

Blade-pitch Control System Degradation Model

Jinrui Ma, Mitra Fouladirad, Antoine Grall

- Background
- 2 Framework Blade-pitch control system life time prediction
- 3 Stochastic process application on wind turbine pitch control system
 - Model description
 - Deterioration process of actuator
 - Healthy indicator
 - Case study
 - Conclusions

Background introduction

- Cost expensive
- Located off-shore or at remote place
- Unattended working condition
- Effected by wind behavior

Background introduction

 $\label{eq:Figure} Figure - \text{Changes of power and pitch angle} \\ \text{over wind speed}$

FIGURE - Pitch behavior

- 1 Background
- 2 Framework Blade-pitch control system life time prediction
- 3 Stochastic process application on wind turbine pitch control system
 - Model description
 - Deterioration process of actuator
 - Healthy indicator
 - Case study
 - Conclusions

Framework – Life time prediction of blade-pitch control syste

Framework - Blade-pitch control system degradation model

- 1 Background
- 2 Framework Blade-pitch control system life time prediction
- 3 Stochastic process application on wind turbine pitch control system
 - Model description
 - Deterioration process of actuator
 - Healthy indicator
 - Case study
 - Conclusions

Control system of wind turbine

FIGURE — Control system of wind turbine

Model description - Wind speed model*

Wind speed sequence u(t) can be considered as the combination of its 10 min's mean value $\overline{u}(t)$ and its fluctuation $u_f(t)$.

$$u(t) = \overline{u}(t) + u_f(t)$$

$$du_f(t) = a(u_f, t)dt + b(u_f, t)dw_t$$

- $a(u_f, t) = -\frac{u_f}{\Lambda}$
- $b(u_f, t) = (\frac{2\sigma^2}{\Lambda})^{\frac{1}{2}}$
- σ is the standard deviation
- Λ is the integral time scale

^{*}Calif, R. (2012). PDF models and synthetic model for the wind speed fluctuations based on the resolution of Langevin equation.

Applied energy, 99, 173-182.

Model description - Blade pitch actuator model

A fault-free hydraulic pitch system is a piston servo system which can be modelled by a seconde order dynamic equation*

$$\ddot{\beta} + 2\zeta\omega_n\dot{\beta} + \omega_n^2\beta = \omega_n^2\beta_r$$

β - measurement blade-pitch angle

ω_n - natural frequency

 β_r - reference blade-pitch angle from pitch control system

ζ - damping ration

The deterioration is considered in the hydraulic pitch actuator, it can be modeled by changing ω_n and ζ .

- failure free case : $\zeta = 0.6$, $\omega_n = 11.11 \ rad/s$.
- High air content in the oil : $\omega_n = 3.42 \ rad/s$.
- Hydraulic leakage : $\zeta = 0.9$, $\omega_n = 5.73 \ rad/s$.

^{*}Merritt, H. E. (1967). Hydraulic control systems. John Wiley & Sons.

Model description - Blade pitch controller model

The blade-pitch angle commands are computed by using a proportional-integral (PI) control on the speed error between rated generator speed and the filtered generator speed.

FIGURE - Flow chart of blade-pitch controller

Model description - Wind Turbine simulator

The blade-pitch actuator and blade-pitch controller are implemented within Matlab/Simulink environment.

FIGURE - FAST/Simulink-based wind turbine simulator coupled blade-pitch actuator deterioration model

FAST - The Fatigue, Aerodynamics, Structures and Turbulence software is a wind turbine simulator designed by the US National Renewable Energy Laboratory.

- 1 Background
- 2 Framework Blade-pitch control system life time prediction
- 3 Stochastic process application on wind turbine pitch control system
 - Model description
 - Deterioration process of actuator
 - Healthy indicator
 - Case study
 - Conclusions

Deterioration process of actuator

The deterioration of actuator can be modelled by a stochastic process. A Compound Poisson Process is a good candidate to model the deterioration.

- Blade-pitch system carries out instructions only when wind speed exceeds the rated wind speed
- Deterioration appears uniquely when blade-actuator implements the action
- The increase deterioration level is independent of the past level of the deterioration and it is random

FIGURE - Blade-pitch action simulation

- 1 Background
- 2 Framework Blade-pitch control system life time prediction
- 3 Stochastic process application on wind turbine pitch control system
 - Model description
 - Deterioration process of actuator
 - Healthy indicator
 - Case study
 - Conclusions

Healthy indicator

By considering the operational conditions of variable wind speed and uncertainty, a dynamic healthy indicator based on real time operational data is proposed.

$$\textit{PitInd}_{t_0} = \frac{\sum_{t=t_0}^{T+t_0} \left| \Omega_t - \Omega_{t_{Ref}} \right| / \Omega_{t_{Ref}}}{T}$$

- Ω_t is turbine's rotational speed at time t
- Ω_{tRef} is the fault-free turbine's rotational speed at time t
- T is the calculation interval

- 1 Background
- 2 Framework Blade-pitch control system life time prediction
- 3 Stochastic process application on wind turbine pitch control system
 - Model description
 - Deterioration process of actuator
 - Healthy indicator
 - Case study
 - Conclusions

Case study

Actuator's deterioration simulation

- excessive air/oil ratio can reduce the natural frequency of pitch actuator
- the nature frequency of actuator ω_n decreases to 3.42 rad/s
- the deterioration range of ω_n is [0 , 7.69]

$$X(t) = \sum_{i=0}^{N(t)} Y_i, t \ge 0$$

- $\{N(t), t > 0\}$ a Poisson process
- Y_1, Y_2, \cdots independent, identically distributed random variables independent of $\{N(t), t > 0\}$
- assume that Y_i , $i=1,2,\cdots$ follows a uniform distribution
- X(t) represents the accumulated deterioration at time t on ω_n .

Case study

FIGURE – Deterioration trajectories of ω_n

 $\overline{\mathrm{FIGURE}}$ — Health indicator PitInd calculated per 10 min for each deterioration trajectory

- 1 Background
- 2 Framework Blade-pitch control system life time prediction
- 3 Stochastic process application on wind turbine pitch control system
 - Model description
 - Deterioration process of actuator
 - Healthy indicator
 - Case study
 - Conclusions

Conclusions

- A model of hydraulic blade-pitch system considering controller's deterioration has been implemented in a wind turbine simulator based on FAST software
- A health indicator based on wind turbine operational real data is proposed to estimate the deterioration of hydraulic blade-pitch actuator.
- This indicator can well reflect the deterioration.

Thank you for your attention !

