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Abstract
Type theories with equality reflection, such as extensional

type theory (ETT), are convenient theories in which to for-

malise mathematics, as they make it possible to consider

provably equal terms as convertible. Although type-checking

is undecidable in this context, variants of ETT have been

implemented, for example in NuPRL and more recently in

Andromeda. The actual objects that can be checked are not

proof-terms, but derivations of proof-terms. This suggests

that any derivation of ETT can be translated into a typecheck-

able proof term of intensional type theory (ITT). However,

this result, investigated categorically by Hofmann in 1995,

and 10 years later more syntactically by Oury, has never

given rise to an effective translation. In this paper, we pro-

vide the first effective syntactical translation from ETT to

ITT with uniqueness of identity proofs and functional ex-

tensionality. This translation has been defined and proven

correct inCoq and yields an executable plugin that translates
a derivation in ETT into an actual Coq typing judgment. Ad-

ditionally, we show how this result is extended in the context

of homotopy type theory to a two-level type theory.

Keywords dependent types, translation, formalisation

1 Introduction
Type theories with equality reflection, such as extensional

type theory (ETT), are convenient theories in which to for-

malise mathematics, as they make it possible to consider

provably equal terms as convertible, as expressed in the fol-

lowing typing rule:

Γ ⊢x e : u =A v

Γ ⊢x u ≡ v : A
(1)

Here, the type u =A v is Martin-Löf’s identity type with

only one constructor refl u : u =A u which represents proofs
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of equality inside type theory, whereas u ≡ v : A means

that u and v are convertible in the theory—and can thus

be silently replaced by one another in any term. Several

variants of ETT have been considered and implemented, for

example in NuPRL [Allen et al. 2000] and more recently in

Andromeda [Bauer et al. 2016]. The prototypical example of

the use of equality reflection is the definition of a coercion

function between two types A and B that are equal (but not

convertible) by taking a term of typeA and simply returning

it as a term of type B:

λ A B (e : A = B) (x : A). x : Π A B. A = B → A→ B.

In intensional type theory (ITT), this term does not type-

check because x of type A can not be given the type B by

conversion. In ETT, however, equality reflection can be used

to turn the witness of equality into a proof of conversion and

thus the type system validates the fact that x can be given the

type B. This means that one needs to guess equality proofs

during type-checking, because the witness of equality has

been lost at the application of the reflection rule. Guessing it

was not so hard in this example but is in general undecidable,

as one can for instance encode the halting problem of any

Turing machine as an equality in ETT. That is, the actual

objects that can be checked in ETT are not terms, but instead

derivations of terms. It thus seems natural towonderwhether

any derivation of ETT can be translated into a typecheckable

term of ITT. And indeed, it is well know that one can find

a corresponding term of the same type in ITT by explicitly
transporting the term x of type A using the elimination of

internal equality on the witness of equality e , noted e∗:

λ A B (e : A = B) (x : A). e∗ x : Π A B. A = B → A→ B.

This can be seen as a way to make explicit the silent use
of reflection. Furthermore, by making the use of transport

as economic as possible, the corresponding ITT term can

be seen as a compact witness of the derivation tree of the

original ETT term.

This result has first been investigated categorically in the

pioneering work of Hofmann [1995, 1997], by showing that

the term model of ITT can be turned into a model of ETT by

quotienting this model with propositional equality. However,

it is not clear how to extend this categorical construction

to an explicit and constructive translation from a derivation

in ETT to a term of ITT. In 2005, this result has been in-

vestigated more syntactically by Oury [2005]. However, his

1
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presentation does not give rise to an effective translation.

By an effective translation we mean that it is entirely con-

structive and can be used to deterministically compute the
translation of a given ETT typing derivation. Two issues

prevent deriving an effective translation from Oury’s presen-

tation, and it is the process of actual formalisation of the

result in a proof assistant that led us to these discoveries.

First, his handling of related contexts is not explicit enough,

which we fix by framing the translation using ideas coming

from the parametricity translation (section 1.2). Addition-

ally, Oury’s proof requires an additional axiom in ITT on

top of functional extensionality and uniqueness of identity

proofs, that has no clear motivation and can be avoided by

considering an annotated syntax (section 2.1).

Contributions. In this paper, we present the first effective

syntactical translation from ETT to ITT (assuming unique-

ness of identity proofs (UIP) and functional extensionality in

ITT). By syntactical translation, we mean an explicit transla-

tion from a derivation Γ ⊢x t : T of ETT (the x index testifies
that it is a derivation in ETT) to a context Γ′, term t ′ and
type T ′ of ITT such that Γ′ ⊢ t ′ : T ′ in ITT. This translation

enjoys the additional property that if T can be typed in ITT,

i.e., Γ ⊢ T , then T ′ ≡ T . This means in particular that a theo-

rem proven in ETT but whose statement is also valid in ITT

can be automatically transferred to a theorem of ITT. For

instance, one could use a local extension of the Coq proof

assistant with a reflection rule, without being forced to rely

on the reflection in the entire development.

This translation can be seen as a way to build a syntac-

tical model of ETT from a model of ITT as described more

generally in Boulier et al. [2017] and has been entirely pro-

grammed and formalised in Coq [Coq development team

2017]. For this, we rely on TemplateCoq1 [Anand et al. 2018],
which provides a reifier for Coq terms as represented in

Coq’s kernel as well as a formalisation of the type system of

Coq. Thus, our formalisation of ETT is just given by adding

the reflection rule to a subset of the original type system

of Coq. This allows us to extract concrete Coq terms and

types from a closed derivation of ETT, using a little trick to

incorporate Inductive types and induction. We do not treat

cumulativity of universes which is an orthogonal feature of

Coq’s type theory.

Outline of the Paper. Before going into the technical devel-
opment of the translation, we explain its main ingredients

and differences with previous works. Then, in Section 2,

we define the extensional and intensional type theories we

consider. In Section 3, we define the main ingredient of the

translation, which is a relation between terms of ETT and

terms in ITT. Then, the translation is given in Section 4. Sec-

tion 5 describes the Coq formalisation and Sections 6 and 7

1https://template-coq.github.io/template-coq/

discuss limitations and related work. The main proofs are

given in detail in Appendices B and C.

The Coq formalisation can be found in https://github.com/
TheoWinterhalter/ett-to-itt.

1.1 On the Need for UIP and Functional
Extensionality.

Our translation targets ITT plus UIP and functional exten-

sionality, which correspond to the two following axioms

(where □i denotes the universe of types at level i):

UIP : Π(A : □i ) (x y : A) (e e ′ : x = y). e = e ′

FunExt : Π(A : □i ) (B : A→ □i ) ( f д : Π(x : A). B x ).
(Π(x : A). f x = д x ) → f = д

The first axiom says that any two proofs of the same equality

are equal, and the other one says that two (dependent) func-

tions are equal whenever they are pointwise equal
2
. These

two axioms are perfectly valid statements of ITT and they

can be proven in ETT. Indeed, UIP can be shown to be equiv-

alent to the Streicher’s axiom K

K : Π(A : □i ). Π(x : A). Π(e : x = x ). e = reflx

using the elimination on the identity type. But K is provable

in ETT by considering the type

Π(A : □i ). Π(x y : A). Π(e : x = y). e = reflx

which is well typed (using the reflection rule to show that e
has type x = x ) and which can be inhabited by elimination of

the identity type. In the same way, functional extensionality

is provable in ETT because

Π(x : A). f x = д x
→ x : A ⊢ f x ≡ д x by reflection

→ (λ(x : A). f x ) ≡ (λ(x : A).д x ) by congruence of ≡

→ f ≡ д by η-law
→ f = д

Therefore, applying our translation to the proofs of those

theorems in ETT gives corresponding proofs of the same

theorems in ITT. However, UIP is independent from ITT, as

first shown by Hofmann and Streicher using the groupoid

model [Hofmann and Streicher 1998], which has recently

been extended in the setting of univalent type theory using

the simplicial or cubical models [Bezem et al. 2013; Kapulkin

and Lumsdaine 2012]. Similarly, Boulier et al. have shown
that functional extensionality is independent from ITT using

a simple syntactical translation [Boulier et al. 2017].

Therefore, our translation provides proofs of axioms in-

dependent from ITT, which means that the target of the

translation already needs to have both UIP and functional

extensionality. Part of our work is to show formally that they

are the only axioms required.

2
In Homotopy Type Theory (HoTT) [Univalent Foundations Program 2013],

the functional extensionality axiom is stated in a more complete way, using

the notion of adjoint equivalences, but this more complete way collapses to

our simpler statement in presence of UIP.

2
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1.2 Heterogeneous Equality and the Parametricity
Translation.

The basic idea behind the translation from ETT to ITT is

to interpret conversion using the internal notion of equal-

ity, i.e., the identity type. But this means that two terms of

two convertible types that were comparable in ETT become

comparable in ITT only up-to the equality between the two

types. One possible solution to this problem is to consider a

native heterogeneous equality, such as John Major equality
introduced by McBride [2000]. However, to avoid adding

additional axioms to ITT as done by Oury [2005], we prefer

to encode this heterogeneous equality using the following

dependent sums:

t T �U u := Σ(p : T = U ).p∗ t = u .

During the translation, the same term occurring twice can

be translated in two different manners, if the corresponding

typing derivations are different. Even the types of the two

different translations may be different. However, we have

the strong property that any two translations of the same

term only differ in places where transports of proof of equal-

ity have been injected. To keep track of this property, we

introduce the relation t ∼ t ′ between two terms of ITT, of

possibly different types. The crux of the proof of the transla-

tion is to guarantee that for every two terms t1 and t2 such
that Γ ⊢ t1 : T1, Γ ⊢ t2 : T2 and t1 ∼ t2, there exists p such that

Γ ⊢ p : t1 T1�T2 t2. However, during the proof, variables of

different but (propositionally) equal types are introduced and

the context cannot be maintained to be the same for both t1
and t2. Therefore, the translation needs to keep track of this

duplication of variables, plus a proof that they are heteroge-

neously equal. This mechanism is similar to what happens

in the (relational) internal parametricity translation in ITT

introduced by Bernardy et al. [2012] and recently rephrased

in the setting of TemplateCoq [Anand et al. 2018]. Namely, a

context is not translated as a telescope of variables, but as a

telescope of triples consisting of two variables plus a witness

that they are in the parametric relation. In our setting, this

amounts to consider telescope of triples consisting of two

variables plus a witness that they are heterogeneously equal.

We can express this by considering the following dependent

sums:

Pack A1 A2 := Σ(x : A1). Σ(y : A2). x A1
�A2

y.

This presentation inspired by the parametricity translation

is crucial in order to get an effective translation, because

it is necessary to keep track of the evolution of contexts

when doing the translation on open terms. This ingredient

is missing in Oury’s work [Oury 2005], which prevents him

from deducing an effective (i.e., constructive and computable)

translation from his theorem.

2 Definitions of Extensional and
Intensional Type Theories

This section presents the common syntax, typing and main

properties of ETT and ITT. Our type theories feature a uni-

verse hierarchy, dependent products and sums as well as

Martin Löf’s identity types.

2.1 Syntax of ETT and ITT
The common syntax of ETT and ITT is given in Figure 1. It

features: dependent products Π(x : A). B, with (annotated)

λ-abstractions and (annotated) applications, negative depen-

dent sums Σ(x : A). B with (annotated) projections, sorts □i ,

identity types u =A v with reflection and elimination as

well as terms realising UIP and functional extensionality. An-

notating terms with otherwise computationally irrelevant

typing information is a common practice when studying the

syntax of type theory precisely (see [Streicher 1993] for a

similar example). We will write A → B for Π(_ : A). B the

non-dependent product / function type.

We consider a fixed universe hierarchy without cumula-

tivity, which ensures in particular uniqueness of typing (2.2)

which is important for the translation.

About Annotations. Although it may look like a technical

detail, the use of annotation is more fundamental in ETT

than it is in ITT (where it is irrelevant and doesn’t affect

the theory). And this is actually one of the main differences

between our work (and that of Martin Hofmann [1995] who

has a similar presentation) and the work of Oury [2005].

Indeed, by using the standard model where types are inter-

preted as cardinals rather than sets, it is possible to see that

the equality nat → nat = nat → bool is independent from
the theory, it is thus possible to assume it (as an axiom, or for

those that would still not be convinced, simply under a λ that
would introduce this equality). In that context, the identity

map λ(x : nat). x can be given the type nat→ bool and we

thus type (λ(x : nat). x ) 0 : bool. Moreover, the β-reduction
of the non-annotated system used by Oury concludes that

this expression reduces to 0, but cannot be given the type

bool (as we said, the equality nat → nat = nat → bool is
independent from the theory, so the context is consistent).

This means we lack subject reduction in this case (or unique-

ness of types, depending on how we see the issue). Our

presentation has a blocked β-reduction limited to matching

annotations: (λ(x : A).B. t )@x :A.Bu = t[x←u], from which

subject reduction and uniqueness of types follow.

Although subtle, this difference is responsible for Oury’s

need for an extra axiom. Indeed, to treat the case of equality

of applications in his proof, he needs to assume the congru-

ence rule for heterogeneous equality of applications, which

is not provable when formulated with John Major equality

(Fig. 2). Thanks to annotations and our notion of hetero-

geneous equality, we can prove this congruence rule for

applications.

3
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s ::= □i (i ∈ N) sorts (universes)

T ,A,B, t ,u,v ::= x | λ(x : A).B.t | t @x :A.B u | Π(x : A). B | s dependent λ-calculus
| ⟨u;v⟩x :A.B | πx :A.B

1
p | πx :A.B

2
p | Σ(x : A). B dependent pairs

| reflA u | J(A,u,x .e .P ,w,v,p) | u =A v propositional equality

| funext(x : A,B, f ,д, e ) | uip(A,u,v,p,q) equality axioms

Γ,∆ ::= • | Γ,x : A contexts

Figure 1. Common syntax of ETT and ITT

JMAPP

f1 ∀(x :U1 ).V1
�∀(x :U2 ).V2

f2 u1 U1
�U2

u2

f1 u1 V1[x←u1]�V2[x←u2] f2 u2

Figure 2. Congruence of heteogeneous equality

2.2 The Typing Systems
As usual in dependent type theory, we consider contexts

which are telescopes whose declarations may depend on any

variable already introduced. We note Γ ⊢ t : A to say that t
has type A in context Γ. Γ ⊢ A shall stand for Γ ⊢ A : s for
some sort s and similarly Γ ⊢ A ≡ B stands for Γ ⊢ A ≡ B : s .

We use two relations (s, s ′) ∈ Ax (written (s, s ′) for short)
and (s, s ′, s ′′) ∈ R (written (s, s ′, s ′′)) to constrain the sorts

in the typing rules for universes, dependent products and

dependent sums, as is done in any Pure Type System (PTS).

In our case, because we do not have cumulativity, the rules

are as follows:

(□i ,□i+1) ∈ Ax (□i ,□j ,□max(i, j ) ) ∈ R

We give the typing rules of ITT in Figure 3. The rules are

standard andwe do not explain them. Let us just point out the

conversion rule, which says that u : A can be given the type

u : B when A ≡ B, i.e., when A and B are convertible. As the

notion of conversion is central in our work—the conversion

of ETT being translated to an equality in ITT—we provide an

exhaustive definition of it, with computational conversion

rules (including β-conversion or reduction of the elimination

principle of equality over reflexivity, see Figure 4), however

congruence conversion rules can be found in Appendix A

(Figure 6). Note that we use Christine Paulin-Möhring’s vari-

ant of the J rule rather thanMartin-Löf’s original formulation.

Although pretty straightforward, being precise here is very

important, as for instance the congruence rule for λ-terms

is the reason why functional extensionality is derivable in

ETT. Congruence of equality terms is a standard extension of

congruence to the new principles we add (UIP and functional

extensionality).

ETT is thus simply an extension of ITT (we write ⊢x for

the associated typing judgment) with the reflection rule on

equality, which axiomatises that propositionally equal terms

are convertible (see Equation 1). Note that, as already men-

tioned, in the presence of reflection and J, UIP is derivable

so we could remove it from ETT, but keeping it allows us

to share a common syntax which makes the statements of

theorems simpler and does not affect the development.

2.3 General Properties of ITT and ETT
We now state the main properties of both ITT and ETT. We

do not detail their proof as they are standard and can be

found in the Coq formalisation.

First, although not explicit in the typing system, weaken-

ing is admissible in ETT and ITT.

Lemma 2.1 (Weakening). If Γ ⊢ J and ∆ extends Γ (possibly
interleaving variables) then ∆ ⊢ J .

Then, as mentioned above, the use of a non-cumulative

hierarchy allows us to prove that a term t can be given at

most one type in a context Γ, up-to conversion.

Lemma 2.2 (Uniqueness of typing). If Γ ⊢ u : T1 and Γ ⊢ u :

T2 then Γ ⊢ T1 ≡ T2.

Finally, an important property of the typing system (seen

as a mutual inductive definition) is the possibility to deduce

hypotheses from their conclusion, thanks to inversion of

typing. Note that it is important here that our syntax is

annotated for applications and projections as it provides a

richer inversion principle.

Lemma 2.3 (Inversion of typing).
1. If Γ ⊢ x : T then (x : A) ∈ Γ and Γ ⊢ A ≡ T .
2. If Γ ⊢ □i : T then Γ ⊢ □i+1 ≡ T .
3. If Γ ⊢ Π(x : A). B : T then Γ ⊢ A : s and Γ,x : A ⊢ B : s ′

and Γ ⊢ s ′′ ≡ T for some (s, s ′, s ′′).
4. If Γ ⊢ λ(x : A).B.t : T then Γ ⊢ A : s and Γ,x : A ⊢ B : s ′

and Γ,x : A ⊢ t : B and Γ ⊢ Π(x : A). B ≡ T .
5. If Γ ⊢ u @x :A.B v : T then Γ ⊢ A : s and Γ,x : A ⊢

B : s ′ and Γ ⊢ u : Π(x : A). B and Γ ⊢ v : A and
Γ ⊢ B[x←u] ≡ T .

6. . . . Analogous for the remaining term and type construc-
tors.

Proof. Each case is proven by induction on the derivation

(which corresponds to any number of applications of the

conversion rule following one introduction rule). □

3 Relating Translated Expressions
Wewant to define a relation on terms that equates two terms

that are the same up to transport. This begs the question of

4
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Well-formedness of contexts.

⊢ •

⊢ Γ Γ ⊢ A

⊢ Γ,x : A
(x < Γ)

Types.

⊢ Γ

Γ ⊢ s : s ′
(s, s ′)

Γ ⊢ A : s Γ,x : A ⊢ B : s ′

Γ ⊢ Π(x : A). B : s ′′
(s, s ′, s ′′)

Γ ⊢ A : s Γ,x : A ⊢ B : s ′

Γ ⊢ Σ(x : A). B : s ′′
(s, s ′, s ′′)

Γ ⊢ A : s Γ ⊢ u : A Γ ⊢ v : A

Γ ⊢ u =A v : s

Structural rules.
⊢ Γ (x : A) ∈ Γ

Γ ⊢ x : A

Γ ⊢ u : A Γ ⊢ A ≡ B : s

Γ ⊢ u : B

λ-calculus terms.
Γ ⊢ A : s Γ,x : A ⊢ B : s ′ Γ,x : A ⊢ t : B

Γ ⊢ λ(x : A).B.t : Π(x : A). B

Γ ⊢ A : s
Γ,x : A ⊢ B : s ′ Γ ⊢ t : Π(x : A). B Γ ⊢ u : A

Γ ⊢ t @x :A.B u : B[x←u]

Γ ⊢ u : A
Γ ⊢ A : s Γ,x : A ⊢ B : s ′ Γ ⊢ v : B[x←u]

Γ ⊢ ⟨u;v⟩x :A.B : Σ(x : A). B

Γ ⊢ p : Σ(x : A). B

Γ ⊢ πx :A.B
1

p : A

Γ ⊢ p : Σ(x : A). B

Γ ⊢ πx :A.B
2

p : B[x←πx :A.B
1

p]

Equality terms.

Γ ⊢ A : s Γ ⊢ u : A

Γ ⊢ reflA u : u =A u

Γ ⊢ e1, e2 : u =A v

Γ ⊢ uip(A,u,v, e1, e2) : e1 = e2

Γ ⊢ A : s Γ ⊢ u,v : A Γ,x : A, e : u =A x ⊢ P : s ′

Γ ⊢ p : u =A v Γ ⊢ w : P[x←u, e← reflA u]

Γ ⊢ J(A,u,x .e .P ,w,v,p) : P[x←v, e←p]

Γ ⊢ f ,д : Π(x : A). B
Γ ⊢ e : Π(x : A). f @x :A.B x =B д@x :A.B x

Γ ⊢ funext(x : A,B, f ,д, e ) : f = д

Figure 3. Typing rules

what notion of transport is going to be used. Transport can

be defined from elimination of equality as follows:

Definition 3.1 (Transport). Given Γ ⊢ p : T1 =s T2 and
Γ ⊢ t : T1 we define the transport of t along p, written p∗ t , as
J(s,T1,X .e . T1 → X , λ(x : T1).T1.x ,T2,p) @T1 .T2 t such that

Γ ⊢ p∗ t : T2.

However, in order not to confuse the transports added by

the translation with the transports that were already present

in the source, we consider p∗ as part of the syntax in the

reasoning. It will be unfolded to its definition only after the

complete translation is performed. This idea is not novel as

Hofmann already had a Subst operator that was part of his
ITT (noted TTI in his paper [Hofmann 1995]).

We first define the (purely syntactic) relation ⊏ between

ETT terms and ITT terms in Figure 5 stating that the ITT

term is simply a decoration of the first term by transports. Its

purpose is to state how close to the original term its transla-

tion is. Then, we extend this relation to a similarity relation∼

on ETT terms by taking its symmetric and transitive closure:

∼B (⊏ ∪ ⊏−1)+

Lemma 3.2 (∼ is an equivalence relation). ∼ is reflexive,
symmetric and transitive.

Proof. For reflexivity we proceed by induction on the term.

□

The goal is to prove that two terms in this relation, that

are well-typed in the target type theory, are heterogeneously

equal. As for this notion, we recall the definition we previ-

ously gave: t T �U u := Σ(p : T = U ).p∗ t = u. This defini-
tion of heterogeneous equality can be shown to be reflexive,

symmetric and transitive. Because of UIP, heterogeneous

equality collapses to equality when taken on the same type.

Lemma 3.3. If Γ ⊢ e : u A�A v then there exists p such that
Γ ⊢ p : u =A v .

Proof. This holds thanks to UIP on equality, which implies K,

and so the proof of A = A can be taken to be reflexivity. □

Note. In particular, � on types corresponds to equality. This is
not as trivial as it sounds, one might be concerned about what
happens if we have Γ ⊢ e : A s�s ′ B with two distinct sorts
s and s ′. We would thus have s = s ′, however, for this to be
well-typed, we need to give a common type to s and s ′, which
can only be achieved if s and s ′ are actually the same sort.

Before we can prove the fundamental lemma stating that

two terms in relation are heterogeneously equal, we need

to consider another construction. As explained in the intro-

duction, when proving the property by induction on terms,

we introduce variables in the context that are equal only

up-to heterogeneous equality. This phenomenon is similar

to what happens in the parametricity translation [Bernardy

et al. 2012]. Our fundamental lemma on the decoration re-

lation ∼ assumes two related terms of potentially different

5
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Computation.

Γ ⊢ A : s Γ,x : A ⊢ B : s ′ Γ,x : A ⊢ t : B Γ ⊢ u : A

Γ ⊢ (λ(x : A).B.t ) @x :A.B u ≡ t[x←u] : B[x←u]

Γ ⊢ A : s Γ ⊢ u : A Γ,x : A, e : u =A x ⊢ P : s ′ Γ ⊢ w : P[x←u, e← reflA u]

Γ ⊢ J(A,u,x .e .P ,w,u, reflA u) ≡ w : P[x←u, e← reflA u]

Γ ⊢ A : s Γ ⊢ u : A Γ,x : A ⊢ B : s ′ Γ ⊢ v : B[x←u]

Γ ⊢ πx :A.B
1

⟨u;v⟩x :A.B ≡ u : A

Γ ⊢ A : s Γ ⊢ u : A Γ,x : A ⊢ B : s ′ Γ ⊢ v : B[x←u]

Γ ⊢ πx :A.B
2

⟨u;v⟩x :A.B ≡ v : B[x←u]

Conversion.
Γ ⊢ t1 ≡ t2 : T1 Γ ⊢ T1 ≡ T2

Γ ⊢ t1 ≡ t2 : T2

Figure 4. Main conversion rules (omitting congruence rules)

types T1 and T2 to produce an heterogeneous equality be-

tween them. For induction to go through under binders (e.g.

for dependent products and abstractions), we hence need to

consider the two terms under different, but heterogeneously

equal contexts. Therefore, the context we produce will not

only be a telescope of variables, but rather a telescope of

triples consisting of two variables of possibly different types,

and a witness that they are heterogeneously equal. To make

this precise, we define the following macro:

Pack A1 A2 := Σ(x : A1). Σ(y : A2). x � y

together with its projections

Proj
1
p := π .

1
p Proj

2
p := π .

1
π .
2
p Proje p := π .

2
π .
2
p.

We can then extend this notion canonically to contexts of

the same length that are well formed using the same sorts:

Pack (Γ1,x : A1) (Γ2,x : A2) :=
(Pack Γ1 Γ2),x : Pack (A1[γ1]) (A2[γ2])

Pack • • := •.

When we pack contexts, we also need to apply the correct

projections for the types in that context to still make sense.

Assuming two contexts Γ1 and Γ2 of the same length, we can

define left and right substitutions:

γ1 := [x ← Proj
1
x | (x : _) ∈ Γ1]

γ2 := [x ← Proj
2
x | (x : _) ∈ Γ2].

These substitutions implement lifting of terms to packed

contexts: Γ,Pack Γ1 Γ2 ⊢ t[γ1] : A[γ1] whenever Γ, Γ1 ⊢ t : A
(resp. Γ,Pack Γ1 Γ2 ⊢ t[γ2] : A[γ2] whenever Γ, Γ2 ⊢ t : A).

For readability, when Γ1 and Γ2 are understood we will

write Γp for Pack Γ1 Γ2.

Implicitly, whenever we use the notation Pack Γ1 Γ2 it

means that the two contexts are of the same length and

well-formed with the same sorts. We can now state the fun-

damental lemma.

Lemma 3.4 (Fundamental lemma). Let t1 and t2 be two terms.
If Γ, Γ1 ⊢ t1 : T1 and Γ, Γ2 ⊢ t2 : T2 and t1 ∼ t2 then there exists
p such that Γ,Pack Γ1 Γ2 ⊢ p : t1[γ1] T1[γ1]�T2[γ2] t2[γ2].

Proof. The proof is by induction on the derivation of t1 ∼ t2.
We show the three most interesting cases:

• Var

x ∼ x

If x belongs to Γ, we apply reflexivity—together with

uniqueness of typing (2.2)—to conclude. Otherwise,

Proje x has the expected type (since x[γ1] ≡ Proj
1
x

and x[γ2] ≡ Proj
2
x ).

• Application

t1 ∼ t2 A1 ∼ A2 B1 ∼ B2 u1 ∼ u2

t1 @x :A1 .B1
u1 ∼ t2 @x :A2 .B2

u2

Wehave Γ, Γ1 ⊢ t1@x :A1 .B1
u1 : T1 and Γ, Γ2 ⊢ t2@x :A2 .B2

u2 : T2 which means by inversion (2.3) that the sub-

terms are well-typed. We apply the induction hypoth-

esis and then conclude.

• TransportLeft

t1 ∼ t2

p∗ t1 ∼ t2

We have Γ, Γ1 ⊢ p∗ t1 : T1 and Γ, Γ2 ⊢ t2 : T2. By inver-

sion (2.3) we have Γ, Γ1 ⊢ p : T ′
1
= T1 and Γ, Γ1 ⊢ t1 : T

′
1
.

By induction hypothesis we have e such that Γ, Γp ⊢ e :

6
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t1 ⊏ t2

t1 ⊏ p∗ t2

x ⊏ x

A1 ⊏ A2 B1 ⊏ B2

Π(x : A1). B1 ⊏ Π(x : A2). B2

A1 ⊏ A2 B1 ⊏ B2

Σ(x : A1). B1 ⊏ Σ(x : A2). B2

A1 ⊏ A2 u1 ⊏ u2 v1 ⊏ v2

u1 =A1
v1 ⊏ u2 =A2

v2 s ⊏ s

A1 ⊏ A2 B1 ⊏ B2 t1 ⊏ t2

λ(x : A1).B1.t1 ⊏ λ(x : A2).B2.t2

t1 ⊏ t2 A1 ⊏ A2 B1 ⊏ B2 u1 ⊏ u2

t1 @x :A1 .B1
u1 ⊏ t2 @x :A2 .B2

u2

A1 ⊏ A2 B1 ⊏ B2 t1 ⊏ t2 u1 ⊏ u2

⟨t1;u1⟩x :A1 .B1
⊏ ⟨t2;u2⟩x :A2 .B2

A1 ⊏ A2 B1 ⊏ B2 p1 ⊏ p2

πx :A1 .B1

1
p1 ⊏ πx :A2 .B1

1
p2

A1 ⊏ A2 B1 ⊏ B2 p1 ⊏ p2

πx :A1 .B1

2
p1 ⊏ πx :A2 .B2

2
p2

A1 ⊏ A2 u1 ⊏ u2

reflA1
u1 ⊏ reflA2

u2

A1 ⊏ A2 B1 ⊏ B2 f1 ⊏ f2 д1 ⊏ д2 e1 ⊏ e2

funext(x : A1,B1, f1,д1, e1) ⊏ funext(x : A2,B2, f2,д2, e2)

A1 ⊏ A2 u1 ⊏ u2 v1 ⊏ v2 p1 ⊏ p2 q1 ⊏ q2

uip(A1,u1,v1,p1,q1) ⊏ uip(A2,u2,v2,p2,q2)

A1 ⊏ A2

u1 ⊏ u2 P1 ⊏ P2 w1 ⊏ w2 v1 ⊏ v2 p1 ⊏ p2

J(A1,u1,x .e .P1,w1,v1,p1) ⊏ J(A2,u2,x .e .P2,w2,v2,p2)

Figure 5. Relation ⊏

t1[γ1] � t2[γ2]. From transitivity and symmetry we

only need to provide a proof of t1[γ1] � p[γ1]∗ t1[γ1]
which is inhabited by ⟨p[γ1]; refl (p[γ1]∗ t1[γ1])⟩_._.

The complete proof can be found in Appendix B. □

We can also prove that ∼ preserves substitution.

Lemma 3.5. If t1 ∼ t2 and u1 ∼ u2 then t1[x←u1] ∼
t2[x←u2].

Proof. We proceed by induction on the derivation of t1 ∼
t2. □

4 Translating ETT to ITT
4.1 The Translation
We now define the translations (let us stress the plural here)

of an extensional judgment. We extend ⊏ canonically to

contexts (Γ ⊏ Γ when they bind the same variables and the

types are in relation for ⊏).
Before defining the translation, we define a set JΓ ⊢x t : AK

of typing judgments in ITT associated to a typing judgment

Γ ⊢x t : A in ETT. The idea is that this set describes all

the possible translations that lead to the expected property.

When Γ ⊢ t : A ∈ JΓ ⊢x t : AK, we say that Γ ⊢ t : A realises

Γ ⊢x t : A. The translation will be given by showing that this

set is inhabited by induction on the derivation.

Definition 4.1 (Characterisation of possible translations).
• For any ⊢x Γ we define J⊢x ΓK as a set of valid judg-

ments (in ITT) such that ⊢ Γ ∈ J⊢x ΓK if and only if

Γ ⊏ Γ.
• Similarly, Γ ⊢ t : A ∈ JΓ ⊢x t : AK iff ⊢ Γ ∈ J⊢x ΓK and
A ⊏ A and t ⊏ t .

In order to better master the shape of the produced realiser,

we state the following lemma which shows that it has the

same head type constructor as the type it realises. This is

important for instance for the case of an application, where

we do not know a priori if the translated function has a

dependent product type, which is required to be able to use

the typing rule for application.

Lemma 4.2. We can always choose types T that have the
same head constructor as T .

Proof. Assume we have Γ ⊢ t : T ∈ JΓ ⊢x t : T K. By definition
of ⊏, T ⊏ T means that T is shaped p∗ q∗ ... r∗ T

′
with T

′

having the same head constructor asT . By inversion (2.3), the

subterms are typable, including T
′
. Actually, from inversion,

we even get that the type of T
′
is a universe. Then, using

lemma 3.4 and lemma 3.3, we get Γ ⊢ e : T = T
′
. We conclude

with Γ ⊢ e∗ t : T
′
∈ JΓ ⊢x t : T K. □

Finally, in order for the induction to go through, we need to

know that when we have a realiser of a derivation Γ ⊢x t : T ,
we can pick an arbitrary other type realising Γ ⊢x T and

still get a new derivation realising Γ ⊢x t : T with that type.

This is important for instance for the case of an application,

where the type of the domain of the translated function may

differ from the type of the translated argument. So we need

to be able to change it a posteriori.

Lemma 4.3. When we have Γ ⊢ t : T ∈ JΓ ⊢x t : T K and
Γ ⊢ T

′
∈ JΓ ⊢x T K then we also have Γ ⊢ t ′ : T

′
∈ JΓ ⊢x t : T K

for some t ′.
7
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Proof. By definition we have T ⊏ T and T ⊏ T
′
and thus

T ∼ T and T ∼ T
′
, implying T ∼ T

′
by transitivity (3.2). By

lemma 3.4 (in the case Γ1 ≡ Γ2 ≡ •) we get Γ ⊢ p : T � T
′
for

some p. By lemma 3.3 (and lemma 4.2 to give universes as

types to T and T
′
) we can assume Γ ⊢ p : T = T

′
. Then Γ ⊢

p∗ t : T
′
is still a translation since ⊏ ignores transports. □

We can now define the translation. This is done by mutual

induction on context well-formedness, typing and conver-

sion derivations. Indeed, in order to be able to produce a

realiser by induction, we need to show that every conver-

sion in ETT is translated as an heterogeneous equality in

ITT.

Theorem 4.4 (Translation).
• If ⊢x Γ then there exists ⊢ Γ ∈ J⊢x ΓK,
• If Γ ⊢x t : T then for any ⊢ Γ ∈ J⊢x ΓK there exist t and
T such that Γ ⊢ t : T ∈ JΓ ⊢x t : T K,
• If Γ ⊢x u ≡ v : A then for any ⊢ Γ ∈ J⊢x ΓK there
exist A ⊏ A,A ⊏ A

′
,u ⊏ u,v ⊏ v and e such that

Γ ⊢ e : u A�A′ v .

Proof. We prove the theorem by induction on the derivation

in the extensional type theory. We only show the two most

interesting cases of application and conversion. The complete

proof is given in Appendix C.

• Application

Γ ⊢x A : s Γ,x : A ⊢x B : s ′

Γ ⊢x t : Π(x : A). B Γ ⊢x u : A

Γ ⊢x t @x :A.B u : B[x←u]

Using IH together with lemmata 4.2 and 4.3 we get

Γ ⊢ A : s and Γ,x : A ⊢ B : s ′ and Γ ⊢ t : Π(x : A). B
and Γ ⊢ u : Ameaning we can conclude Γ ⊢ t@x :A.Bu :

B[x←u] ∈ JΓ ⊢x t @x :A.B u : B[x←u]K.
• Conversion

Γ ⊢x u : A Γ ⊢x A ≡ B

Γ ⊢x u : B

By IH and lemma 3.3 we have Γ ⊢ e : A = B which

implies Γ ⊢ A ∈ JΓ ⊢x AK by inversion (2.3), thus,

from lemma 4.3 and IH we get Γ ⊢ u : A, yielding

Γ ⊢ e∗ u : B ∈ JΓ ⊢x u : BK.
□

4.2 Meta-theoretical Consequences
We can check that all ETT theorems whose type are typable

in ITT have proofs in ITT as well:

Corollary 4.5 (Preservation of ITT). If ⊢x t : T and ⊢ T then
there exist t such that ⊢ t : T ∈ J⊢x t : T K.

Proof. Since ⊢ • ∈ J⊢x •K, by Theorem (4.4), there exists t

and T such that ⊢ t : T ∈ J⊢x t : T K But as ⊢ T , we have

⊢ T ∈ J⊢x T K, and, using Lemma 4.3, we obtain ⊢ t : T ∈ J⊢x
t : T K. □

Corollary 4.6 (Relative consistency). Assuming ITT is con-
sistent, there is no term t such that ⊢x t : Π(A : □0). A.

Proof. Assume such a t exists. By the Corollary 4.5, because

⊢ Π(A : □0). A, there exists t such that ⊢ t : Π(A : □0). A
which contradicts the assumed consistency of ITT. □

4.3 Optimisations
Up until now, we remained silent about one thing: the size

of the translated terms. Indeed, the translated term is a deco-

ration of the initial one by transports which appear in many

locations. For example, at each application we use a transport

by lemma 4.2 to ensure that the term in function position

is given a function type. In most cases—in particular when

translating ITT terms—this produces unnecessary transports

(often by reflexivity) that we wish to avoid.

In order to limit the size explosion, in the above we use a

different version of transport, namely transport′ such that

transport′A1,A2

(p, t ) = t when A1 =α A2

= p∗t otherwise.

The idea is that we avoid trivially unnecessary transports (we
do not deal with β-conversion for instance). We extend this

technique to the different constructors of equality (symmetry,

transitivity, . . . ) so that they reduce to reflexivity whenever

possible. Take transitivity for instance:

transitivity′(refl u,q) = q

transitivity′(p, refl u) = p

transitivity′(p,q) = transitivity(p,q).

We show these defined terms enjoy the same typing rules

as their counterparts and use them instead. In practice it is

enough to recover the exact same term when it is typed in

ITT.

5 Formalisation with Template-Coq
We have formalised the translation in the setting of Tem-
plateCoq [Anand et al. 2018] in order to have a more precise

proof, but also to evidence the fact that the translation is in-

deed constructive and can be used to perform computations.

TemplateCoq is a Coq library that has a representation of

Coq terms as they are in Coq’s kernel (in particular using de

Bruijn indices for variables) and a (partial) implementation

of the type checking algorithm (not checking guardedness

of fixpoints or positivity of inductive types). It comes with

a Coq plugin that permits to quote Coq terms into their

representations, and to produce Coq terms from their rep-

resentation (if they indeed denote well-typed terms). We

have integrated our formalisation within that framework in

order to ensure our presentations of ETT and ITT are close

to Coq, but also to take advantage of the quoting mechanism

8
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to produce terms using the interactive mode (in particular

we get to use tactics). Note that we also rely on Mangin

and Sozeau’s Equations [Sozeau 2010] plugin to derive nice

dependent induction principles.

Our formalisation takes full advantage of its easy interfac-

ing with TemplateCoq: we define two theories, namely ETT

and ITT, but ITT enjoys a lot of syntactic sugar by having

things such as transport, heterogeneous equality and pack-

ing as part of the syntax. The operations regarding these

constructors—in particular the tedious ones—are written in

Coq and then quoted to finally be realised in the translation

from ITT to TemplateCoq.

Interoperability with TemplateCoq. The translation we

define from ITT to TemplateCoq is not proven correct, but

it is not really important as it can just be seen as a feature to

observe the produced terms in a nicer setting. In any case,

TemplateCoq does not yet provide a complete formalisa-

tion of CIC rules, as guard checking of recursive definitions

and strict positivity of inductive type declarations are not

formalised yet.

We also provide a translation from TemplateCoq to ETT

thatwewill describemore extensivelywith the examples (5.4).

5.1 Quick Overview of the Formalisation
The file SAst.v contains the definition of the (common) ab-

stract syntax of ETT and ITT in the form of an inductive

definition with de Bruijn indices for variables (like in Tem-
plateCoq). Sorts are defined separately in Sorts.v and we will

address them later in Section 5.3.

Inductive sterm : Type :=
| sRel (n : nat)
| sSort (s : sort)
| sProd (nx : name) (A B : sterm)
| sLambda (nx : name) (A B t : sterm)
| sApp (u : sterm) (nx : name) (A B v : sterm)
| sEq (A u v : sterm)
| sRefl (A u : sterm)
| (* ... *) .

The files ITyping.v and XTyping.v define respectively the

typing judgments for ITT and ETT, using mutual inductive

types. Then, most of the files are focused on the meta-theory

of ITT and can be ignored by readers who don’t need to see

yet another proof of subject reduction.

The most interesting files are obviously those where the

fundamental lemma and the translation are formalised: Fun-

damentalLemma.v and Translation.v. For instance, here is

the main theorem, as stated in our formalisation:

Theorem complete_translation Σ :
type_glob Σ ->
(forall Γ (h : XTyping.wf Σ Γ),

∑
Γ', Σ |--i Γ' # J Γ K ) *

(forall Γ t A (h : Σ ;;; Γ |-x t : A)
Γ' (hΓ : Σ |--i Γ' # J Γ K),∑

A' t', Σ ;;;; Γ' |--- [t'] : A' # J Γ |--- [t] : A K) *
(forall Γ u v A (h : Σ ;;; Γ |-x u = v : A)
Γ' (hΓ : Σ |--i Γ' # J Γ K),∑

A' A'' u' v' p', eqtrans Σ Γ A u v Γ' A' A'' u' v' p').

Herein type_glob Σ refers to the fact that some global con-

text is well-typed, its purpose is detailed in Section 5.2. The

fact that the theorem holds in Coq ensures we can actually

compute a translated term and type out of a derivation in

ETT.

5.2 Inductive Types and Recursion
In the proof of Section 4, we didn’t mention anything about

inductive types, pattern-matching or recursion as it is a bit

technical on paper. In the formalisation, we offer a way to

still be able to use them, and we will even show how it works

in practice with the examples (5.4).

The main guiding principle is that inductive types and in-

duction are orthogonal to the translation, they should more

or less be translated to themselves. To realise that easily,

we just treat an inductive definition as a way to introduce

new constants in the theory, one for the type, one for each

constructor, one for its elimination principle, and one equal-

ity per computation rule. For instance, the natural numbers

can be represented by having the following constants in the

context:

nat : □0

0 : nat
S : nat→ nat
natrec : ∀P , P 0→ (∀m, P m → P (Sm)) → ∀n, P n
natrec0 : ∀P Pz Ps , natrec P Pz Ps 0 = Pz
natrecS : ∀P Pz Ps n,

natrec P Pz Ps (S n) = Ps n (natrec P Pz Ps n)

Here we rely on the reflection rule to obtain the computa-

tional behavior of the eliminator natrec.
This means for instance that we do not consider inductive

types that would only make sense in ETT, but we deem this

not to be a restriction and to the best of our knowledge isn’t

something that is usually considered in the literature. With

that in mind, our translation features a global context of

typed constants with the restriction that the types of those

constants should be well-formed in ITT. Those constants are

thus used as black boxes inside ETT.

With this we are able to recover what we were missing

from Coq, without having to deal with the trouble of proving
that the translation doesn’t break the guard condition of fixed

points, and we are instead relying on a more type-based

approach.

5.3 About Universes and Homotopy
The experienced reader might have noticed that our treat-

ment of universes (except perhaps for the absence of cumu-

lativity) was really superficial and the notion of sorts used

is rather orthogonal to our main development. This is even

more apparent in the formalisation. Indeed, we didn’t fix a

specific universe hierarchy, but instead specify what proper-

ties it should have, in what is reminiscent to a (functional
3
)

PTS formulation.

3
Meaning the sort of a sort, and the sort of a product are functions, necessary

to the uniqueness of types (2.2).
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Class Sorts.notion := {
sort : Type ;
succ : sort -> sort ;
prod_sort : sort -> sort -> sort ;
sum_sort : sort -> sort -> sort ;
eq_sort : sort -> sort ;
eq_dec : forall s z : sort, {s = z} + {s <> z} ;
succ_inj : forall s z, succ s = succ z -> s = z

}.

From the notion of sorts, we require functions to get the sort

of a sort, the sort of a product from the sorts of its arguments,

and (crucially) the sort of an identity type. We also require

some measure of decidable equality and injectivity on those.

This allows us to instantiate this by a lot of different no-

tions including the one presented earlier in the paper or

even its extension with a universe Prop of propositions (like

CIC [Bertot and Castéran 2004]). We present here two in-

stances that have their own interest.

Type in Type. One of the instances we provide is one with
only one universe Type, with the inconsistent typing rule

Type : Type. Although inconsistent, this allows us to inter-

face with TemplateCoq, without the—for the time being—

very time-consuming universe constraint checking.

Homotopy Type System and Two-Level Type Theory. An-
other interesting application (or rather instance) of our for-

malisation is a translation from Homotopy Type System

(HTS) [Voevodsky 2013] to Two-Level Type Theory (2TT) [Al-

tenkirch et al. 2016; Annenkov et al. 2017].

HTS and 2TT arise from the incompatibility between UIP—

recall it is provable in ETT—and univalence. The idea is

to have two distinct notions of equality in the theory, a

strict one satisfying UIP, and a fibrant one corresponding
to the homotopy type theory equality, possibly satisfying

univalence. This actually induces a separation in the types

of the theory: some of them are called fibrant and the fibrant
or homotopic equality can only be eliminated on those. HTS

can be seen as an extension of 2TT with reflection on the

strict equality just like ETT is an extension of ITT.

We can recover HTS and 2TT in our setting by taking

Fi and Ui as respectively the fibrant and strict universes

of those theories (for i ∈ N), along with the following PTS

rules:

(Fi , Fi+1) ∈ Ax (Ui ,Ui+1) ∈ Ax
(Fi , Fj , Fmax(i, j ) ) ∈ R (Fi ,Uj ,Umax(i, j ) ) ∈ R
(Ui , Fj ,Umax(i, j ) ) ∈ R (Ui ,Uj ,Umax(i, j ) ) ∈ R

and the fact that the sort of the (strict) identity type on A : s
is the strictified version of s , i.e., Ui for s = Ui or s = Fi . In
order to have the fibrant equality, one simply needs to do as

in Section 5.2.

In short, the translation from HTS to 2TT is basically the

same as the one from ETT to ITT we presented in this paper,

and this fact is factorised through our formalisation.

5.4 ETT-flavoured Coq: Examples
In this section we demonstrate how our translation can bring

extensionality to the world of Coq in action. The examples

can be found in plugin_demo.v.

First, a pedestrian approach. We would like to begin by

showing how one can write an example step by step before

we show how it can be used in practice. For this we use a self-

contained example without any inductive types or recursion,

illustrating a very simple case of reflection. The term we

want to translate is the following:

λ A B e x . x : Π A B. A = B → A→ B

This is, in some sense the identity, relying on the equality

e : A = B to convert x : A to x : B. Of course, this definition
isn’t accepted in Coq because the conversion doesn’t hold

in ITT.

Fail Definition pseudoid (A B : Type) (e : A = B) (x : A) : B := x.

However, we still want to be able to write it in some way, in
order to avoid manipulating de Bruijn indices directly. For

this, we use a little trick by first defining a Coq axiom to

represent an ill-typed term:

Axiom candidate : forall A B (t : A), B.

candidate A B t is a candidate t of type A to inhabit type

B. We complete this by adding a notation that is reminiscent

to Agda’s [Norell 2007] hole mechanism.

Notation "'{!' t '!}'" := (candidate _ _ t).

We can now write the ETT function within Coq.
Definition pseudoid (A B : Type) (e : A = B) (x : A) : B := {! x !}.

We can then quote the term and its type to TemplateCoq
thanks to the Quote Definition command provided by the

plugin.

Quote Definition pseudoid_term :=
ltac:(let t := eval compute in pseudoid in exact t).

Quote Definition pseudoid_type :=
ltac:(let T := type of pseudoid in exact T).

The terms that we get are now TemplateCoq terms, repre-

senting Coq syntax. We need to put them in ETT, meaning

adding the annotations, and also removing the candidate
axiom. This is the purpose of the fullquote function that

we provide in our formalisation.

Definition pretm_pseudoid :=
Eval lazy in fullquote (2^18) Σ [] pseudoid_term empty empty nomap.

Definition tm_pseudoid :=
Eval lazy in match pretm_pseudoid with

| Success t => t
| Error _ => sRel 0
end.

Definition prety_pseudoid :=
Eval lazy in fullquote (2^18) Σ [] pseudoid_type empty empty nomap.

Definition ty_pseudoid :=
Eval lazy in match prety_pseudoid with

| Success t => t
| Error _ => sRel 0
end.

tm_pseudoid and ty_pseudoid correspond respectively to

the ETT representation of pseudoid and its type. We then

produce, using our home-brewed Ltac type-checking tactic,

10
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the corresponding ETT typing derivation (notice the use of

reflection to typecheck).

Lemma type_pseudoid : Σi ;;; [] |-x tm_pseudoid : ty_pseudoid.
Proof.

unfold tm_pseudoid, ty_pseudoid.
ettcheck. cbn.
eapply reflection with (e := sRel 1).
ettcheck.

Defined.

We can then translate this derivation, obtain the translated

term and then convert it to TemplateCoq.
Definition itt_pseudoid : sterm :=

Eval lazy in
let '(_ ; t ; _) :=
type_translation type_pseudoid istrans_nil

in t.

Definition tc_pseudoid : tsl_result term :=
Eval lazy in
tsl_rec (2 ^ 18) Σ [] itt_pseudoid empty.

Once we have it, we unquote the term to obtain a Coq term

(notice that the only use of reflection has been replaced by a

transport).

fun (A B : Type) (e : A = B) (x : A) => transport e x
: forall A B : Type, A = B -> A -> B

Making a Plugin with TemplateCoq. All of this work

is pretty systematic. Fortunately for us, TemplateCoq also

features a monad to reify Coq commands which we can use

to program the translation steps. As such we have written a

complete procedure, relying on Coq type checkers we wrote

for ITT and ETT, which can generate equality obligations.

Thanks to this, the user doesn’t have to know about the

details of implementation of the translation, and stay within

the Coq ecosystem.

For instance, our previous example now becomes:

Definition pseudoid (A B : Type) (e : A = B) (x : A) : B := {! x !}.

Run TemplateProgram (Translate ε "pseudoid").

This produces a Coq term pseudoid' corresponding to the

translation. Notice how the user doesn’t even have to pro-

vide any proof of equality or derivations of any sort. The

derivation part is handled by our own typechecker while the

obligation part is solved automatically by the Coq obligation

mechanism.

About inductive types. As we promised, our translation is

able to handle inductive types. For this consider the inductive

type of vectors (or length-indexed lists) below, together with

a simple definition (we will remain in ITT for simplicity).

Inductive vec A : nat -> Type :=
| vnil : vec A 0
| vcons : A -> forall n, vec A n -> vec A (S n).

Arguments vnil {_}.
Arguments vcons {_} _ _ _.

Definition vv := vcons 1 _ vnil.

This time, in order to apply the translation we need to extend

the translation context with nat and vec.
Run TemplateProgram (
Θ <- TranslateConstant ε "nat" ;;
Θ <- TranslateConstant Θ "vec" ;;

Translate Θ "vv"
).

Here, ε is the empty translation context and the command

TranslateConstant enriches it with the types the induc-

tives and of their constructors. The translation context then

also contains associative tables between our own represen-

tation of constants and those of Coq. Unsurprisingly, the
translated Coq term is the same as the original term.

Reversal of vectors. Next, we tackle a motivating example:

reversal on vectors. Indeed, if you want to implement this

operation, the same way you would do it on lists, you end

up having a conversion problem:

Fail Definition vrev {A n m} (v : vec A n) (acc : vec A m)
: vec A (n + m) :=
vec_rect A (fun n _ => forall m, vec A m -> vec A (n + m))

(fun m acc => acc)
(fun a n _ rv m acc => rv _ (vcons a m acc))
n v m acc.

The recursive call returns a vector of length n + S m where

the context expects one of length S n + m. In ITT these

types are not convertible. This example is thus a perfect fit

for ETT where we can use the fact that these two expressions

always compute to the same thing when instantiated with

concrete numbers.

Definition vrev {A n m} (v : vec A n) (acc : vec A m)
: vec A (n + m) :=
vec_rect A (fun n _ => forall m, vec A m -> vec A (n + m))

(fun m acc => acc)
(fun a n _ rv m acc => {! rv _ (vcons a m acc) !})
n v m acc.

Run TemplateProgram (
Θ <- TranslateConstant ε "nat" ;;
Θ <- TranslateConstant Θ "vec" ;;
Θ <- TranslateConstant Θ "Nat.add" ;;
Θ <- TranslateConstant Θ "vec_rect" ;;
Translate Θ "vrev"

).

This generates four obligations that are all solved automati-

cally. One of them contains a proof of S n + m = n + S m
while the remaining three correspond to the computation

rules of addition (as mentionned before, add is simply a con-

stant and does not compute in our representation, hence the

need for equalities). The returned term is the following, with

only one transport remaining (remember our interpretation

map removes unnecessary transports).

fun (A : Type) (n m : nat) (v : vec A n) (acc : vec A m) =>
vec_rect A
(fun n _ => forall m, vec A m -> vec A (n + m))
(fun m acc => acc)
(fun a n0 v0 rv m0 acc0 =>
transport (vrev_obligation_3 A n m v acc a n0 v0 rv m0 acc0)

(rv (S m0) (vcons a m0 acc0))) n v m acc
: forall A n m, vec A n -> vec A m -> vec A (n + m)

5.5 Towards an Interfacing between Andromeda
and Coq

Andromeda [Bauer et al. 2016] is a proof assistant implement-

ing ETT in a sense that is really close to our formalisation.

Aside from a concise nucleus with a basic type theory, most

things happen with the declaration of constants with given

11
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types, including equalities to define the computational be-

haviour of eliminators for instance. This is essentially what

we do in our formalisation. Furthermore, their theory relies

on Type : Type, meaning, our modular handling of universes

can accommodate for this as well.

All in all, it should be possible in the near future to use our

translation to produce Coq terms out of Andromeda devel-
opments. Note that this would not suffer from the difficulties

in generating typing derivations since Andromeda does it
for you.

5.6 Composition with other Translations
This translation also enables the formalisation of translations

that target ETT rather than ITT and still get mechanised

proofs of (relative) consistency by composition with this ETT

to ITT translation. This could also be used to implement plu-

gins based on the composition of translations. In particular,

supposing we have a theory which forms a subset of ETT

and whose conversion is decidable. Using this translation,

we could formalise it as an embedded domain-specific type

theory and provide an automatic translation of well-typed

terms into witnesses in Coq. This would make it possible to

extend conversion with the theory of lists for example.

This would provide a simple way to justify the consistency

of CoqMT [Jouannaud and Strub 2017] for example, seeing

it as an extensional type theory where reflection is restricted

to equalities on a specific domain whose theory is decidable.

6 Limitations and Axioms
Currently, the representation of terms and derivations and

the computational content of the proof only allow us to deal

with the translation of relatively small terms but we hope

to improve that in the future. As we have seen, the actual

translation involves the computational content of lemmata of

inversion, substitution, weakening and equational reasoning

and thus cannot be presented as a simple recursive definition

on derivations.

As we already mentioned, the axioms K and functional

extensionality are both necessary in ITT if we want the trans-

lation to be conservative as they are provable in ETT [Hof-

mann 1995]. However, one might still be concerned about

having axioms as they can for instance hinder canonicity of

the system. In that respect, K isn’t really a restriction since

it preserves canonicity. The best proof of that is probably

Agda itself which natively features K—in fact, one needs

to explicitly deactivate it with a flag if they wish to work

without.

The case of functional extensionality is trickier. It is still

possible to realise the axiom by composing our translation

with a setoid interpretation [Altenkirch 1999] which vali-

dates it, or by going into a system featuring it, for instance

by implementing Observational Type Theory [Altenkirch

et al. 2007] like EPIGRAM [McBride 2004].

7 Related Works and Conclusion
The seminal works on the precise connection between ETT

and ITT go back to Streicher [1993] and Hofmann [1995,

1997]. In particular, the work of Hofmann provides a categor-

ical answer to the question of consistency and conservativity

of ETT over ITT with UIP and functional extensionality. Ten

years later, Oury [2005, 2006] provided a translation from

ETT to ITT with UIP and functional extensionality and other

axioms (mainly due to technical difficulties). Although a first

step towards amove from categorical semantics to a syntactic

translation, his work does not stress any constructive aspect

of the proof and shows that there merely exist translations

in ITT to a typed term in ETT.

van Doorn et al. [2013] have later proposed and formalised

a similar translation between a PTS with and without ex-

plicit conversion. This does not entail anything about ETT

to ITT but we can find similarities in that there is a wit-

ness of conversion between any term and itself under an

explicit conversion, which internalises irrelevance of explicit

conversions. This morally corresponds to a Uniqueness of

Conversions principle.

The Program [Sozeau 2007] extension of Coq performs

a related coercion insertion algorithm, between objects in

subsets on the same carrier or in different instances of the

same inductive family, assuming a proof-irrelevance axiom.

Inserting coercions locally is not as general as the present

translation from ETT to ITT which can insert transports in

any context.

In this paper we provide the first effective translation from

ETT to ITT with UIP and functional extensionality. The

translation has been formalised in Coq using TemplateCoq,
a meta-programming plugin of Coq. This translation is also

effective in the sense that we can produce in the end a Coq
term using the TemplateCoq denotation machinery. With

ongoing work to extend the translation to the inductive

fragment of Coq, we are paving the way to an extensional

version of the Coq proof assistant which could be translated

back to its intensional version, allowing the user to navigate

between the two modes, and in the end produce a proof term

checkable in the intensional fragment.
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A Complementary rules

Equivalence relation.

Γ ⊢ u : A

Γ ⊢ u ≡ u : A

Γ ⊢ u ≡ v : A

Γ ⊢ v ≡ u : A

Γ ⊢ u ≡ v : A Γ ⊢ v ≡ w : A

Γ ⊢ u ≡ w : A

Congruence of type constructors.

Γ ⊢ A1 ≡ A2 : s Γ,x : A1 ⊢ B1 ≡ B2 : s
′

Γ ⊢ Π(x : A1). B1 ≡ Π(x : A2). B2 : s
′′

(s, s ′, s ′′)
Γ ⊢ A1 ≡ A2 : s Γ,x : A1 ⊢ B1 ≡ B2 : s

′

Γ ⊢ Σ(x : A1). B1 ≡ Σ(x : A2). B2 : s
′′

(s, s ′, s ′′)

Γ ⊢ A1 ≡ A2 : s Γ ⊢ u1 ≡ u2 : A1 Γ ⊢ v1 ≡ v2 : A1

Γ ⊢ u1 =A1
v1 ≡ u2 =A2

v2 : s

Congruence of λ-calculus terms.

Γ ⊢ A1 ≡ A2 : s Γ,x : A1 ⊢ B1 ≡ B2 : s
′ Γ,x : A1 ⊢ t1 ≡ t2 : B1

Γ ⊢ λ(x : A1).B1.t1 ≡ λ(x : A2).B2.t2 : Π(x : A1). B1

Γ ⊢ A1 ≡ A2 : s Γ,x : A1 ⊢ B1 ≡ B2 : s
′ Γ ⊢ t1 ≡ t2 : Π(x : A1). B1 Γ ⊢ u1 ≡ u2 : A1

Γ ⊢ t1 @x :A1 .B1
u1 ≡ t1 @x :A1 .B1

u1 : B1[x←u1]

Γ ⊢ A1 ≡ A2 : s Γ ⊢ u1 ≡ u2 : A1 Γ,x : A1 ⊢ B1 ≡ B2 : s
′ Γ ⊢ v1 ≡ v2 : B1[x←u1]

Γ ⊢ ⟨u1;v1⟩x :A1 .B1
≡ ⟨u2;v2⟩x :A2 .B2

: Σ(x : A1). B1

Γ ⊢ A1 ≡ A2 : s Γ,x : A1 ⊢ B1 ≡ B2 : s
′ Γ ⊢ p1 ≡ p2 : Σ(x : A1). B1

Γ ⊢ πx :A1 .B1

1
p1 ≡ πx :A2 .B2

1
p2 : A1

Γ ⊢ A1 ≡ A2 : s Γ,x : A1 ⊢ B1 ≡ B2 : s
′ Γ ⊢ p1 ≡ p2 : Σ(x : A1). B1

Γ ⊢ πx :A1 .B1

2
p1 ≡ πx :A2 .B2

2
p2 : B1[x←πx :A1 .B1

1
p1]

Congruence of equality terms.

Γ ⊢ A1 ≡ A2 : s Γ ⊢ u1 ≡ u2 : A

Γ ⊢ reflA1
u1 ≡ reflA2

u2 : u1 =A1
u1

Γ ⊢ A1 ≡ A2 : s Γ ⊢ u1 ≡ u2 : A1 Γ ⊢ v1 ≡ v2 : A1

Γ,x : A1, e : u1 =A1
x ⊢ P1 ≡ P2 : s

′ Γ ⊢ p1 ≡ p2 : u1 =A1
v1 Γ ⊢ w1 ≡ w2 : P1[x←u1, e← reflA1

u1]

Γ ⊢ J(A1,u1,x .e .P1,w1,v1,p1) ≡ J(A2,u2,x .e .P2,w2,v2,p2) : P[x←v1, e←p1]

Γ ⊢ A1 ≡ A2 : s Γ,x : A1 ⊢ B1 ≡ B2 : s
′

Γ ⊢ f1 ≡ f2 : Π(x : A1). B1 Γ ⊢ д1 ≡ д2 : Π(x : A1). B1 Γ ⊢ e1 ≡ e2 : Π(x : A1). f1 @x :A1 .B1
x =B1

д1 @x :A1 .B1
x

Γ ⊢ funext(x : A1,B1, f1,д1, e1) ≡ funext(x : A2,B2, f2,д2, e2) : f1 = д1

Γ ⊢ A1 ≡ A2 Γ ⊢ u1 ≡ u2 : A1 Γ ⊢ v1 ≡ v2 : A2 Γ ⊢ p1 ≡ p2 : u1 =A1
v1 Γ ⊢ q1 ≡ q2 : u1 =A1

v1

Γ ⊢ uip(A1,u1,v1,p1,q1) ≡ uip(A2,u2,v2,p2,q2) : p1 = q1

Figure 6. Congruence rules
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B Proof of the fundamental lemma
Lemma B.1 (Fundamental lemma). Let t1 and t2 be two terms. If Γ, Γ1 ⊢ t1 : T1 and Γ, Γ2 ⊢ t2 : T2 and t1 ∼ t2 then there exists p
such that Γ,Pack Γ1 Γ2 ⊢ p : t1[γ1] T1[γ1]�T2[γ2] t2[γ2].

For readability we will abbreviate the left and right substitutions _[γ1] and _[γ2] by ↿ and ↾ respectively.

Proof. We prove it by induction on the derivation of t1 ∼ t2.

• Var

x ∼ x

If x belongs to Γ, we apply reflexivity—together with uniqueness of typing (2.2)—to conclude. Otherwise, Proje x has the

expected type (since x[γ1] ≡ Proj
1
x and x[γ2] ≡ Proj

2
x ).

• TransportLeft

t1 ∼ t2

p∗ t1 ∼ t2

We have Γ, Γ1 ⊢ p∗ t1 : T1 and Γ, Γ2 ⊢ t2 : T2. By inversion (2.3) we have Γ, Γ1 ⊢ p : T ′
1
= T1 and Γ, Γ1 ⊢ t1 : T

′
1
. Then by

induction hypothesis we have e such that Γ, Γp ⊢ e : t1 ↿� t2 ↾. From transitivity and symmetry we only need to provide

a proof of t1 ↿� p ↿∗ t1 ↿ which is inhabited by ⟨p ↿; refl (p ↿∗ t1 ↿)⟩_._.
• TransportRight

t1 ∼ t2

t1 ∼ p∗ t2

Similarly.

• Product

A1 ∼ A2 B1 ∼ B2

Π(x : A1). B1 ∼ Π(x : A2). B2

We have Γ, Γ1 ⊢ Π(x : A1). B1 : T1 and Γ, Γ2 ⊢ Π(x : A2). B2 : T2 so by inversion (2.3) we have Γ, Γ1 ⊢ A1 : s1 and
Γ, Γ1,x : A1 ⊢ B1 : s

′
1
and Γ, Γ1 ⊢ s

′′
1
≡ T1 for (s1, s

′
1
, s ′′

1
) ∈ R (and similarly with 2s). By induction hypothesis we have

Γ, Γp ⊢ pA : A1 ↿� A2 ↾ and Γ, Γp,x : Pack A1 A2 ⊢ pB : B1 ↿� B2 ↾ hence the result (using UIP and functional

extensionality, refer to the formalisation and especially to the file Quotes.v for more details on how to realise this

equality).

• Eqality

A1 ∼ A2 u1 ∼ u2 v1 ∼ v2

u1 =A1
v1 ∼ u2 =A2

v2

Wehave Γ, Γ1 ⊢ u1 =A1
v1 : T1 and Γ, Γ2 ⊢ u2 =A2

v2 : T2 so, by inversion (2.3), we have Γ, Γ1 ⊢ A1 : s1 and Γ, Γ1 ⊢ u1 : A1 and

Γ, Γ1 ⊢ v1 : A1 as well as Γ, Γ1 ⊢ s1 ≡ T1 (and the same with 2s). By induction hypothesis we thus have Γ, Γp ⊢ pA : A1 � A2

and Γ, Γp ⊢ pu : u1 � u2 and Γ, Γp ⊢ pv : v1 � v2. We can thus conclude.

• Reflexivity

s ∼ s

This one holds by reflexivity and uniqueness of typing (2.2) (indeed, s ↿≡ s and s ↾≡ s).
• Lambda

A1 ∼ A2 B1 ∼ B2 t1 ∼ t2

λ(x : A1).B1.t1 ∼ λ(x : A2).B2.t2

We have Γ, Γ1 ⊢ λ(x : A1).B1.t1 : T1 and Γ, Γ2 ⊢ λ(x : A2).B2.t2 : T2, thus, by inversion 2.3 the subterms are well-typed and

we can apply induction hypothesis. The conclusion follows similarly to the Π case.

• Application

t1 ∼ t2 A1 ∼ A2 B1 ∼ B2 u1 ∼ u2

t1 @x :A1 .B1
u1 ∼ t2 @x :A2 .B2

u2

We have Γ, Γ1 ⊢ t1 @x :A1 .B1
u1 : T1 and Γ, Γ2 ⊢ t2 @x :A2 .B2

u2 : T2 which means by inversion (2.3) that the subterms are

well-typed. We apply the induction hypothesis and then conclude.
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• Reflexivity

A1 ∼ A2 u1 ∼ u2

reflA1
u1 ∼ reflA2

u2

We have Γ, Γ1 ⊢ reflA1
u1 : T1 and Γ, Γ2 ⊢ reflA2

u2 : T2 so by inversion (2.3) we have Γ, Γ1 ⊢ A1 : s1 and Γ, Γ1 ⊢ u1 : A1

(same with 2s). By IH we have A1 ↿� A2 ↾ and u1 ↿A1↿�A2↾ u2 ↾. The proof follows easily.
• Funext

A1 ∼ A2 B1 ∼ B2 f1 ∼ f2 д1 ∼ д2 e1 ∼ e2

funext(x : A1,B1, f1,д1, e1) ∼ funext(x : A2,B2, f2,д2, e2)

Similar.

• UIP

A1 ∼ A2 u1 ∼ u2 v1 ∼ v2 p1 ∼ p2 q1 ∼ q2

uip(A1,u1,v1,p1,q1) ∼ uip(A2,u2,v2,p2,q2)

Similar.

• J

A1 ∼ A2 u1 ∼ u2 P1 ∼ P2 w1 ∼ w2 v1 ∼ v2 p1 ∼ p2

J(A1,u1,x .e .P1,w1,v1,p1) ∼ J(A2,u2,x .e .P2,w2,v2,p2)

Similar.

□

C Correctness of the translation
Theorem C.1 (Translation).
• If ⊢x Γ then there exists ⊢ Γ ∈ J⊢x ΓK,
• If Γ ⊢x t : T then for any ⊢ Γ ∈ J⊢x ΓK there exist t and T such that Γ ⊢ t : T ∈ JΓ ⊢x t : T K,
• If Γ ⊢x u ≡ v : A then for any ⊢ Γ ∈ J⊢x ΓK there exist A ⊏ A,A ⊏ A

′
,u ⊏ u,v ⊏ v and e such that Γ ⊢ e : u A�A′ v .

Proof. We prove the theorem by induction on the derivation in the extensional type theory. In most cases we need to assume

some Γ, translation of the context, we will implicitly refer to Γ in such cases as the one given as hypothesis.

• Empty

⊢x •

We have ⊢ • ∈ J⊢x •K.
• Extend

⊢x Γ Γ ⊢x A

⊢x Γ,x : A
(x < Γ)

By IH we have ⊢ Γ ∈ J⊢x ΓK and, using Γ as well as lemma 4.2, Γ ⊢ A : s ∈ JΓ ⊢x A : sK. Thus ⊢ Γ,x : A ∈ J⊢x Γ,x : AK.
• Sort

⊢x Γ

Γ ⊢x s : s
′
(s, s ′)

We have Γ ⊢ s : s ′ ∈ JΓ ⊢x s : s ′K.
• Product

Γ ⊢x A : s Γ,x : A ⊢x B : s ′

Γ ⊢x Π(x : A). B : s ′′
(s, s ′, s ′′)

By IH and lemma 4.2 we have Γ ⊢ A : s , meaning ⊢ Γ,x : A ∈ J⊢x Γ,x : AK, and then Γ,x : A ⊢ B : s ′. We thus conclude

Γ ⊢ Π(x : A). B : s ′′ ∈ JΓ ⊢x Π(x : A). B : s ′′K.
• Sigma

Γ ⊢x A : s Γ,x : A ⊢x B : s ′

Γ ⊢x Σ(x : A). B : s ′′
(s, s ′, s ′′)

Similar.
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• Eqality

Γ ⊢x A : s Γ ⊢x u : A Γ ⊢x v : A

Γ ⊢x u =A v : s

By IH and lemma 4.2 we have Γ ⊢ A : s , and—using lemma 4.3—we also have Γ ⊢ u : A and Γ ⊢ v : A. Then

Γ ⊢ u =A v : s ∈ JΓ ⊢x u =A v : sK.
• Variable

⊢x Γ (x : A) ∈ Γ

Γ ⊢x x : A

We have ⊢ Γ ∈ J⊢x ΓK (as we assumed, this is not an instance of the induction hypothesis) and (x : A) ∈ Γ. By definition

of Γ ⊏ Γ we also have some (x : A) ∈ Γ with A ⊏ A, thus Γ ⊢ x : A ∈ JΓ ⊢x x : AK.
• Conversion

Γ ⊢x u : A Γ ⊢x A ≡ B

Γ ⊢x u : B

By IH and lemma 3.3 we have Γ ⊢ e : A = B which implies Γ ⊢ A ∈ JΓ ⊢x AK by inversion (2.3), thus, from lemma 4.3 and

IH we get Γ ⊢ u : A, yielding Γ ⊢ e∗ u : B ∈ JΓ ⊢x u : BK.
• Lambda

Γ ⊢x A : s Γ,x : A ⊢x B : s ′ Γ,x : A ⊢x t : B

Γ ⊢x λ(x : A).B.t : Π(x : A). B

By IH and lemma 4.2 we have Γ ⊢ A : s and thus ⊢ Γ,x : A ∈ J⊢x Γ,x : AK, meaning we can apply IH and lemma 4.2 to

the second hypothesis to get Γ,x : A ⊢ B : s ′ ∈ JΓ,x : A ⊢x B : s ′K and then IH and lemma 4.3 to get Γ,x : A ⊢ t : B ∈

JΓ,x : A ⊢x t : BK. All of this yields Γ ⊢ λ(x : A).B.t : Π(x : A). B ∈ JΓ ⊢x λ(x : A).B.t : Π(x : A). BK.
• Application

Γ ⊢x A : s Γ,x : A ⊢x B : s ′ Γ ⊢x t : Π(x : A). B Γ ⊢x u : A

Γ ⊢x t @x :A.B u : B[x←u]

Using IH together with lemmata 4.2 and 4.3 we get Γ ⊢ A : s and Γ,x : A ⊢ B : s ′ and Γ ⊢ t : Π(x : A). B and Γ ⊢ u : A

meaning we can conclude Γ ⊢ t @x :A.B u : B[x←u] ∈ JΓ ⊢x t @x :A.B u : B[x←u]K.
• Pair

Γ ⊢x u : A Γ ⊢x A : s Γ,x : A ⊢x B : s ′ Γ ⊢x v : B[x←u]

Γ ⊢x ⟨u;v⟩x :A.B : Σ(x : A). B

Using IH with lemmata 4.2 and 4.3 we translate all the hypotheses to conclude Γ ⊢ ⟨u;v⟩x :A.B : Σ(x : A). B ∈ JΓ ⊢x
⟨u;v⟩x :A.B : Σ(x : A). BK.
• Proj1

Γ ⊢x p : Σ(x : A). B

Γ ⊢x π
x :A.B
1

p : A

Similar.

• Proj2

Γ ⊢x p : Σ(x : A). B

Γ ⊢x π
x :A.B
2

p : B[x←πx :A.B
1

p]

Similar.

• Reflexivity

Γ ⊢x A : s Γ ⊢x u : A

Γ ⊢x reflA u : u =A u

By IH we have Γ ⊢ u : A and thus Γ ⊢ reflA u : u =A u ∈ JΓ ⊢x reflA u : u =A uK.
• J

Γ ⊢x A : s Γ ⊢x u,v : A Γ,x : A, e : u =A x ⊢x P : s ′ Γ ⊢x p : u =A v Γ ⊢x w : P[x←u, e← reflA u]

Γ ⊢x J(A,u,x .e .P ,w,v,p) : P[x←v, e←p]

By IH and lemma 4.2 we have Γ ⊢ A : s . From this and IH and lemma 4.3 we have Γ ⊢ u,v : A. We can thus deduce

⊢ Γ,x : A, e : u =A x ∈ JΓ,x : A, e : u =A xK which in turn gives us Γ,x : A, e : u =A x ⊢ P : s ′. Similarly we
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also get Γ ⊢ p : u =A v and Γ ⊢ w : P[x←u, e← reflA u]. All of this allows us to conclude Γ ⊢ J(A,u,x .e .P ,w,v,p) :
P[x←v, e←p] ∈ JΓ ⊢x J(A,u,x .e .P ,w,v,p) : P[x←v, e←p]K.
• Funext

Γ ⊢ f ,д : Π(x : A). B Γ ⊢ e : Π(x : A). f @x :A.B x =B д@x :A.B x

Γ ⊢ funext(x : A,B, f ,д, e ) : f = д

Similar.

• UIP

Γ ⊢x e1, e2 : u =A v

Γ ⊢x uip(A,u,v, e1, e2) : e1 = e2
Similar.

• Beta

Γ ⊢x A : s Γ,x : A ⊢x B : s ′ Γ,x : A ⊢x t : B Γ ⊢x u : A

Γ ⊢x (λ(x : A).B.t ) @x :A.B u ≡ t[x←u] : B[x←u]

From IH and the lemmata, we even get the conversion, we conclude using reflexivity.

• Proj1-Red

Γ ⊢x A : s Γ ⊢x u : A Γ,x : A ⊢x B : s ′ Γ ⊢x v : B[x←u]

Γ ⊢x π
x :A.B
1

⟨u;v⟩x :A.B ≡ u : A

Likewise.

• Proj2-Red

Γ ⊢x A : s Γ ⊢x u : A Γ,x : A ⊢x B : s ′ Γ ⊢x v : B[x←u]

Γ ⊢x π
x :A.B
2

⟨u;v⟩x :A.B ≡ v : B[x←u]

Likewise.

• J-Red

Γ ⊢x A : Ui Γ ⊢x u : A Γ,x : A, e : u =A x ⊢x P : Uj Γ ⊢x w : P[x←u, e← reflA u]

Γ ⊢x J(A,u,x .e .P ,w,u, reflA u) ≡ w : P[x←u, e← reflA u]

Likewise.

• Conv-Refl

Γ ⊢x u : A

Γ ⊢x u ≡ u : A

We conclude from IH and reflexivity of �.
• Conv-Sym

Γ ⊢x u ≡ v : A

Γ ⊢x v ≡ u : A

We conclude from IH and symmetry of �.
• Conv-Trans

Γ ⊢x u ≡ v : A Γ ⊢x v ≡ w : A

Γ ⊢x u ≡ w : A

We conclude from IH and transitivity of �.
• Conv-Conv

Γ ⊢x t1 ≡ t2 : T1 Γ ⊢x T1 ≡ T2

Γ ⊢x t1 ≡ t2 : T2

By IH (and lemma 3.3) we have Γ ⊢ e : t1 T 1

�T ′
1

t2 and Γ ⊢ p : T
′′

1
= T 2. Also from lemmata 3.4 and 3.3 we have T

′

1
= T

′′

1

andT 1 = T
′′

1
, meaning we getT

′

1
= T 2 andT 1 = T 2. This allows us to conclude by transporting along the aforementioned

equalities.

• Conv-Prod

Γ ⊢x A1 ≡ A2 : s Γ,x : A1 ⊢x B1 ≡ B2 : s
′

Γ ⊢x Π(x : A1). B1 ≡ Π(x : A2). B2 : s
′′

(s, s ′, s ′′)

We conclude exactly like we did in the proof of lemma 3.4.

• All congruences hold like in proof of lemma 3.4.
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• Conv-Eq

Γ ⊢x e : u =A v

Γ ⊢x u ≡ v : A

By IH and lemma 4.2 we have Γ ⊢ e : u =A v ∈ JΓ ⊢x e : u =A vK which yields the conclusion we wanted.

□
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