` ≤ α, ∀k ∈ N, Y α,`k = 1
N

(n)
yk
≥α

( ∑
y,y∗=yk

ψ`α

(
N (n)
yk
, N (n)

y

)
− E[ν ]Fα (`/α )

)
.

Using same kind of calculus as in the proof of Lemma 4.2, we can show that
(
Y α,`k

)
k∈N

is a

martingale difference sequence with respect to the filtration (Fk)k∈N defined in (41). Lemma 4.4 is
equivalent to

∀z > 0, P

 max
1≤l≤α

∣∣∣∑
k∈N

Y α,`k

∣∣∣ ≥ K
√
R

(n)
α

2
(z + logα+ 2 logR

(n)
α )

 ≤ Ce−z .
So we now consider the martingale

(
Mα,l
k

)
k∈N

defined by Mα,l
k :=

∑
j≤k Y

α,l
j and the same

sequence of stopping times (τm)m∈N as the one defined in (44) except that α+ 1 is replaced by α:

τ0 = 0 and ∀m ≥ 1, τm+1 = inf
{
l > τm, N

(n)
yl
≥ α

}
.

The process
(
Mα,l
τm

)
m∈N is still a martingale and for any m ≥ 1,

Mα,l
τm−1

− E[ν ]Fα (`/α ) ≤Mα,l
τm ≤M

α,l
τm−1

− E[ν ]Fα (`/α ) +K .

Then Mc Diarmid’s inequality (Theorem 6.7 in [McD89]) yields, for any 1 ≤ ` ≤ α,

∀k ∈ N, ∀z > 0, P

(∣∣∣Mα,`
k

∣∣∣ ≥ K√kz

2

)
≤ 2e−z

and a union bound gives the result:

P

(
max

1≤`≤α

∣∣∣∑
k∈N

Y α,`k

∣∣∣ ≥ K
√
R

(n)
α

2
(z + logα+ 2 logR

(n)
α )

)

=P

( ∞⋃
k=1

{
R(n)
α = k ; max

1≤`≤α

∣∣∣Mα,`
k

∣∣∣ ≥ K√k

2
(z + logα+ 2 log k)

})

≤
∞∑
k=1

α∑
`=1

P

(∣∣∣Mα,`
k

∣∣∣ ≥ K√k

2
(z + logα+ 2 log k)

)
≤ 2e−z

∑
k≥1

α∑
`=1

e−2 log k

α
=
π2

3
e−z .

The inequality of Theorem 1.7 follows now immediately from Lemma 4.3, Lemma 4.4 and the
fact that F is γ ∧ 1-Hölder.
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[AdR17] E. Aı̈dékon and L. de Raphélis. Scaling limit of the recurrent biased random walk on a
galton–watson tree. Probability Theory and Related Fields, 169(3):643–666, 2017.

[AE04] O. Adelman and N. Enriquez. Random walks in random environment: What a single
trajectory tells. Israel J. Math., 142:205–220, 2004.
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