
HAL Id: hal-01849166
https://hal.science/hal-01849166v2

Preprint submitted on 26 Jul 2018 (v2), last revised 22 Nov 2018 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Eliminating Reflection from Type Theory: To the
Legacy of Martin Hofmann

Théo Winterhalter, Matthieu Sozeau, Nicolas Tabareau

To cite this version:
Théo Winterhalter, Matthieu Sozeau, Nicolas Tabareau. Eliminating Reflection from Type Theory:
To the Legacy of Martin Hofmann. 2018. �hal-01849166v2�

https://hal.science/hal-01849166v2
https://hal.archives-ouvertes.fr

Eliminating Reflection from Type Theory
To the Legacy of Martin Hofmann

THÉO WINTERHALTER, Gallinette Project-Team, Inria, France

MATTHIEU SOZEAU, Pi.R2 Project-Team, Inria and IRIF, France

NICOLAS TABAREAU, Gallinette Project-Team, Inria, France

Type theories with equality reflection, such as extensional type theory (ETT), are convenient theories in which

to formalise mathematics, as they make it possible to consider provably equal terms as convertible. Although

type-checking is undecidable in this context, variants of ETT have been implemented, for example in NuPRL
and more recently in Andromeda. The actual objects that can be checked are not proof-terms, but derivations

of proof-terms. This suggests that any derivation of ETT can be translated into a typecheckable proof term

of intensional type theory (ITT). However, this result, investigated categorically by Hofmann in 1995, and

10 years later more syntactically by Oury, has never given rise to an effective translation. In this paper, we

provide the first syntactical translation from ETT to ITT with uniqueness of identity proofs and functional

extensionality. This translation has been defined and proven correct in Coq and yields an executable plugin

that translates a derivation in ETT into an actual Coq typing judgment. Additionally, we show how this result

is extended in the context of homotopy to a two-level type theory.

CCS Concepts: • Theory of computation → Logic; Proof theory; Constructive mathematics; Type
theory; Logic and verification; Automated reasoning;

Additional Key Words and Phrases: dependent types, translation, formalisation

ACM Reference Format:
Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau. 2018. Eliminating Reflection from Type Theory:

To the Legacy of Martin Hofmann. 1, 1 (July 2018), 27 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Type theories with equality reflection, such as extensional type theory (ETT), are convenient

theories in which to formalise mathematics, as they make it possible to consider provably equal

terms as convertible, as expressed in the following typing rule:

Γ ⊢x e : u =A v

Γ ⊢x u ≡ v : A

Here, the type u =A v is Martin-Löf’s identity type with only one constructor refl u : u =A u
which represents proofs of equality inside type theory, whereas u ≡ v : Ameans that u and v are

convertible in the theory—and can thus be silently replaced by one another in any term. Several

variants of ETT have been considered and implemented, for example in NuPRL [Allen et al. 2000]

and more recently in Andromeda [Bauer et al. 2016]. The prototypical example of the use of equality

Authors’ addresses: Théo Winterhalter, Gallinette Project-Team, Inria, Nantes, France, theo.winterhalter@inria.fr; Matthieu

Sozeau, Pi.R2 Project-Team, Inria and IRIF, Paris, France, matthieu.sozeau@inria.fr; Nicolas Tabareau, Gallinette Project-

Team, Inria, Nantes, France, nicolas.tabareau@inria.fr.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

XXXX-XXXX/2018/7-ART

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: July 2018.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

:2 Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau

reflection is the definition of a coercion function between two types A and B that are equal (but not

convertible) by taking a term of type A and simply returning it as a term of type B:

(λ (A B : Type) (e : A = B) (x : A). x) : Π(A B : Type).A = B → A→ B.

In intensional type theory (ITT), this term does not type-check because x of typeA can not be given

the type B by conversion. In ETT, however, equality reflection can be used to turn the witness of

equality into a proof of conversion and thus the type system validates the fact that x can be given

the type B. This means that one needs to guess equality proofs during type-checking, because the

witness of equality has been lost at the application of the reflection rule. Guessing it was not so hard

in this example but is in general undecidable, as one can for instance encode the halting problem

of any Turing machine as an equality in ETT. That is, the actual objects that can be checked in

ETT are not terms, but instead derivations of terms. It thus seems natural to wonder whether any

derivation of ETT can be translated into a typecheckable term of ITT. And indeed, it is well know

that one can find a corresponding term of the same type in ITT by explicitly transporting the term

x of type A using the elimination of internal equality on the witness of equality e , noted e∗:

λ (A B : Type) (e : A = B) (x : A) ⇒ e∗ x : Π(A B : Type).A = B → A→ B.

This can be seen as a way to make explicit the silent use of reflection. Furthermore, by making the

use of transport as economic as possible, the corresponding ITT term can be seen as a compact

witness of the derivation tree of the original ETT term.

This result has first been investigated categorically in the pioneering work of Hofmann [1995,

1997], by showing that the term model of ITT can be turned into a model of ETT by quotienting

this model with propositional equality. However, it is not clear how to extend this categorical

construction to an explicit and constructive translation from a derivation in ETT to a term of

ITT. In 2005, this result has been investigated more syntactically by Oury [2005]. However, his

presentation does not give rise to an effective translation and requires some additional axioms

in ITT, including one that has no clear motivation. By an effective translation we mean that it is

entirely constructive and can be used to deterministically compute the translation of a given ETT

typing derivation.

Contributions. In this paper, we present the first syntactical translation fromETT to ITT (assuming

uniqueness of identity proof (UIP) and function extensionality in ITT). By syntactical translation,

we mean an explicit translation from a derivation Γ ⊢x t : T of ETT (the x index testifies that it is a
derivation in ETT) to a context Γ′, term t ′ and type T ′ of ITT such that Γ′ ⊢ t ′ : T ′ in ITT. This

translation enjoys the additional property that if T can be typed in ITT, i.e., Γ ⊢ T , then T ′ ≡ T .
This means in particular that a theorem proven in ETT but whose statement is also valid in ITT

can be automatically transferred to a theorem of ITT. For instance, one could use a local extension
of the Coq proof assistant with a reflection rule, without being forced to rely on the reflection in

the entire development.

This translation can be seen as a way to build a syntactical model of ETT from a model of ITT as

described more generally in Boulier et al. [2017] and has been entirely programmed and formalised
1

in Coq [Coq development team 2017]. For this, we rely on TemplateCoq2 [Anand et al. 2018], which
provides a reifier for Coq terms as represented in Coq’s kernel as well as a formalisation of the

type system of Coq. Thus, our formalisation of ETT is just given by adding the reflection rule to a

subset of the original type system of Coq. This allows us to extract concrete Coq terms and types

1
https://github.com/TheoWinterhalter/ett-to-itt

2
https://template-coq.github.io/template-coq/

, Vol. 1, No. 1, Article . Publication date: July 2018.

https://github.com/TheoWinterhalter/ett-to-itt
https://template-coq.github.io/template-coq/

Eliminating Reflection from Type Theory :3

from a closed derivation of ETT, using a little trick to incorporate Inductive types and induction.

We do not treat cumulativity of universes which is an orthogonal feature of Coq’s type theory.

Outline of the Paper. Before going into the technical development of the translation, we explain its

main ingredients and differences with previous works. Then, in Section 2, we define the extensional

and intensional type theories we consider. In Section 3, we define the main ingredient of the

translation, which is a relation between terms of ETT and terms in ITT. Then, the translation is

given in Section 4. Section 5 describes the Coq formalisation and Sections 6 and 7 discuss limitations

and related work. The main proofs are given in detail in Appendices A and B.

The Coq formalisation is provided as an anonymous supplementary material.

On the Need for UIP and Functional Extensionality.
Our translation targets ITT plus UIP and functional extensionality, which correspond to the two

following axioms

UIP : Π(A : □i).Π(x y : A).Π(e e ′ : x = y). e = e ′

FunExt : Π(A B : □i).Π(f д : Π(x : A). B).(Π(x : A). f x = д x) → f = д

The first axiom says that any two proofs of the same equality are equal, and the other one says that

two (dependent) functions are equal whenever they are pointwise equal
3
. These two axioms are

perfectly valid statements of ITT and they can be proven in ETT. Indeed, UIP can be shown to be

equivalent to the Streicher’s axiom K

K : Π(A : □i).Π(x : A).Π(e : x = x). e = reflx

using the elimination on the identity type. But K is provable in ETT by considering the type

Π(A : □i).Π(x y : A).Π(e : x = y). e = reflx

which is well typed (using the reflection rule to show that e has type x = x) and which can be

inhabited by elimination of the identity type. In the same way, functional extensionality is provable

in ETT because

Π(x : A). f x = д x → x : A ⊢ f x ≡ д x by reflection

→ (λ(x : A). f x) ≡ (λ(x : A).д x) by congruence of ≡

→ f ≡ д by η-law
→ f = д

Therefore, applying our translation to the proofs of those theorems in ETT gives corresponding

proofs of the same theorems in ITT. However, UIP is independent from ITT, as first shown by

Hofmann and Streicher using the groupoid model [Hofmann and Streicher 1998], which has recently

been extended in the setting of univalent type theory using the simplicial or cubical models [Bezem

et al. 2013; Kapulkin and Lumsdaine 2012]. Similarly, Boulier et al. have shown that functional

extensionality is independent from ITT using a simple syntactical translation [Boulier et al. 2017].

Therefore, our translation provides proofs of axioms independent from ITT, which means that

the target of the translation already needs to have both UIP and functional extensionality. Part of

our work is to show formally that they are the only axioms required.

3
In Homotopy Type Theory (HoTT) [Univalent Foundations Program 2013], the functional extensionality axiom is stated

in a more complete way, using the notion of adjoint equivalences, but this more complete way collapses to our simpler

statement in presence of UIP.

, Vol. 1, No. 1, Article . Publication date: July 2018.

:4 Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau

Heterogeneous Equality and the Parametricity Translation.
The basic idea behind the translation from ETT to ITT is to interpret conversion using the internal

notion of equality, i.e., the identity type. But this means that two terms of two convertible types

that were comparable in ETT become comparable in ITT only up-to the equality between the two

types. One possible solution of this problem is to consider a native heterogeneous equality, such as

John Major equality introduced by McBride [2000]. However, to avoid adding additional axioms

to ITT like was done by Oury [2005], we prefer to encode this heterogeneous equality using the

following dependent sums:

t T �U u := Σ(p : T = U).p∗ t = u .

During the translation, the same term occurring twice can be translated in two different manners,

if the corresponding typing derivations are different. Even the types of the two different translations

may be different. However, we have the strong property that any two translations of the same

term only differ in places where transports of proof of equality have been injected. To keep track

of this property, we introduce the relation t ∼ t ′ between two terms of ITT, of possibly different

types. The crux of the proof of the translation is to guarantee that for every two terms t1 and t2
such that Γ ⊢ t1 : T1, Γ ⊢ t2 : T2 and t1 ∼ t2, there exists p such that Γ ⊢ p : t1 T1�T2 t2. However,
during the proof, variables of different but (propositionally) equal types are introduced and the

context cannot be maintained to be the same for both t1 and t2. Therefore, the translation needs to

keep track of this duplication of variables, plus a proof that they are heterogeneously equal. This

mechanism is similar to what happens in the (relational) internal parametricity translation in ITT

introduced by Bernardy et al. [2012] and recently rephrased in the setting of TemplateCoq [Anand

et al. 2018]. Namely, a context is not translated as a telescope of variables, but as a telescope of

triples consisting of two variables plus a witness that they are in the parametric relation. In our

setting, this amounts to consider telescope of triples consisting of two variables plus a witness that

they are heterogeneously equal. We can express this by considering the following dependent sums:

Pack A1 A2 := Σ(x : A1). Σ(y : A2). x A1
�A2

y.

This presentation inspired by the parametricity translation is crucial in order to get an effective

translation, because it is necessary to keep track of the evolution of contexts when doing the

translation on open terms. This ingredient is missing in Oury’s work [Oury 2005], which prevents

him from deducing an effective (i.e., constructive and computable) translation from his theorem.

2 DEFINITIONS OF EXTENSIONAL AND INTENSIONAL TYPE THEORIES
This section presents the common syntax, typing and main properties of ETT and ITT. Our type

theories feature a universe hierarchy, dependent products and sums as well as Martin Löf’s identity

types.

2.1 Syntax of ETT and ITT
The common syntax of ETT and ITT is given in Figure 1. It features: dependent products Π(x : A). B,
with (annotated) λ-abstractions and (annotated) applications, negative dependent sums Σ(x : A). B
with (annotated) projections, sorts □i , identity types u =A v with reflection and elimination

as well as terms realising UIP and functional extensionality. Annotating terms with otherwise

computationally irrelevant typing information is a common practice when studying the syntax

of type theory precisely (see [Streicher 1993] for a similar example). We will write A → B for

Π(_ : A). B the non-dependent product / function type.

We consider a fixed universe hierarchy without cumulativity, which ensures in particular unique-

ness of typing (2.2) which is important for the translation.

, Vol. 1, No. 1, Article . Publication date: July 2018.

Eliminating Reflection from Type Theory :5

s ::= □i (i ∈ N) sorts (universes)

T ,A,B, t ,u,v ::= x | λ(x : A).B.t | t @x :A.B u λ-terms

| ⟨u;v⟩x :A.B | πx :A.B
1

p | πx :A.B
2

p pair terms

| reflA u | J(A,u,x .e .P ,w,v,p) equality terms

| funext(x : A,B, f ,д, e) | uip(A,u,v,p,q) equality axioms

| s | Π(x : A). B | Σ(x : A). B | u =A v types

Γ,∆ ::= • | Γ,x : A contexts

Fig. 1. Syntax of ETT/ITT

About Annotations. Although it may look like a technical detail, the use of annotation is more

fundamental in ETT than it is in ITT (where it is irrelevant and doesn’t affect the theory). And this

is actually one of the main differences between our work (and that of Martin Hofmann [1995] who

has a similar presentation) and the work of Oury [2005].

Indeed, by using the standard model where types are interpreted as cardinals rather than sets,

it is possible to see that the equality nat→ nat = nat→ bool is independent from the theory, it

is thus possible to assume it (as an axiom, or for those that would still not be convinced, simply

under a λ that would introduce this equality). In that context, the identity map λ(x : nat). x can

be given the type nat→ bool and we thus type (λ(x : nat). x) 0 : bool. Moreover, the β-reduction
of the non-annotated system concludes that this expression reduces to 0 which cannot be given

the type bool (as we said, the equality nat → nat = nat → bool is independent from the theory,

so the context is consistent), meaning we lack subject reduction in this case (or uniqueness of

types, depending on how we see the issue). Our presentation has a blocked β-reduction limited

to matching annotations: (λ(x : A).B. t) @x :A.B u = t[x←u], from which subject reduction and

uniqueness of types follow.

We believe that it is this difference, in essence, that is responsible for Oury’s need for an extra

axiom. Indeed, he needs to assume the congruence rule for heterogeneous equality of applications,

which is not provable when formulated with John Major equality:

JMAPP

f1 ∀(x :U1).V1
�∀(x :U2).V2

f2 u1 U1
�U2

v2

f1 u1 V1[x←u1]�V2[x←u2] u2 v2

We can avoid using this congruence rule at the application case.

2.2 The Typing Systems
As usual in dependent type theory, we consider contexts which are telescopes whose declarations

may depend on any variable already introduced. We note Γ ⊢ t : A to say that t has type A in

context Γ. Γ ⊢ A shall stand for Γ ⊢ A : s for some sort s .
We use two relations (s, s ′) ∈ Ax (written (s, s ′) for short) and (s, s ′, s ′′) ∈ R (written (s, s ′, s ′′))

to constrain the sorts in the typing rules for universes, dependent products and dependent sums, as

is done in any Pure Type System (PTS). In our case, because we do not have cumulativity, the rules

are as follows:

(□i ,□i+1) ∈ Ax (□i ,□j ,□max(i, j)) ∈ R

We give the typing rules of ITT in Figure 2. The rules are standard and we do not explain them.

Let us just point out the conversion rule, which says that u : A can be given the type u : B when

, Vol. 1, No. 1, Article . Publication date: July 2018.

:6 Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau

Well-formedness of contexts.

⊢ •

⊢ Γ Γ ⊢ A

⊢ Γ,x : A
(x < Γ)

Types.

⊢ Γ

Γ ⊢ s : s ′
(s, s ′)

Γ ⊢ A : s Γ,x : A ⊢ B : s ′

Γ ⊢ Π(x : A). B : s ′′
(s, s ′, s ′′)

Γ ⊢ A : s Γ,x : A ⊢ B : s ′

Γ ⊢ Σ(x : A). B : s ′′
(s, s ′, s ′′)

Γ ⊢ A : s Γ ⊢ u : A Γ ⊢ v : A

Γ ⊢ u =A v : s

Structural rules.
⊢ Γ (x : A) ∈ Γ

Γ ⊢ x : A

Γ ⊢ u : A Γ ⊢ A ≡ B

Γ ⊢ u : B

λ-calculus terms.
Γ ⊢ A : s Γ,x : A ⊢ B : s ′ Γ,x : A ⊢ t : B

Γ ⊢ λ(x : A).B.t : Π(x : A). B

Γ ⊢ A : s Γ,x : A ⊢ B : s ′ Γ ⊢ t : Π(x : A). B Γ ⊢ u : A

Γ ⊢ t @x :A.B u : B[x←u]

Γ ⊢ u : A Γ ⊢ A : s Γ,x : A ⊢ B : s ′ Γ ⊢ v : B[x←u]

Γ ⊢ ⟨u;v⟩x :A.B : Σ(x : A). B

Γ ⊢ p : Σ(x : A). B

Γ ⊢ πx :A.B
1

p : A

Γ ⊢ p : Σ(x : A). B

Γ ⊢ πx :A.B
2

p : B[x←πx :A.B
1

p]

Equality terms.

Γ ⊢ A : s Γ ⊢ u : A

Γ ⊢ reflA u : u =A u

Γ ⊢ e1, e2 : u =A v

Γ ⊢ uip(A,u,v, e1, e2) : e1 = e2

Γ ⊢ A : s
Γ ⊢ u,v : A Γ,x : A, e : u =A x ⊢ P : s ′ Γ ⊢ p : u =A v Γ ⊢ w : P[x←u, e← reflA u]

Γ ⊢ J(A,u,x .e .P ,w,v,p) : P[x←v, e←p]

Γ ⊢ f ,д : Π(x : A). B Γ ⊢ e : Π(x : A). f @x :A.B x =B д@x :A.B x

Γ ⊢ funext(x : A,B, f ,д, e) : f = д

Fig. 2. Typing rules

, Vol. 1, No. 1, Article . Publication date: July 2018.

Eliminating Reflection from Type Theory :7

A ≡ B, i.e., when A and B are convertible. As the notion of conversion is central in our work—the

conversion of ETT being translated to an equality in ITT—we provide an exhaustive definition of

it, with computational conversion rules (including β-conversion or reduction of the elimination

principle of equality over reflexivity, see Figure 3) and congruence conversion rules (Figure 4).

Note that we use Christine Paulin-Möhring’s variant of the J rule rather than Martin-Löf’s original

formulation. Although pretty straightforward, being precise here is very important, as for instance

the congruence rule for λ-terms is the reason why functional extensionality is derivable in ETT.

Congruence of equality terms is a standard extension of congruence to the new principles we add

(UIP and functional extensionality).

ETT is thus simply an extension of ITT (we write ⊢x for the associated typing judgment) with

the reflection rule on equality, which axiomatises that propositionally equal terms are convertible:

Γ ⊢x e : u =A v

Γ ⊢x u ≡ v : A

Note that, as already mentioned, in the presence of reflection and J, UIP is derivable so we could

remove it from ETT, but keeping it allows us to share a common syntax which makes the statements

of theorems simpler and does not affect the development.

Computation.

Γ ⊢ A : s Γ,x : A ⊢ B : s ′ Γ,x : A ⊢ t : B Γ ⊢ u : A

Γ ⊢ (λ(x : A).B.t) @x :A.B u ≡ t[x←u] : B[x←u]

Γ ⊢ A : s Γ ⊢ u : A Γ,x : A, e : u =A x ⊢ P : s ′ Γ ⊢ w : P[x←u, e← reflA u]

Γ ⊢ J(A,u,x .e .P ,w,u, reflA u) ≡ w : P[x←u, e← reflA u]

Γ ⊢ A : s Γ ⊢ u : A Γ,x : A ⊢ B : s ′ Γ ⊢ v : B[x←u]

Γ ⊢ πx :A.B
1

⟨u;v⟩x :A.B ≡ u : A

Γ ⊢ A : s Γ ⊢ u : A Γ,x : A ⊢ B : s ′ Γ ⊢ v : B[x←u]

Γ ⊢ πx :A.B
2

⟨u;v⟩x :A.B ≡ v : B[x←u]

Equivalence relation.

Γ ⊢ u : A

Γ ⊢ u ≡ u : A

Γ ⊢ u ≡ v : A

Γ ⊢ v ≡ u : A

Γ ⊢ u ≡ v : A Γ ⊢ v ≡ w : A

Γ ⊢ u ≡ w : A

Conversion.
Γ ⊢ t1 ≡ t2 : T1 Γ ⊢ T1 ≡ T2

Γ ⊢ t1 ≡ t2 : T2

Fig. 3. Main conversion rules

2.3 General Properties of ITT and ETT
We now state the main properties of both ITT and ETT. We do not detail their proof as they are

standard and can be found in the Coq formalisation.

First, although not explicit in the typing system, weakening is admissible in ETT and ITT.

, Vol. 1, No. 1, Article . Publication date: July 2018.

:8 Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau

Congruence of type constructors.

Γ ⊢ A1 ≡ A2 : s Γ,x : A1 ⊢ B1 ≡ B2 : s
′

Γ ⊢ Π(x : A1). B1 ≡ Π(x : A2). B2 : s
′′

(s, s ′, s ′′)

Γ ⊢ A1 ≡ A2 : s Γ,x : A1 ⊢ B1 ≡ B2 : s
′

Γ ⊢ Σ(x : A1). B1 ≡ Σ(x : A2). B2 : s
′′

(s, s ′, s ′′)

Γ ⊢ A1 ≡ A2 : s Γ ⊢ u1 ≡ u2 : A1 Γ ⊢ v1 ≡ v2 : A1

Γ ⊢ u1 =A1
v1 ≡ u2 =A2

v2 : s

Congruence of λ-calculus terms.

Γ ⊢ A1 ≡ A2 : s Γ,x : A1 ⊢ B1 ≡ B2 : s
′ Γ,x : A1 ⊢ t1 ≡ t2 : B1

Γ ⊢ λ(x : A1).B1.t1 ≡ λ(x : A2).B2.t2 : Π(x : A1). B1

Γ ⊢ A1 ≡ A2 : s Γ,x : A1 ⊢ B1 ≡ B2 : s
′ Γ ⊢ t1 ≡ t2 : Π(x : A1). B1 Γ ⊢ u1 ≡ u2 : A1

Γ ⊢ t1 @x :A1 .B1
u1 ≡ t1 @x :A1 .B1

u1 : B1[x←u1]

Γ ⊢ A1 ≡ A2 : s Γ ⊢ u1 ≡ u2 : A1 Γ,x : A1 ⊢ B1 ≡ B2 : s
′ Γ ⊢ v1 ≡ v2 : B1[x←u1]

Γ ⊢ ⟨u1;v1⟩x :A1 .B1
≡ ⟨u2;v2⟩x :A2 .B2

: Σ(x : A1). B1

Γ ⊢ A1 ≡ A2 : s Γ,x : A1 ⊢ B1 ≡ B2 : s
′ Γ ⊢ p1 ≡ p2 : Σ(x : A1). B1

Γ ⊢ πx :A1 .B1

1
p1 ≡ πx :A2 .B2

1
p2 : A1

Γ ⊢ A1 ≡ A2 : s Γ,x : A1 ⊢ B1 ≡ B2 : s
′ Γ ⊢ p1 ≡ p2 : Σ(x : A1). B1

Γ ⊢ πx :A1 .B1

2
p1 ≡ πx :A2 .B2

2
p2 : B1[x←πx :A1 .B1

1
p1]

Congruence of equality terms.

Γ ⊢ A1 ≡ A2 : s Γ ⊢ u1 ≡ u2 : A

Γ ⊢ reflA1
u1 ≡ reflA2

u2 : u1 =A1
u1

Γ ⊢ A1 ≡ A2 : s Γ ⊢ u1 ≡ u2 : A1 Γ ⊢ v1 ≡ v2 : A1 Γ,x : A1, e : u1 =A1
x ⊢ P1 ≡ P2 : s

′

Γ ⊢ p1 ≡ p2 : u1 =A1
v1 Γ ⊢ w1 ≡ w2 : P1[x←u1, e← reflA1

u1]

Γ ⊢ J(A1,u1,x .e .P1,w1,v1,p1) ≡ J(A2,u2,x .e .P2,w2,v2,p2) : P[x←v1, e←p1]

Γ ⊢ A1 ≡ A2 : s Γ,x : A1 ⊢ B1 ≡ B2 : s
′ Γ ⊢ f1 ≡ f2 : Π(x : A1). B1

Γ ⊢ д1 ≡ д2 : Π(x : A1). B1 Γ ⊢ e1 ≡ e2 : Π(x : A1). f1 @x :A1 .B1
x =B1

д1 @x :A1 .B1
x

Γ ⊢ funext(x : A1,B1, f1,д1, e1) ≡ funext(x : A2,B2, f2,д2, e2) : f1 = д1

Γ ⊢ A1 ≡ A2

Γ ⊢ u1 ≡ u2 : A1 Γ ⊢ v1 ≡ v2 : A2 Γ ⊢ p1 ≡ p2 : u1 =A1
v1 Γ ⊢ q1 ≡ q2 : u1 =A1

v1

Γ ⊢ uip(A1,u1,v1,p1,q1) ≡ uip(A2,u2,v2,p2,q2) : p1 = q1

Fig. 4. Congruence rules

, Vol. 1, No. 1, Article . Publication date: July 2018.

Eliminating Reflection from Type Theory :9

Lemma 2.1 (Weakening). If Γ ⊢ J and ∆ extends Γ (possibly interleaving variables) then ∆ ⊢ J .

Then, as mentioned above, the use of a non-cumulative hierarchy allows us to prove that a term

t can be given at most one type in a context Γ, up-to conversion.

Lemma 2.2 (Uniqeness of typing). If Γ ⊢ u : T1 and Γ ⊢ u : T2 then Γ ⊢ T1 ≡ T2.

Finally, an important property of the typing system (seen as a mutual inductive definition) is the

possibility to deduce hypotheses from their conclusion, thanks to inversion of typing. Note that

it is important here that our syntax is annotated for applications and projections as it provides a

richer inversion principle.

Lemma 2.3 (Inversion of typing).

(1) If Γ ⊢ x : T then (x : A) ∈ Γ and Γ ⊢ A ≡ T .
(2) If Γ ⊢ □i : T then Γ ⊢ □i+1 ≡ T .
(3) If Γ ⊢ Π(x : A). B : T then Γ ⊢ A : s and Γ,x : A ⊢ B : s ′ and Γ ⊢ s ′′ ≡ T for some (s, s ′, s ′′).
(4) If Γ ⊢ λ(x : A).B.t : T then Γ ⊢ A : s and Γ,x : A ⊢ B : s ′ and Γ,x : A ⊢ t : B and

Γ ⊢ Π(x : A). B ≡ T .
(5) If Γ ⊢ u @x :A.B v : T then Γ ⊢ A : s and Γ,x : A ⊢ B : s ′ and Γ ⊢ u : Π(x : A). B and Γ ⊢ v : A

and Γ ⊢ B[x←u] ≡ T .
(6) . . . Analogous for the remaining term and type constructors.

Proof. Each case is proven by induction on the derivation (which corresponds to any number

of applications of the conversion rule following one introduction rule). □

3 RELATING TRANSLATED EXPRESSIONS
We want to define a relation on terms that equates two terms that are the same up to transport.

This begs the question of what notion of transport is going to be used. Transport can be defined

from elimination of equality as follows:

Definition 3.1 (Transport). Given Γ ⊢ p : T1 =s T2 and Γ ⊢ t : T1 we define the transport of t along
p, written p∗ t , as J(s,T1,X .e . T1 → X , λ(x : T1).T1.x ,T2,p) @T1 .T2 t such that Γ ⊢ p∗ t : T2.

However, in order not to confuse the transports added by the translation with the transports that

were already present in the source, we consider p∗ as part of the syntax in the reasoning. It will be

unfolded to its definition only after the complete translation is performed. This idea is not novel as

Hofmann already had a Subst operator that was part of his ITT (noted TTI in his paper [Hofmann

1995]).

We first define the (purely syntactic) relation ⊏ between ETT terms and ITT terms in Figure 5

stating that the ITT term is simply a decoration of the first term by transports. Its purpose is to

state how close to the original term its translation is. Then, in Figure 6 we extend this relation to ∼

that is meant to deal with two ITT terms (basically ∼ = (⊐ · ⊏)∗). We remark easily that whenever

t ⊏ t we also have t ∼ t .
The goal is to prove that two terms in this relation, that are well-typed in the target type

theory, are heterogeneously equal. As for this notion, we recall the definition we previously gave:

t T �U u := Σ(p : T = U).p∗ t = u. This definition of heterogeneous equality can be shown to be

reflexive, symmetric and transitive. Because of UIP, heterogeneous equality collapses to equality

when taken on the same type.

Lemma 3.2. If Γ ⊢ e : u A�A v then there exists p such that Γ ⊢ p : u =A v .

Proof. This holds thanks to UIP on equality, which implies K, and so the proof of A = A can be

taken to be reflexivity. □

, Vol. 1, No. 1, Article . Publication date: July 2018.

:10 Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau

t1 ⊏ t2

t1 ⊏ p∗ t2

x ⊏ x

A1 ⊏ A2 B1 ⊏ B2

Π(x : A1). B1 ⊏ Π(x : A2). B2

A1 ⊏ A2 B1 ⊏ B2

Σ(x : A1). B1 ⊏ Σ(x : A2). B2

A1 ⊏ A2 u1 ⊏ u2 v1 ⊏ v2

u1 =A1
v1 ⊏ u2 =A2

v2 s ⊏ s

A1 ⊏ A2 B1 ⊏ B2 t1 ⊏ t2

λ(x : A1).B1.t1 ⊏ λ(x : A2).B2.t2

t1 ⊏ t2 A1 ⊏ A2 B1 ⊏ B2 u1 ⊏ u2

t1 @x :A1 .B1
u1 ⊏ t2 @x :A2 .B2

u2

A1 ⊏ A2 B1 ⊏ B2 t1 ⊏ t2 u1 ⊏ u2

⟨t1;u1⟩x :A1 .B1
⊏ ⟨t2;u2⟩x :A2 .B2

A1 ⊏ A2 B1 ⊏ B2 p1 ⊏ p2

πx :A1 .B1

1
p1 ⊏ πx :A2 .B1

1
p2

A1 ⊏ A2 B1 ⊏ B2 p1 ⊏ p2

πx :A1 .B1

2
p1 ⊏ πx :A2 .B2

2
p2

A1 ⊏ A2 u1 ⊏ u2

reflA1
u1 ⊏ reflA2

u2

A1 ⊏ A2 B1 ⊏ B2 f1 ⊏ f2 д1 ⊏ д2 e1 ⊏ e2

funext(x : A1,B1, f1,д1, e1) ⊏ funext(x : A2,B2, f2,д2, e2)

A1 ⊏ A2 u1 ⊏ u2 v1 ⊏ v2 p1 ⊏ p2 q1 ⊏ q2

uip(A1,u1,v1,p1,q1) ⊏ uip(A2,u2,v2,p2,q2)

A1 ⊏ A2 u1 ⊏ u2 P1 ⊏ P2 w1 ⊏ w2 v1 ⊏ v2 p1 ⊏ p2

J(A1,u1,x .e .P1,w1,v1,p1) ⊏ J(A2,u2,x .e .P2,w2,v2,p2)

Fig. 5. Relation ⊏

Note. In particular, � on types corresponds to equality. This is not as trivial as it sounds, one might
be concerned about what happens if we have Γ ⊢ e : A s�s ′ B with two distinct sorts s and s ′. We
would thus have s = s ′, however, for this to be well-typed, we need to give a common type to s and s ′,
which can only be achieved if s and s ′ are actually the same sort.

Before we can prove the fundamental lemma stating that two terms in relation are heteroge-

neously equal, we need to consider another construction. As explained in the introduction, when

proving the property by induction on terms, we introduce variables in the context that are equal

only up-to heterogeneous equality. This phenomenon is similar to what happens in the para-

metricity translation [Bernardy et al. 2012]. Our fundamental lemma on the decoration relation ∼

assumes two related terms of potentially different types T1 and T2 to produce an heterogeneous

equality between them. For induction to go through under binders (e.g. for dependent products

and abstractions), we hence need to consider the two terms under different, but heterogeneously

equal contexts. Therefore, the context we produce will not only be a telescope of variables, but

rather a telescope of triples consisting of two variables of possibly different types, and a witness

that they are heterogeneously equal. To make this precise, we define the following macro:

Pack A1 A2 := Σ(x : A1). Σ(y : A2). x � y

, Vol. 1, No. 1, Article . Publication date: July 2018.

Eliminating Reflection from Type Theory :11

x ∼ x

t1 ∼ t2

p∗ t1 ∼ t2

t1 ∼ t2

t1 ∼ p∗ t2

A1 ∼ A2 B1 ∼ B2

Π(x : A1). B1 ∼ Π(x : A2). B2

A1 ∼ A2 B1 ∼ B2

Σ(x : A1). B1 ∼ Σ(x : A2). B2

A1 ∼ A2 u1 ∼ u2 v1 ∼ v2

u1 =A1
v1 ∼ u2 =A2

v2 s ∼ s

A1 ∼ A2 B1 ∼ B2 t1 ∼ t2

λ(x : A1).B1.t1 ∼ λ(x : A2).B2.t2

t1 ∼ t2 A1 ∼ A2 B1 ∼ B2 u1 ∼ u2

t1 @x :A1 .B1
u1 ∼ t2 @x :A2 .B2

u2

A1 ∼ A2 B1 ∼ B2 t1 ∼ t2 u1 ∼ u2

⟨t1;u1⟩x :A1 .B1
∼ ⟨t2;u2⟩x :A2 .B2

A1 ∼ A2 B1 ∼ B2 p1 ∼ p2

πx :A1 .B1

1
p1 ∼ πx :A2 .B1

1
p2

A1 ∼ A2 B1 ∼ B2 p1 ∼ p2

πx :A1 .B1

2
p1 ∼ πx :A2 .B2

2
p2

A1 ∼ A2 u1 ∼ u2

reflA1
u1 ∼ reflA2

u2

A1 ∼ A2 B1 ∼ B2 f1 ∼ f2 д1 ∼ д2 e1 ∼ e2

funext(x : A1,B1, f1,д1, e1) ∼ funext(x : A2,B2, f2,д2, e2)

A1 ∼ A2 u1 ∼ u2 v1 ∼ v2 p1 ∼ p2 q1 ∼ q2

uip(A1,u1,v1,p1,q1) ∼ uip(A2,u2,v2,p2,q2)

A1 ∼ A2 u1 ∼ u2 P1 ∼ P2 w1 ∼ w2 v1 ∼ v2 p1 ∼ p2

J(A1,u1,x .e .P1,w1,v1,p1) ∼ J(A2,u2,x .e .P2,w2,v2,p2)

Fig. 6. Relation ∼

together with its projections

Proj
1
p := π .

1
p Proj

2
p := π .

1
π .
2
p Proje p := π .

2
π .
2
p.

We can then extend this notion canonically to contexts of the same length that are well formed

using the same sorts:

Pack (Γ1,x : A1) (Γ2,x : A2) := (Pack Γ1 Γ2),x : Pack (A1[γ1]) (A2[γ2]) Pack • • := •.

When we pack contexts, we also need to apply the correct projections for the types in that context

to still make sense. Assuming two contexts Γ1 and Γ2 of the same length, we can define left and

right substitutions: γ1 := [x ← Proj
1
x | (x : _) ∈ Γ1] and γ2 := [x ← Proj

2
x | (x : _) ∈ Γ2]. These

substitutions implement lifting of terms to packed contexts: Γ,Pack Γ1 Γ2 ⊢ t[γ1] : A[γ1] whenever
Γ, Γ1 ⊢ t : A (resp. Γ,Pack Γ1 Γ2 ⊢ t[γ2] : A[γ2] whenever Γ, Γ2 ⊢ t : A).
For readability, when Γ1 and Γ2 are understood we will write Γp for Pack Γ1 Γ2.
Implicitly, whenever we use the notation Pack Γ1 Γ2 it means that the two contexts are of the

same length and well-formed with the same sorts. We can now state the fundamental lemma.

Lemma 3.3 (Fundamental lemma). Let t1 and t2 be two terms. If Γ, Γ1 ⊢ t1 : T1 and Γ, Γ2 ⊢ t2 : T2
and t1 ∼ t2 then there exists p such that Γ,Pack Γ1 Γ2 ⊢ p : t1[γ1] T1[γ1]�T2[γ2] t2[γ2].

, Vol. 1, No. 1, Article . Publication date: July 2018.

:12 Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau

Proof. The proof is by induction on the derivation of t1 ∼ t2. It is given in Appendix A. □

We can also prove that ∼ preserves substitution and is an equivalence relation.

Lemma 3.4. If t1 ∼ t2 and u1 ∼ u2 then t1[x←u1] ∼ t2[x←u2].

Proof. We proceed by induction on the derivation of t1 ∼ t2. □

Lemma 3.5 (∼ is an eqivalence relation). ∼ is reflexive, symmetric and transitive.

Proof. By induction on the derivation. □

4 TRANSLATING ETT TO ITT
4.1 The Translation
We now define the translations (let us stress the plural here) of an extensional judgment. We extend

⊏ canonically to contexts (Γ ⊏ Γ when they bind the same variables and the types are in relation

for ⊏).
Before defining the translation, we define a set JΓ ⊢x t : AK of typing judgments in ITT associated

to a typing judgment Γ ⊢x t : A in ETT. The idea is that this set describes all the possible translations

that lead to the expected property. When Γ ⊢ t : A ∈ JΓ ⊢x t : AK, we say that Γ ⊢ t : A realises

Γ ⊢x t : A. The translation will be given by showing that this set is inhabited by induction on the

derivation.

Definition 4.1 (Characterisation of possible translations).
• For any ⊢x Γ we define J⊢x ΓK as a set of valid judgments (in ITT) such that ⊢ Γ ∈ J⊢x ΓK if
and only if Γ ⊏ Γ.

• Similarly, Γ ⊢ t : A ∈ JΓ ⊢x t : AK iff ⊢ Γ ∈ J⊢x ΓK and A ⊏ A and t ⊏ t .

In order to better master the shape of the produced realiser, we state the following lemma which

shows that it has the same head type constructor as the type it realises. This is important for

instance for the case of an application, where we do not know a priori if the translated function

has a dependent product type, which is required to be able to use the typing rule for application.

Lemma 4.2. We can always choose types T that have the same head constructor as T .

Proof. Assume we have Γ ⊢ t : T ∈ JΓ ⊢x t : T K. By definition of ⊏, T ⊏ T means that T

is shaped p∗ q∗ ... r∗ T
′
with T

′
having the same head constructor as T . By inversion (2.3), the

subterms are typable, including T
′
. Actually, from inversion, we even get that the type of T

′
is

a universe. Then, using lemma 3.3 and lemma 3.2, we get Γ ⊢ e : T = T
′
. We conclude with

Γ ⊢ e∗ t : T
′
∈ JΓ ⊢x t : T K. □

Finally, in order for the induction to go through, we need to know that when we have a realiser

of a derivation Γ ⊢x t : T , we can pick an arbitrary other type realising Γ ⊢x T and still get a new

derivation realising Γ ⊢x t : T with that type. This is important for instance for the case of an

application, where the type of the domain of the translated function may differ from the type of

the translated argument. So we need to be able to change it a posteriori.

Lemma 4.3. When we have Γ ⊢ t : T ∈ JΓ ⊢x t : T K and Γ ⊢ T
′
∈ JΓ ⊢x T K then we also have

Γ ⊢ t
′
: T
′
∈ JΓ ⊢x t : T K for some t ′.

Proof. By definition we have T ⊏ T and T ⊏ T
′
and thus T ∼ T and T ∼ T

′
, implying T ∼ T

′

by transitivity (3.5). By lemma 3.3 (in the case Γ1 ≡ Γ2 ≡ •) we get Γ ⊢ p : T � T
′
for some p. By

, Vol. 1, No. 1, Article . Publication date: July 2018.

Eliminating Reflection from Type Theory :13

lemma 3.2 (and lemma 4.2 to give universes as types to T and T
′
) we can assume Γ ⊢ p : T = T

′
.

Then Γ ⊢ p∗ t : T
′
is still a translation since ⊏ ignores transports. □

We can now define the translation. This is done by mutual induction on context well-formedness,

typing and conversion derivations. Indeed, in order to be able to produce a realiser by induction,

we need to show that every conversion in ETT is translated as an heterogeneous equality in ITT.

Theorem 4.4 (Translation).

• If ⊢x Γ then there exists ⊢ Γ ∈ J⊢x ΓK,
• If Γ ⊢x t : T then for any ⊢ Γ ∈ J⊢x ΓK there exist t and T such that Γ ⊢ t : T ∈ JΓ ⊢x t : T K,
• If Γ ⊢x u ≡ v : A then for any ⊢ Γ ∈ J⊢x ΓK there exist A ⊏ A,A ⊏ A

′
,u ⊏ u,v ⊏ v and e such

that Γ ⊢ e : u A�A′ v .

Proof. We prove the theorem by induction on the derivation in the extensional type theory. To

keep the flow of the presentation, the proof is given in Appendix B. □

4.2 Meta-theoretical Consequences
We can check that all ETT theorems whose type are typable in ITT have proofs in ITT as well:

Corollary 4.5 (Preservation of ITT). If ⊢x t : T and ⊢ T then there exist t such that ⊢ t : T ∈
J⊢x t : T K.

Proof. Since ⊢ • ∈ J⊢x •K, by Theorem (4.4), there exists t and T such that ⊢ t : T ∈ J⊢x t : T K
But as ⊢ T , we have ⊢ T ∈ J⊢x T K, and, using Lemma 4.3, we obtain ⊢ t : T ∈ J⊢x t : T K. □

Corollary 4.6 (Relative consistency). Assuming ITT is consistent, there is no term t such that
⊢x t : Π(A : □0).A.

Proof. Assume such a t exists. By the Corollary 4.5, because ⊢ Π(A : □0).A, there exists t such
that ⊢ t : Π(A : □0).A which contradicts the assumed consistency of ITT. □

4.3 Optimisations
Up until now, we remained silent about one thing: the size of the translated terms. Indeed, the

translated term is a decoration of the initial one by transports which appear in many locations. For

example, at each application we use a transport by lemma 4.2 to ensure that the term in function

position is given a function type. In most cases—in particular when translating ITT terms—this

produces unnecessary transports (often by reflexivity) that we wish to avoid.

In order to limit the size explosion, in the above we use a different version of transport, namely

transport′ such that

transport′A1,A2

(p, t) = t when A1 =α A2

= p∗t otherwise.

The idea is that we avoid trivially unnecessary transports (we do not deal with β-conversion for

instance). We extend this technique to the different constructors of equality (symmetry, transitivity,

. . .) so that they reduce to reflexivity whenever possible. Take transitivity for instance:

transitivity′(refl u,q) = q

transitivity′(p, refl u) = p

transitivity′(p,q) = transitivity(p,q).

We show these defined terms enjoy the same typing rules as their counterparts and use them instead.

In practice it is enough to recover the exact same term when it is typed in ITT.

, Vol. 1, No. 1, Article . Publication date: July 2018.

:14 Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau

5 FORMALISATIONWITH TEMPLATE-COQ
We have formalised the translation (provided as an anonymous supplementary material) in the

setting of TemplateCoq [Anand et al. 2018] in order to have amore precise proof, but also to evidence

the fact that the translation is indeed constructive and can be used to perform computations.

TemplateCoq is a Coq library that has a representation of Coq terms as they are in Coq kernel

(in particular using de Bruijn indices for variables), a (partial) implementation of the type checking

algorithm and so on. It comes with a Coq plugin that permits to quote Coq terms into their

representations, and to produce Coq terms from their representation (if they indeed denote well-

typed terms). We have integrated our formalisation within that framework in order to ensure our

presentations of ETT and ITT are close to Coq, but also to take advantage of the quoting mechanism

to produce terms using interactive mode (in particular we get to use tactics). Note that we also

rely on Mangin and Sozeau’s Equations [Sozeau 2010] plugin to derive nice dependent induction

principles.

Our formalisation takes full advantage of its easy interfacing with TemplateCoq: we define two
theories, namely ETT and ITT, but ITT enjoys a lot of syntactic sugar by having things such as

transport, heterogeneous equality and packing as part of the syntax. The operations regarding

these constructors—in particular the tedious ones—are written in Coq and then quoted to finally be

realised in the translation from ITT to TemplateCoq.

Interoperability with TemplateCoq. The translation we define from ITT to TemplateCoq is not

proven correct, but it is not really important as it can just be seen as a feature to observe the produced

terms in a nicer setting. In any case, TemplateCoq does not yet provide a complete formalisation

of CIC rules, as guard checking of recursive definitions and strict positivity of inductive type

declarations are not formalised yet.

We also provide a translation from TemplateCoq to ETT that we will describe more extensively

with the examples (5.4).

5.1 Quick Overview of the Formalisation
The file SAst.v contains the definition of the (common) abstract syntax of ETT and ITT in the

form of an inductive definition with de Bruijn indices for variables (like in TemplateCoq). Sorts are
defined separately in Sorts.v and we will address them later in Section 5.3.

Inductive sterm : Type :=
| sRel (n : nat)
| sSort (s : sort)
| sProd (nx : name) (A B : sterm)
| sLambda (nx : name) (A B t : sterm)
| sApp (u : sterm) (nx : name) (A B v : sterm)
| sEq (A u v : sterm)
| sRefl (A u : sterm)
| (* ... *) .

The files ITyping.v and XTyping.v define respectively the typing judgments for ITT and ETT,

using mutual inductive types. Then, most of the files are focused on the meta-theory of ITT and

can be ignored by readers who don’t need to see yet another proof of subject reduction.

The most interesting files are obviously those where the fundamental lemma and the translation

are formalised: FundamentalLemma.v and Translation.v. For instance, here is the main theorem, as

stated in our formalisation:

Theorem complete_translation Σ :
type_glob Σ ->

, Vol. 1, No. 1, Article . Publication date: July 2018.

https://github.com/TheoWinterhalter/ett-to-itt/blob/master/theories/SAst.v
https://github.com/TheoWinterhalter/ett-to-itt/blob/master/theories/Sorts.v
https://github.com/TheoWinterhalter/ett-to-itt/blob/master/theories/ITyping.v
https://github.com/TheoWinterhalter/ett-to-itt/blob/master/theories/XTyping.v
https://github.com/TheoWinterhalter/ett-to-itt/blob/master/theories/FundamentalLemma.v
https://github.com/TheoWinterhalter/ett-to-itt/blob/master/theories/Translation.v

Eliminating Reflection from Type Theory :15

(forall Γ (h : XTyping.wf Σ Γ),
∑
Γ', Σ |--i Γ' # J Γ K) *

(forall Γ t A (h : Σ ;;; Γ |-x t : A) Γ' (hΓ : Σ |--i Γ' # J Γ K),∑
A' t', Σ ;;;; Γ' |--- [t'] : A' # J Γ |--- [t] : A K) *

(forall Γ u v A (h : Σ ;;; Γ |-x u = v : A) Γ' (hΓ : Σ |--i Γ' # J Γ K),∑
A' A'' u' v' p', eqtrans Σ Γ A u v Γ' A' A'' u' v' p').

The fact that the theorem holds in Coq ensures we can actually compute a translated term and

type out of a derivation in ETT.

5.2 Inductive Types and Recursion
In the proof of Section 4, we didn’t mention anything about inductive types, pattern-matching or

recursion as it is a bit technical on paper. In the formalisation, we offer a way to still be able to use

them, and we will even show how it works in practice with the examples (5.4).

The main guiding principle is that inductive types and induction are orthogonal to the translation,

they should more or less be translated to themselves. To realise that easily, we just treat an inductive

definition as a way to introduce new constants in the theory, one for the type, one for each

constructor, one for its elimination principle, and one equality per computation rule. For instance,

the natural numbers can be represented by having the following constants in the context:

nat : Type

0 : nat

S : nat→ nat

natrec : ∀P , P 0→ (∀m, P m → P (Sm)) → ∀n, P n

natrec0 : ∀P Pz Ps , natrec P Pz Ps 0 = Pz

natrecS : ∀P Pz Ps n, natrec P Pz Ps (S n) = Ps n (natrec P Pz Ps n)

Here we rely on the reflection rule to obtain the computational behavior of the eliminator natrec.
This means for instance that we do not consider inductive types that would only make sense in

ETT, but we deem this not to be a restriction and to the best of our knowledge isn’t something that

is usually considered in the literature. With that in mind, our translation features a global context

of typed constants with the restriction that the types of those constants should be well-formed in

ITT. Those constants are thus used as black boxes inside ETT.

With this we are able to recover what we were missing from Coq, without having to deal with

the trouble of proving that the translation doesn’t break the guard condition of fixed points, and

we are instead relying on a more type-based approach.

5.3 About Universes and Homotopy
The experienced reader might have noticed that our treatment of universes (except perhaps for the

absence of cumulativity) was really superficial and the notion of sorts used is rather orthogonal

to our main development. This is even more apparent in the formalisation. Indeed, we didn’t

fix a specific universe hierarchy, but instead specify what properties it should have, in what is

reminiscent to a (functional
4
) PTS formulation.

Class Sorts.notion := {
sort : Type ;
succ : sort -> sort ;
prod_sort : sort -> sort -> sort ;
sum_sort : sort -> sort -> sort ;

4
Meaning the sort of a sort, and the sort of a product are functions, necessary to the uniqueness of types (2.2).

, Vol. 1, No. 1, Article . Publication date: July 2018.

:16 Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau

eq_sort : sort -> sort ;
eq_dec : forall s z : sort, {s = z} + {s <> z} ;
succ_inj : forall s z, succ s = succ z -> s = z

}.

From the notion of sorts, we require functions to get the sort of a sort, the sort of a product from

the sorts of its arguments, and (crucially) the sort of an identity type. We also require some measure

of decidable equality and injectivity on those.

This allows us to instantiate this by a lot of different notions including the one presented earlier in

the paper or even its extension with a universe Prop of propositions (like CIC [Bertot and Castéran

2004]). We present here two instances that have their own interest.

Type in Type. One of the instances we provide is one with only one universe Type, with the

inconsistent typing rule Type : Type. Although inconsistent, this allows us to interface with

TemplateCoq, without the—for the time being—very time-consuming universe constraint checking.

Homotopy Type System and Two-Level Type Theory. Another interesting application (or rather

instance) of our formalisation is a translation from Homotopy Type System (HTS) [Voevodsky

2013] to Two-Level Type Theory (2TT) [Altenkirch et al. 2016; Annenkov et al. 2017].

HTS and 2TT arise from the incompatibility between UIP—recall it is provable in ETT—and

univalence. The idea is to have two distinct notions of equality in the theory, a strict one satisfying
UIP, and a fibrant one corresponding to the homotopy type theory equality, possibly satisfying

univalence. This actually induces a separation in the types of the theory: some of them are called

fibrant and the fibrant or homotopic equality can only be eliminated on those. HTS can be seen as

an extension of 2TT with reflection on the strict equality just like ETT is an extension of ITT.

We can recover HTS and 2TT in our setting by taking Fi and Ui as respectively the fibrant and

strict universes of those theories (for i ∈ N), along with the following PTS rules:

(Fi , Fi+1) ∈ Ax

(Ui ,Ui+1) ∈ Ax

(Fi , Fj , Fmax(i, j)) ∈ R

(Fi ,Uj ,Umax(i, j)) ∈ R

(Ui , Fj ,Umax(i, j)) ∈ R

(Ui ,Uj ,Umax(i, j)) ∈ R

and the fact that the sort of the (strict) identity type on A : s is the strictified version of s , i.e., Ui for

s = Ui or s = Fi . In order to have the fibrant equality, one simply needs to do as in Section 5.2.

In short, the translation from HTS to 2TT is basically the same as the one from ETT to ITT we

presented in this paper, and this fact is factorised through our formalisation.

5.4 Examples
In this section, we show our translation in action with some small examples (the main problem

usually being the generation of the tedious ETT typing derivation). This, we believe, already

illustrates how it can be used in practice. The examples can be found in Example.v.

Identity with a Coercion. We will detail extensively a first, self-contained example without any

inductive types or recursion, illustrating a very simple case of reflection. The term we would like

to type is the following:

λ A B e x ⇒ x : ∀ (A B : Type), A = B → A→ B

, Vol. 1, No. 1, Article . Publication date: July 2018.

https://github.com/TheoWinterhalter/ett-to-itt/blob/master/theories/Example.v

Eliminating Reflection from Type Theory :17

This is, in some sense the identity, relying on the equality e : A = B to convert x : A to x : B. Of
course, this definition isn’t accepted in Coq because the conversion doesn’t hold in ITT.

Fail Definition pseudoid (A B : Type) (e : A = B) (x : A) : B := x.

However, we still want to be able to write it in some way, in order to avoid manipulating de Bruijn

indices directly. For this, we use a little trick by first defining a Coq axiom to represent an ill-typed

term:

Axiom candidate : forall A B (t : A), B.

candidate A B t is a candidate t of type A to inhabit type B. We complete this by adding a notation

that is reminiscent to Agda’s [Norell 2007] hole mechanism.

Notation "'{!' t '!}'" := (candidate _ _ t).

We can now write the ETT function within Coq.
Definition pseudoid (A B : Type) (e : A = B) (x : A) : B := {! x !}.

We can then quote the term and its type to TemplateCoq thanks to the Quote Definition command

provided by the plugin.

Quote Definition pseudoid_term :=
ltac:(let t := eval compute in pseudoid in exact t).

Quote Definition pseudoid_type :=
ltac:(let T := type of pseudoid in exact T).

The terms that we get are now TemplateCoq terms, representing Coq syntax. We need to put

them in ETT, meaning adding the annotations, and also removing the candidate axiom. This is the

purpose of the fullquote function that we provide in our formalisation.

Definition pretm_pseudoid :=
Eval lazy in fullquote (2 ^ 18) Σ [] pseudoid_term empty empty nomap.

Definition tm_pseudoid :=
Eval lazy in
match pretm_pseudoid with
| Success t => t
| Error _ => sRel 0
end.

Definition prety_pseudoid :=
Eval lazy in fullquote (2 ^ 18) Σ [] pseudoid_type empty empty nomap.

Definition ty_pseudoid :=
Eval lazy in
match prety_pseudoid with
| Success t => t
| Error _ => sRel 0
end.

tm_pseudoid and ty_pseudoid correspond respectively to the ETT representation of pseudoid and

its type. We then produce, using our home-brewed Ltac type-checking tactic, the corresponding

ETT typing derivation (notice the use of reflection to typecheck).

Lemma type_pseudoid : Σi ;;; [] |-x tm_pseudoid : ty_pseudoid.
Proof.

unfold tm_pseudoid, ty_pseudoid.
ettcheck. cbn.
eapply reflection with (e := sRel 1).
ettcheck.

Defined.

, Vol. 1, No. 1, Article . Publication date: July 2018.

:18 Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau

We can then translate this derivation, obtain the translated term and then convert it to TemplateCoq.
Definition itt_pseudoid : sterm :=

Eval lazy in
let '(_ ; t ; _) := type_translation type_pseudoid istrans_nil in t.

Definition tc_pseudoid : tsl_result term :=
Eval lazy in
tsl_rec (2 ^ 18) Σ [] itt_pseudoid empty.

Once we have it, we unquote the term to obtain a Coq term (notice that the only use of reflection

has been replaced by a transport).

fun (A B : Type) (e : A = B) (x : A) => transport e x
: forall A B : Type, A = B -> A -> B

Towards a Plugin with TemplateCoq. All of this work is pretty systematic and could be automated.

Fortunately for us, TemplateCoq also features a really useful monad to reify Coq commands. All

this can be condensed in the following TemplateCoq command:

Definition Translate ident : TemplateMonad () :=
entry <- tmQuoteConstant ident false ;;
match entry with
| DefinitionEntry {| definition_entry_body := tm ; definition_entry_type := ty |} =>
pretm <- tmEval lazy (fullquote (2 ^ 18) Σ [] tm empty empty nomap) ;;
prety <- tmEval lazy (fullquote (2 ^ 18) Σ [] ty empty empty nomap) ;;
match pretm, prety with
| Success tm, Success ty =>

name <- tmEval all (ident ++ "_der") ;;
name <- tmFreshName name ;;
der <- tmLemma name (Σi ;;; [] |-x tm : ty) ;;
let '(_ ; itt_tm ; _) := type_translation der istrans_nil in
t <- tmEval lazy (tsl_rec (2 ^ 18) Σ [] itt_tm empty) ;;
match t with
| FinalTranslation.Success _ t =>

t' <- tmUnquote t ;;
t' <- tmEval Ast.hnf (my_projT2 t') ;;
tmPrint t'

| _ => tmFail "Cannot translate from ITT to TemplateCoq"
end

| _,_ => tmFail "Cannot transalte from TemplateCoq to ETT"
end

| _ => tmFail "Expected a constant definition"
end.

This command basically does everything we showed above. It takes an identifier corresponding

to a Coq definition, takes its type and body and applies the translation. Of course, this cannot

guess the ETT derivation, this is handled by the tmLemma command which generates an obligation

corresponding to it.

The command is then executed as follows.

Run TemplateProgram (Translate "pseudoid").
Next Obligation.

pose proof xhΣi.
ettcheck. cbn. eapply reflection with (e := sRel 1). ettcheck.

Defined.

, Vol. 1, No. 1, Article . Publication date: July 2018.

Eliminating Reflection from Type Theory :19

As you can see, an obligation corresponding to the derivation is generated and proven as above.

Once we hit Defined, the rest is executed and the command prints the expected translation.

About inductive types. As we promised, our translation is able to handle inductive types. For

this consider the inductive type of vectors (or length-indexed lists) below, together with a simple

definition (we will remain in ITT for simplicity).

Inductive vec A : nat -> Type :=
| vnil : vec A 0
| vcons : A -> forall n, vec A n -> vec A (S n).

Arguments vnil {_}.
Arguments vcons {_} _ _ _.

Definition vv : vec nat 1 := vcons 2 _ vnil.

Like before we quote this definition to TemplateCoq and then to ETT by removing the axiom.

We also do something more here: we give an interpretation to the constants that we encounter

in the term, like nat, vec, S or vcons. In the ETT term they get replaced by things like sAx "nat",

sAx "vec", etc. In fact we preemptively put in the global context the constants and their types (and

we showed they were indeed types).

Similarly, once we have the derivation, we need to provide an interpretation to the sAx, this is

done by a correspondence table saying which Coq term realises which constant. Unsurprisingly,

the translated Coq term is the same, namely vcons 2 0 vnil.

Reversal of vectors. Next, we tackle a motivating example: reversal on vectors. Indeed, if you

want to implement this operation, the same way you would do it on lists, you end up having a

conversion problem:

Fail Definition vrev {A n m} (v : vec A n) (acc : vec A m) : vec A (n + m) :=
vec_rect A (fun n _ => forall m, vec A m -> vec A (n + m))

(fun m acc => acc) (fun a n _ rv m acc => rv _ (vcons a m acc))
n v m acc.

The recursive call returns a vector of length n + S m where it expected one of length S n + m. In

ITT these types are not convertible. This example is thus a perfect fit for ETT where we can use

the fact that these two expressions always compute to the same thing when instantiated.

Definition vrev {A n m} (v : vec A n) (acc : vec A m) : vec A (n + m) :=
vec_rect A (fun n _ => forall m, vec A m -> vec A (n + m))

(fun m acc => acc) (fun a n _ rv m acc => {! rv _ (vcons a m acc) !})
n v m acc.

We then make an ETT derivation that requires four conversions to hold. We discharge them

to Coq and have them as constants in ETT. Three of them are realised by reflexivity in Coq as

they have to do with the computation rule of addition, while the last actually contains a proof of

S n + m = n + S m. The returned term is the following, with only one transport remaining (because

our interpretation map, removes unnecessary transports).

fun (A : Type) (n m : nat) (v : vec A n) (acc : vec A m) =>
vec_rect A

(fun n0 _ => forall m0, vec A m0 -> vec A (n0 + m0))
(fun m0 acc0 => acc0)
(fun a n0 v0 rv m0 acc0 =>
transport (vrev_obligation3 A n m v acc a n0 v0 rv m0 acc0)

, Vol. 1, No. 1, Article . Publication date: July 2018.

:20 Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau

(rv (S m0) (vcons a m0 acc0))) n v m acc
: forall (A : Type) (n m : nat), vec A n -> vec A m -> vec A (n + m)

5.5 Towards an Interfacing between Andromeda and Coq
Andromeda [Bauer et al. 2016] is a proof assistant implementing ETT in a sense that is really close

to our formalisation. Aside from a concise nucleus with a basic type theory, most things happen

with the declaration of constants with given types, including equalities to define the computa-

tional behaviour of eliminators for instance. This is essentially what we do in our formalisation.

Furthermore, their theory relies on Type : Type, meaning, our modular handling of universes can

accommodate for this as well.

All in all, it should be possible in the near future to use our translation to produce Coq terms out

of Andromeda developments. Note that this would not suffer from the difficulties in generating

typing derivations since Andromeda does it for you.

5.6 Composition with other Translations
This translation also enables the formalisation of translations that target ETT rather than ITT

and still get mechanised proofs of (relative) consistency by composition with this ETT to ITT

translation. This could also be used to implement plugins based on the composition of translations.

In particular, supposing we have a theory which forms a subset of ETT and whose conversion is

decidable. Using this translation, we could formalise it as an embedded domain-specific type theory

and provide an automatic translation of well-typed terms into witnesses in Coq. This would make

it possible to extend conversion with the theory of lists for example.

This would provide a simple way to justify the consistency of CoqMT [Jouannaud and Strub

2017] for example, seeing it as an extensional type theory where reflection is restricted to equalities

on a specific domain whose theory is decidable.

6 LIMITATIONS AND AXIOMS
Currently, the representation of terms and derivations and the computational content of the proof

only allow us to deal with the translation of relatively small terms but we hope to improve that in

the future. As we have seen, the actual translation involves the computational content of lemmata

of inversion, substitution, weakening and equational reasoning and thus cannot be presented as a

simple recursive definition on derivations.

As we already mentioned, the axioms K and functional extensionality are both necessary in ITT

if we want the translation to be conservative as they are provable in ETT [Hofmann 1995]. However,

one might still be concerned about having axioms as they can for instance hinder canonicity of the

system. In that respect, K isn’t really a restriction since it preserves canonicity. The best proof of

that is probably Agda itself which natively features K—in fact, one needs to explicitly deactivate it

with a flag if they wish to work without.

The case of functional extensionality is trickier. It is still possible to realise the axiom by compos-

ing our translation with a setoid interpretation [Altenkirch 1999] which validates it, or by going

into a system featuring it, for instance by implementing Observational Type Theory [Altenkirch

et al. 2007] like EPIGRAM [McBride 2004] if it still existed.

7 RELATEDWORKS AND CONCLUSION
The seminal works on the precise connection between ETT and ITT go back to Streicher [1993]

and Hofmann [1995, 1997]. In particular, the work of Hofmann provides a categorical answer to the

question of consistency and conservativity of ETT over ITT with UIP and functional extensionality.

Ten years later, Oury [2005, 2006] provided a translation from ETT to ITT with UIP and functional

, Vol. 1, No. 1, Article . Publication date: July 2018.

Eliminating Reflection from Type Theory :21

extensionality and other axioms (mainly due to technical difficulties). Although a first step towards a

move from categorical semantics to a syntactic translation, his work does not stress any constructive

aspect of the proof and shows that there merely exist translations in ITT to a typed term in ETT.

van Doorn et al. [2013] have later proposed and formalised a similar translation between a PTS

with and without explicit conversion. This does not entail anything about ETT to ITT but we

can find similarities in that there is a witness of conversion between any term and itself under an

explicit conversion, which internalises irrelevance of explicit conversions. This morally corresponds

to a Uniqueness of Conversions principle.

In this paper we provide the first effective translation from ETT to ITT with UIP and functional

extensionality. The translation has been formalised inCoq using TemplateCoq, a meta-programming

plugin of Coq. This translation is also effective in the sense that we can produce in the end a Coq
term using the TemplateCoq denotation machinery. With ongoing work to extend the translation

to the inductive fragment of Coq, we are paving the way to an extensional version of the Coq proof

assistant which could be translated back to its intensional version, allowing the user to navigate

between the two modes, and in the end produce a proof term checkable in the intensional fragment.

REFERENCES
Stuart F. Allen, Robert L. Constable, Richard Eaton, Christoph Kreitz, and Lori Lorigo. 2000. The Nuprl Open Logical

Environment. In Automated Deduction - CADE-17, 17th International Conference on Automated Deduction, Pittsburgh, PA,
USA, June 17-20, 2000, Proceedings (Lecture Notes in Computer Science), David A. McAllester (Ed.), Vol. 1831. Springer,

170–176. https://doi.org/10.1007/10721959_12

T. Altenkirch. 1999. Extensional equality in intensional type theory. In Proceedings. 14th Symposium on Logic in Computer
Science (Cat. No. PR00158). 412–420. https://doi.org/10.1109/LICS.1999.782636

Thorsten Altenkirch, Paolo Capriotti, and Nicolai Kraus. 2016. Extending Homotopy Type Theory with Strict Equality.

CoRR abs/1604.03799 (2016). arXiv:1604.03799 http://arxiv.org/abs/1604.03799

Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. 2007. Observational equality, now!. In Proceedings of the 2007
workshop on Programming languages meets program verification. ACM, 57–68.

Abhishek Anand, Simon Boulier, Cyril Cohen, Matthieu Sozeau, and Nicolas Tabareau. 2018. Towards Certified Meta-

Programming with Typed Template-Coq. In Interactive Theorem Proving - 9th International Conference, ITP 2018, Held as
Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 9-12, 2018, Proceedings (Lecture Notes in Computer Science),
Jeremy Avigad and Assia Mahboubi (Eds.), Vol. 10895. Springer, 20–39. https://doi.org/10.1007/978-3-319-94821-8_2

Danil Annenkov, Paolo Capriotti, and Nicolai Kraus. 2017. Two-Level Type Theory and Applications. CoRR abs/1705.03307

(2017). arXiv:1705.03307 http://arxiv.org/abs/1705.03307

Andrej Bauer, Gaëtan Gilbert, Philipp G. Haselwarter, Matija Pretnar, and Chris Stone. 2016. The ‘Andromeda’ prover.

(2016). http://www.andromeda-prover.org/

Jean-philippe Bernardy, Patrik Jansson, and Ross Paterson. 2012. Proofs for free: Parametricity for dependent types. Journal
of Functional Programming 22, 2 (2012), 107–152.

Yves Bertot and Pierre Castéran. 2004. Interactive Theorem Proving and Program Development. (2004).

Marc Bezem, Thierry Coquand, and Simon Huber. 2013. A Model of Type Theory in Cubical Sets. (December 2013).

http://www.cse.chalmers.se/~coquand/mod1.pdf

Simon Boulier, Pierre-Marie Pédrot, and Nicolas Tabareau. 2017. The Next 700 Syntactical Models of Type Theory. In

Certified Programs and Proofs – CPP 2017. 182–194.
The Coq development team. 2017. The Coq proof assistant reference manual. LogiCal Project. http://coq.inria.fr Version 8.7.

Martin Hofmann. 1995. Conservativity of equality reflection over intensional type theory. In International Workshop on
Types for Proofs and Programs. Springer, 153–164.

Martin Hofmann. 1997. Extensional constructs in intensional type theory. Springer.
Martin Hofmann and Thomas Streicher. 1998. The Groupoid Interpretation of Type Theory. In Twenty-five years of

constructive type theory (Venice, 1995). Oxford Logic Guides, Vol. 36. Oxford Univ. Press, New York, 83–111. http:

//www.tcs.informatik.uni-muenchen.de/lehre/SS97/types-vl/venedig.ps

Jean-Pierre Jouannaud and Pierre-Yves Strub. 2017. Coq without Type Casts: A Complete Proof of Coq Modulo Theory. In

LPAR-21, 21st International Conference on Logic for Programming, Artificial Intelligence and Reasoning, Maun, Botswana,
May 7-12, 2017 (EPiC Series in Computing), Thomas Eiter and David Sands (Eds.), Vol. 46. EasyChair, 474–489. http:

//www.easychair.org/publications/paper/340342

, Vol. 1, No. 1, Article . Publication date: July 2018.

https://doi.org/10.1007/10721959_12
https://doi.org/10.1109/LICS.1999.782636
http://arxiv.org/abs/1604.03799
http://arxiv.org/abs/1604.03799
https://doi.org/10.1007/978-3-319-94821-8_2
http://arxiv.org/abs/1705.03307
http://arxiv.org/abs/1705.03307
http://www.andromeda-prover.org/
http://www.cse.chalmers.se/~coquand/mod1.pdf
http://coq.inria.fr
http://www.tcs.informatik.uni-muenchen.de/lehre/SS97/types-vl/venedig.ps
http://www.tcs.informatik.uni-muenchen.de/lehre/SS97/types-vl/venedig.ps
http://www.easychair.org/publications/paper/340342
http://www.easychair.org/publications/paper/340342

:22 Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau

Chris Kapulkin and Peter LeFanu Lumsdaine. 2012. The simplicial model of univalent foundations. arXiv preprint
arXiv:1211.2851 (2012).

Conor McBride. 2000. Dependently typed functional programs and their proofs. Ph.D. Dissertation. University of Edinburgh.

Conor McBride. 2004. Epigram: Practical programming with dependent types. In International School on Advanced Functional
Programming. Springer, 130–170.

Ulf Norell. 2007. Towards a practical programming language based on dependent type theory. Vol. 32. Citeseer.
Nicolas Oury. 2005. Extensionality in the calculus of constructions. In International Conference on Theorem Proving in Higher

Order Logics. Springer, 278–293.
Nicolas Oury. 2006. Egalité et filtrage avec types dépendants dans le calcul des constructions inductives. Ph.D. Dissertation.

http://www.theses.fr/2006PA112136 ThÃšse de doctorat dirigÃ©e par Paulin-Mohring, Christine Informatique Paris 11

2006.

Matthieu Sozeau. 2010. Equations: ADependent Pattern-Matching Compiler. In Interactive Theorem Proving, First International
Conference, ITP 2010, Edinburgh, UK, July 11-14, 2010. Proceedings (Lecture Notes in Computer Science), Matt Kaufmann

and Lawrence C. Paulson (Eds.), Vol. 6172. Springer, 419–434. https://doi.org/10.1007/978-3-642-14052-5_29

Thomas Streicher. 1993. Investigations into intensional type theory.
The Univalent Foundations Program. 2013. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for

Advanced Study.

Floris van Doorn, Herman Geuvers, and Freek Wiedijk. 2013. Explicit convertibility proofs in pure type systems. In

Proceedings of the Eighth ACM SIGPLAN international workshop on Logical frameworks & meta-languages: theory &
practice. ACM, 25–36.

Vladimir Voevodsky. 2013. A simple type system with two identity types. (2013). https://ncatlab.org/homotopytypetheory/

files/HTS.pdf

A PROOF OF THE FUNDAMENTAL LEMMA
Lemma A.1 (Fundamental lemma). Let t1 and t2 be two terms. If Γ, Γ1 ⊢ t1 : T1 and Γ, Γ2 ⊢ t2 : T2

and t1 ∼ t2 then there exists p such that Γ,Pack Γ1 Γ2 ⊢ p : t1[γ1] T1[γ1]�T2[γ2] t2[γ2].

For readability we will abbreviate the left and right substitutions _[γ1] and _[γ2] by ↿ and ↾
respectively.

Proof. We prove it by induction on the derivation of t1 ∼ t2.

• Var

x ∼ x

If x belongs to Γ, we apply reflexivity—together with uniqueness of typing (2.2)—to conclude.

Otherwise, Proje x has the expected type (since x[γ1] ≡ Proj
1
x and x[γ2] ≡ Proj

2
x).

• TransportLeft

t1 ∼ t2

p∗ t1 ∼ t2

We have Γ, Γ1 ⊢ p∗ t1 : T1 and Γ, Γ2 ⊢ t2 : T2. By inversion (2.3) we have Γ, Γ1 ⊢ p : T ′
1
= T1

and Γ, Γ1 ⊢ t1 : T
′
1
. Then by induction hypothesis we have e such that Γ, Γp ⊢ e : t1 ↿� t2 ↾.

From transitivity and symmetry we only need to provide a proof of t1 ↿� p ↿∗ t1 ↿ which is

inhabited by ⟨p ↿; refl (p ↿∗ t1 ↿)⟩_._.
• TransportRight

t1 ∼ t2

t1 ∼ p∗ t2

Similarly.

• Product

A1 ∼ A2 B1 ∼ B2

Π(x : A1). B1 ∼ Π(x : A2). B2

, Vol. 1, No. 1, Article . Publication date: July 2018.

http://www.theses.fr/2006PA112136
https://doi.org/10.1007/978-3-642-14052-5_29
https://ncatlab.org/homotopytypetheory/files/HTS.pdf
https://ncatlab.org/homotopytypetheory/files/HTS.pdf

Eliminating Reflection from Type Theory :23

We have Γ, Γ1 ⊢ Π(x : A1). B1 : T1 and Γ, Γ2 ⊢ Π(x : A2). B2 : T2 so by inversion (2.3) we

have Γ, Γ1 ⊢ A1 : s1 and Γ, Γ1,x : A1 ⊢ B1 : s ′
1
and Γ, Γ1 ⊢ s

′′
1
≡ T1 for (s1, s

′
1
, s ′′

1
) ∈ R (and

similarly with 2s). By induction hypothesis we have Γ, Γp ⊢ pA : A1 ↿� A2 ↾ and Γ, Γp,x :

Pack A1 A2 ⊢ pB : B1 ↿� B2 ↾ hence the result (using UIP and functional extensionality, refer

to the formalisation and especially to the file Quotes.v for more details on how to realise this

equality).

• Eqality

A1 ∼ A2 u1 ∼ u2 v1 ∼ v2

u1 =A1
v1 ∼ u2 =A2

v2
We have Γ, Γ1 ⊢ u1 =A1

v1 : T1 and Γ, Γ2 ⊢ u2 =A2
v2 : T2 so, by inversion (2.3), we have

Γ, Γ1 ⊢ A1 : s1 and Γ, Γ1 ⊢ u1 : A1 and Γ, Γ1 ⊢ v1 : A1 as well as Γ, Γ1 ⊢ s1 ≡ T1 (and the same

with 2s). By induction hypothesis we thus have Γ, Γp ⊢ pA : A1 � A2 and Γ, Γp ⊢ pu : u1 � u2
and Γ, Γp ⊢ pv : v1 � v2. We can thus conclude.

• Reflexivity

s ∼ s

This one holds by reflexivity and uniqueness of typing (2.2) (indeed, s ↿≡ s and s ↾≡ s).
• Lambda

A1 ∼ A2 B1 ∼ B2 t1 ∼ t2

λ(x : A1).B1.t1 ∼ λ(x : A2).B2.t2
We have Γ, Γ1 ⊢ λ(x : A1).B1.t1 : T1 and Γ, Γ2 ⊢ λ(x : A2).B2.t2 : T2, thus, by inversion 2.3 the

subterms are well-typed and we can apply induction hypothesis. The conclusion follows

similarly to the Π case.

• Application

t1 ∼ t2 A1 ∼ A2 B1 ∼ B2 u1 ∼ u2

t1 @x :A1 .B1
u1 ∼ t2 @x :A2 .B2

u2
We have Γ, Γ1 ⊢ t1@x :A1 .B1

u1 : T1 and Γ, Γ2 ⊢ t2@x :A2 .B2
u2 : T2 which means by inversion (2.3)

that the subterms are well-typed. We apply the induction hypothesis and then conclude.

• Reflexivity

A1 ∼ A2 u1 ∼ u2

reflA1
u1 ∼ reflA2

u2
We have Γ, Γ1 ⊢ reflA1

u1 : T1 and Γ, Γ2 ⊢ reflA2
u2 : T2 so by inversion (2.3) we have Γ, Γ1 ⊢

A1 : s1 and Γ, Γ1 ⊢ u1 : A1 (same with 2s). By IH we have A1 ↿� A2 ↾ and u1 ↿A1↿�A2↾ u2 ↾.
The proof follows easily.

• Funext

A1 ∼ A2 B1 ∼ B2 f1 ∼ f2 д1 ∼ д2 e1 ∼ e2

funext(x : A1,B1, f1,д1, e1) ∼ funext(x : A2,B2, f2,д2, e2)

Similar.

• UIP

A1 ∼ A2 u1 ∼ u2 v1 ∼ v2 p1 ∼ p2 q1 ∼ q2

uip(A1,u1,v1,p1,q1) ∼ uip(A2,u2,v2,p2,q2)

Similar.

• J

A1 ∼ A2 u1 ∼ u2 P1 ∼ P2 w1 ∼ w2 v1 ∼ v2 p1 ∼ p2

J(A1,u1,x .e .P1,w1,v1,p1) ∼ J(A2,u2,x .e .P2,w2,v2,p2)

Similar.

, Vol. 1, No. 1, Article . Publication date: July 2018.

https://github.com/TheoWinterhalter/ett-to-itt/blob/master/theories/Quotes.v

:24 Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau

□

B CORRECTNESS OF THE TRANSLATION
Theorem B.1 (Translation).

• If ⊢x Γ then there exists ⊢ Γ ∈ J⊢x ΓK,
• If Γ ⊢x t : T then for any ⊢ Γ ∈ J⊢x ΓK there exist t and T such that Γ ⊢ t : T ∈ JΓ ⊢x t : T K,
• If Γ ⊢x u ≡ v : A then for any ⊢ Γ ∈ J⊢x ΓK there exist A ⊏ A,A ⊏ A

′
,u ⊏ u,v ⊏ v and e such

that Γ ⊢ e : u A�A′ v .

Proof. We prove the theorem by induction on the derivation in the extensional type theory. In

most cases we need to assume some Γ, translation of the context, we will implicitly refer to Γ in

such cases as the one given as hypothesis.

• Empty

⊢x •

We have ⊢ • ∈ J⊢x •K.
• Extend

⊢x Γ Γ ⊢x A

⊢x Γ,x : A
(x < Γ)

By IH we have ⊢ Γ ∈ J⊢x ΓK and, using Γ as well as lemma 4.2, Γ ⊢ A : s ∈ JΓ ⊢x A : sK. Thus
⊢ Γ,x : A ∈ J⊢x Γ,x : AK.
• Sort

⊢x Γ

Γ ⊢x s : s
′
(s, s ′)

We have Γ ⊢ s : s ′ ∈ JΓ ⊢x s : s ′K.
• Product

Γ ⊢x A : s Γ,x : A ⊢x B : s ′

Γ ⊢x Π(x : A). B : s ′′
(s, s ′, s ′′)

By IH and lemma 4.2 we have Γ ⊢ A : s , meaning ⊢ Γ,x : A ∈ J⊢x Γ,x : AK, and then

Γ,x : A ⊢ B : s ′. We thus conclude Γ ⊢ Π(x : A). B : s ′′ ∈ JΓ ⊢x Π(x : A). B : s ′′K.
• Sigma

Γ ⊢x A : s Γ,x : A ⊢x B : s ′

Γ ⊢x Σ(x : A). B : s ′′
(s, s ′, s ′′)

Similar.

• Eqality

Γ ⊢x A : s Γ ⊢x u : A Γ ⊢x v : A

Γ ⊢x u =A v : s

By IH and lemma 4.2 we have Γ ⊢ A : s , and—using lemma 4.3—we also have Γ ⊢ u : A and

Γ ⊢ v : A. Then Γ ⊢ u =A v : s ∈ JΓ ⊢x u =A v : sK.
• Variable

⊢x Γ (x : A) ∈ Γ

Γ ⊢x x : A

We have ⊢ Γ ∈ J⊢x ΓK (as we assumed, this is not an instance of the induction hypothesis)

and (x : A) ∈ Γ. By definition of Γ ⊏ Γ we also have some (x : A) ∈ Γ with A ⊏ A, thus

Γ ⊢ x : A ∈ JΓ ⊢x x : AK.

, Vol. 1, No. 1, Article . Publication date: July 2018.

Eliminating Reflection from Type Theory :25

• Conversion

Γ ⊢x u : A Γ ⊢x A ≡ B

Γ ⊢x u : B

By IH and lemma 3.2 we have Γ ⊢ e : A = B which implies Γ ⊢ A ∈ JΓ ⊢x AK by inversion (2.3),
thus, from lemma 4.3 and IH we get Γ ⊢ u : A, yielding Γ ⊢ e∗ u : B ∈ JΓ ⊢x u : BK.
• Lambda

Γ ⊢x A : s Γ,x : A ⊢x B : s ′ Γ,x : A ⊢x t : B

Γ ⊢x λ(x : A).B.t : Π(x : A). B

By IH and lemma 4.2 we have Γ ⊢ A : s and thus ⊢ Γ,x : A ∈ J⊢x Γ,x : AK, meaning we can

apply IH and lemma 4.2 to the second hypothesis to get Γ,x : A ⊢ B : s ′ ∈ JΓ,x : A ⊢x B : s ′K
and then IH and lemma 4.3 to get Γ,x : A ⊢ t : B ∈ JΓ,x : A ⊢x t : BK. All of this yields
Γ ⊢ λ(x : A).B.t : Π(x : A). B ∈ JΓ ⊢x λ(x : A).B.t : Π(x : A). BK.
• Application

Γ ⊢x A : s Γ,x : A ⊢x B : s ′ Γ ⊢x t : Π(x : A). B Γ ⊢x u : A

Γ ⊢x t @x :A.B u : B[x←u]

Using IH together with lemmata 4.2 and 4.3 we get Γ ⊢ A : s and Γ,x : A ⊢ B : s ′ and

Γ ⊢ t : Π(x : A). B and Γ ⊢ u : Ameaning we can conclude Γ ⊢ t @x :A.B u : B[x←u] ∈ JΓ ⊢x
t @x :A.B u : B[x←u]K.
• Pair

Γ ⊢x u : A Γ ⊢x A : s Γ,x : A ⊢x B : s ′ Γ ⊢x v : B[x←u]

Γ ⊢x ⟨u;v⟩x :A.B : Σ(x : A). B

Using IH with lemmata 4.2 and 4.3 we translate all the hypotheses to conclude Γ ⊢ ⟨u;v⟩x :A.B :

Σ(x : A). B ∈ JΓ ⊢x ⟨u;v⟩x :A.B : Σ(x : A). BK.
• Proj1

Γ ⊢x p : Σ(x : A). B

Γ ⊢x π
x :A.B
1

p : A

Similar.

• Proj2

Γ ⊢x p : Σ(x : A). B

Γ ⊢x π
x :A.B
2

p : B[x←πx :A.B
1

p]

Similar.

• Reflexivity

Γ ⊢x A : s Γ ⊢x u : A

Γ ⊢x reflA u : u =A u

By IH we have Γ ⊢ u : A and thus Γ ⊢ reflA u : u =A u ∈ JΓ ⊢x reflA u : u =A uK.
• J

Γ ⊢x A : s Γ ⊢x u,v : A
Γ,x : A, e : u =A x ⊢x P : s ′ Γ ⊢x p : u =A v Γ ⊢x w : P[x←u, e← reflA u]

Γ ⊢x J(A,u,x .e .P ,w,v,p) : P[x←v, e←p]

By IH and lemma 4.2 we have Γ ⊢ A : s . From this and IH and lemma 4.3 we have Γ ⊢

u,v : A. We can thus deduce ⊢ Γ,x : A, e : u =A x ∈ JΓ,x : A, e : u =A xK which in

turn gives us Γ,x : A, e : u =A x ⊢ P : s ′. Similarly we also get Γ ⊢ p : u =A v and

, Vol. 1, No. 1, Article . Publication date: July 2018.

:26 Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau

Γ ⊢ w : P[x←u, e← reflA u]. All of this allows us to conclude Γ ⊢ J(A,u,x .e .P ,w,v,p) :
P[x←v, e←p] ∈ JΓ ⊢x J(A,u,x .e .P ,w,v,p) : P[x←v, e←p]K.
• Funext

Γ ⊢ f ,д : Π(x : A). B Γ ⊢ e : Π(x : A). f @x :A.B x =B д@x :A.B x

Γ ⊢ funext(x : A,B, f ,д, e) : f = д

Similar.

• UIP

Γ ⊢x e1, e2 : u =A v

Γ ⊢x uip(A,u,v, e1, e2) : e1 = e2

Similar.

• Beta

Γ ⊢x A : s Γ,x : A ⊢x B : s ′ Γ,x : A ⊢x t : B Γ ⊢x u : A

Γ ⊢x (λ(x : A).B.t) @x :A.B u ≡ t[x←u] : B[x←u]

From IH and the lemmata, we even get the conversion, we conclude using reflexivity.

• Proj1-Red

Γ ⊢x A : s Γ ⊢x u : A Γ,x : A ⊢x B : s ′ Γ ⊢x v : B[x←u]

Γ ⊢x π
x :A.B
1

⟨u;v⟩x :A.B ≡ u : A

Likewise.

• Proj2-Red

Γ ⊢x A : s Γ ⊢x u : A Γ,x : A ⊢x B : s ′ Γ ⊢x v : B[x←u]

Γ ⊢x π
x :A.B
2

⟨u;v⟩x :A.B ≡ v : B[x←u]

Likewise.

• J-Red

Γ ⊢x A : Ui
Γ ⊢x u : A Γ,x : A, e : u =A x ⊢x P : Uj Γ ⊢x w : P[x←u, e← reflA u]

Γ ⊢x J(A,u,x .e .P ,w,u, reflA u) ≡ w : P[x←u, e← reflA u]

Likewise.

• Conv-Refl

Γ ⊢x u : A

Γ ⊢x u ≡ u : A

We conclude from IH and reflexivity of �.
• Conv-Sym

Γ ⊢x u ≡ v : A

Γ ⊢x v ≡ u : A

We conclude from IH and symmetry of �.
• Conv-Trans

Γ ⊢x u ≡ v : A Γ ⊢x v ≡ w : A

Γ ⊢x u ≡ w : A

We conclude from IH and transitivity of �.

, Vol. 1, No. 1, Article . Publication date: July 2018.

Eliminating Reflection from Type Theory :27

• Conv-Conv

Γ ⊢x t1 ≡ t2 : T1 Γ ⊢x T1 ≡ T2

Γ ⊢x t1 ≡ t2 : T2

By IH (and lemma 3.2) we have Γ ⊢ e : t1 T 1

�T ′
1

t2 and Γ ⊢ p : T
′′

1
= T 2. Also from lemmata 3.3

and 3.2 we have T
′

1
= T

′′

1
and T 1 = T

′′

1
, meaning we get T

′

1
= T 2 and T 1 = T 2. This allows us

to conclude by transporting along the aforementioned equalities.

• Conv-Prod

Γ ⊢x A1 ≡ A2 : s Γ,x : A1 ⊢x B1 ≡ B2 : s
′

Γ ⊢x Π(x : A1). B1 ≡ Π(x : A2). B2 : s
′′

(s, s ′, s ′′)

We conclude exactly like we did in the proof of lemma 3.3.

• All congruences hold like in proof of lemma 3.3.

• Conv-Eq

Γ ⊢x e : u =A v

Γ ⊢x u ≡ v : A

By IH and lemma 4.2 we have Γ ⊢ e : u =A v ∈ JΓ ⊢x e : u =A vK which yields the conclusion

we wanted.

□

, Vol. 1, No. 1, Article . Publication date: July 2018.

	Abstract
	1 Introduction
	2 Definitions of Extensional and Intensional Type Theories
	2.1 Syntax of ETT and ITT
	2.2 The Typing Systems
	2.3 General Properties of ITT and ETT

	3 Relating Translated Expressions
	4 Translating ETT to ITT
	4.1 The Translation
	4.2 Meta-theoretical Consequences
	4.3 Optimisations

	5 Formalisation with Template-Coq
	5.1 Quick Overview of the Formalisation
	5.2 Inductive Types and Recursion
	5.3 About Universes and Homotopy
	5.4 Examples
	5.5 Towards an Interfacing between Andromeda and Coq
	5.6 Composition with other Translations

	6 Limitations and Axioms
	7 Related Works and Conclusion
	References
	A Proof of the fundamental lemma
	B Correctness of the translation

