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Abstract
1. Recent studies unravelled the effect of climate changes on populations through 

their impact on functional traits and demographic rates in terrestrial and freshwater 
ecosystems, but such understanding in marine ecosystems remains incomplete.

2. Here, we evaluate the impact of the combined effects of climate and functional traits 
on population dynamics of a long- lived migratory seabird breeding in the southern 
ocean: the black- browed albatross (Thalassarche melanophris, BBA). We address the 
following prospective question: “Of all the changes in the climate and functional 
traits, which would produce the biggest impact on the BBA population growth rate?”

3. We develop a structured matrix population model that includes the effect of cli-
mate and functional traits on the complete BBA life cycle. A detailed sensitivity 
analysis is conducted to understand the main pathway by which climate and func-
tional trait changes affect the population growth rate.

4. The population growth rate of BBA is driven by the combined effects of climate 
over various seasons and multiple functional traits with carry- over effects across 
seasons on demographic processes. Changes in sea surface temperature (SST) 
during late winter cause the biggest changes in the population growth rate, 
through their effect on juvenile survival. Adults appeared to respond to changes 
in winter climate conditions by adapting their migratory schedule rather than by 
modifying their at- sea foraging activity. However, the sensitivity of the population 
growth rate to SST affecting BBA migratory schedule is small. BBA foraging activ-
ity during the pre- breeding period has the biggest impact on population growth 
rate among functional traits. Finally, changes in SST during the breeding season 
have little effect on the population growth rate.

5. These results highlight the importance of early life histories and carry- over ef-
fects of climate and functional traits on demographic rates across multiple sea-
sons in population response to climate change. Robust conclusions about the roles 
of various phases of the life cycle and functional traits in population response to 
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1  | INTRODUC TION

There is now ample evidence that individual plants and animals 
respond to climate change with changes in their functional traits 
(e.g., phenology, body size and body mass, foraging behaviours) 
and demographic rates (e.g., survival, fecundity), which have con-
sequences for populations and beyond (Hoegh- Guldberg & Bruno, 
2010; Jenouvrier & Visser, 2011; Walther et al., 2002; Williams, 
Shoo, Isaac, Hoffmann, & Langham, 2008). Recent studies unrav-
elled the effects of climatic conditions on populations through their 
impact on functional traits and demographic rates in terrestrial 
(Adler et al., 2014; Ozgul et al., 2009; Plard et al., 2014) and fresh-
water ecosystems (Vindenes et al., 2014). For instance, yellow- 
bellied marmots (Marmota flaviventris) were born earlier and their 
development rate increased in response to a longer growing season 
(Ozgul et al., 2010). This increase in juvenile growth led to an in-
crease in adult body mass with a decline in adult mortality and an 
increase in reproductive output, ultimately resulting in an abrupt 
increase in population size.

However, a demographic rate or functional trait response to 
climate does not necessarily affect population growth, and several 
studies have cautioned against drawing broad conclusions about 
population responses to climate changes from analyses of a single 
functional trait, single demographic rate or single life state of a spe-
cies life cycle (Adahl, Lundberg, & Jonzen, 2006; Barbraud et al., 
2008; Visser et al., 2016). For example, temperature may affect the 
laying date of many bird species without apparent effects on pop-
ulation trends (McLean, Lawson, Leech, & van de Pol, 2016; Reed, 
Jenouvrier, & Visser, 2013; Wilson & Arcese, 2003).

Changes in climate modify population growth rate through 
changes in functional traits if three processes occur:

1. changes in climate affect functional traits (e.g., longer growing 
season → body mass),

2. changes in functional traits affect demographic rates (e.g., body 
mass → adult survival),

3. changes in demographic rates affect population growth rate 
(e.g., adult survival → population growth rate).

Thus, if a change in a functional trait has little effect on a demo-
graphic rate, and/or a change in a demographic rate has little effect on 
the population growth rate, then climate- induced changes in a pheno-
typic trait or a demographic rate will have little effect on the popula-
tion dynamics (McLean et al., 2016).

Furthermore, it is crucial to combine all these processes (climate 
changes → functional traits → demographic rates → population 
growth rate) across the full life cycle because climate effects on 
functional traits and demographic rates may be contrasted between 
various states of the life cycle (Jenouvrier, 2013; Visser et al., 2016). 
For example, in a butterfly species (Boloria eunomia), higher tempera-
tures have a positive effect on the survival of eggs, pre- diapause 
larvae and pupae but a negative effect on the survival of overwin-
tering larvae (Radchuk, Turlure, & Schtickzelle, 2013). Multiple cli-
mate variables and functional traits affect populations via various 
pathways, which may reinforce or weaken population responses 
to climate (Griffith, Salguero- Gómez, Merow, & McMahon, 2016; 
McLean et al., 2016). In a study of 136 tropical tree species across 
their entire life cycle, the effects of traits on one life state or demo-
graphic rate were sometimes counteracted by opposing effects at 
another state (Visser et al., 2016). In a population of northern pike 
(Esox lucius), the thermal sensitivity of the population growth rate 
varies across demographic rates and functional trait classes (body 
length), resulting in complex pathways through the life cycle by 
which warming temperature increases the population growth rate 
(Vindenes et al., 2014).

In marine ecosystems, fewer studies have investigated and doc-
umented an impact of functional traits on demographic rates, and 
none, to our knowledge, have studied the effects of climate on pop-
ulation dynamics via various functional trait pathways throughout 
the full life cycle. Here, we integrated multiple climate–traits–demo-
graphic rates relationships across the full life cycle of a long- lived 
migratory seabird breeding in the southern ocean, the black- browed 
albatross (BBA) (Thalassarche melanophris), to understand the impact 
of the combined effects of climate and functional traits on popula-
tion dynamics.

The effects of climatic conditions on seabirds generally occur in-
directly. They operate primarily through effects on the availability 
of prey and breeding habitats potentially causing changes in trans-
portation costs, timing of breeding and body conditions of seabirds 
(Barbraud et al., 2012; Grémillet & Boulinier, 2009; Jenouvrier, 
2013). Thus, as for terrestrial vertebrates, phenology, body con-
ditions and foraging behaviours are key functional traits by which 
individual seabirds could respond to climate changes (Frederiksen, 
Harris, Daunt, Rothery, & Wanless, 2004; Weimerskirch, Louzao, 
de Grissac, & Delord, 2012) with potential consequences for demo-
graphic rates and population dynamics.

Phenological change is an important process by which marine 
populations may respond to climate change because the recruitment 

climate change rely on an understanding of the relationships of traits to demo-
graphic rates across the complete life cycle.

K E Y W O R D S

birds, climate change, foraging behaviours, non-breeding season, phenotypic traits, pre-
breeding season, timing of breeding, wing length



908  |    Journal of Animal Ecology JENOUVRIER Et al.

success of organisms spanning several trophic levels is highly de-
pendent on synchronization with pulsed planktonic production (i.e., 
mismatch hypothesis; Cushing, 1990; Edwards & Richardson, 2004). 
Several studies have detected trophic mismatches in marine ecosys-
tems (Burthe et al., 2012; Durant, Hjermann, Ottersen, & Stenseth, 
2007). For example, when their prey (capelin Mallotus villosus) were 
late, common murre (Uria aalge) delivered fewer fish to their chicks 
despite an increasing foraging effort that resulted in a lower breed-
ing success (Regular et al., 2014).

Body condition has been shown to affect demographic rates 
in seabirds (Barbraud & Chastel, 1999; Chastel, Weimerskirch, & 
Jouventin, 1995; Harding et al., 2011). For example, male body mass 
affected key demographic rates of both adult and juvenile wander-
ing albatrosses (Diomedea exulans) (Cornioley, Jenouvrier, Börger, 
Weimerskirch, & Ozgul, 2017).

Foraging behaviours affect the breeding performance of many 
seabirds, both directly during the breeding season (Monaghan, 
1992; Pinaud & Weimerskirch, 2002) and through carry- over ef-
fects during the non- breeding season (Daunt et al., 2014; Shoji et al., 
2015). European shags (Phalacrocorax aristotelis) performing late 
winter foraging trip of short duration were more likely to breed suc-
cessfully during the following breeding season (Daunt et al., 2014).

Among climate variables, sea surface temperature (SST) is 
known to influence primary and secondary production in several 
marine ecosystems (Behrenfeld et al., 2006) and has been linked 
to various demographic rates in several seabird species (Barbraud 
et al., 2012). In BBAs breeding at Kerguelen Island, SST during var-
ious phases of the life cycle influences their migratory schedule, 
survival, breeding and success probabilities (Desprez, Jenouvrier, 
Barbraud, Delord, & Weimerskirch, 2018; Nevoux, Weimerskirch, & 
Barbraud, 2007; Pinaud & Weimerskirch, 2002; Rolland, Barbraud, & 
Weimerskirch, 2008). Juvenile BBA migrates from Kerguelen to the 
coasts of Australia, moving progressively from the south- western 
coasts along to the south- eastern coasts (De Grissac, Börger, 
Guitteaud, & Weimerskirch, 2016). Adults from Kerguelen migrate 
in this sector as well during the non- breeding season (Desprez et al., 
2018). Consequently, the SST in this wintering sector affects de-
mographic rates and functional traits of both juveniles and adults. 
Furthermore, higher SST during the breeding season over the east-
ern Kerguelen shelf—the main foraging area of this BBA population—
positively influenced breeding success (Nevoux et al., 2007; Pinaud 
& Weimerskirch, 2002; Rolland, Barbraud, & Weimerskirch, 2008). 
Finally, larger fledging body size positively affected both juvenile 
survival and recruitment probabilities (Supporting Information, 
R. Fay, M. Desprez, S. Jenouvrier, C. Barbraud, K. Delord, & H. 
Weimerskirch, unpublished data), and both timing of arrival on the 
pre- breeding grounds and foraging  behaviours in the pre- breeding 
grounds affected future breeding success (Desprez et al., 2018).

The effects of SST and foraging behaviours depend on individ-
ual breeding experience and status at the previous breeding sea-
son (Desprez et al., 2018; Nevoux et al., 2007; Rolland, Barbraud, 
& Weimerskirch, 2008). In BBA, like in many seabirds, individu-
als breeding successfully in a given year have a higher probability 

of reproducing and successfully raising a chick in the following 
year compared to failed breeders and non- breeders (individuals 
that skipped reproduction in a given year; Cam & Monnat, 2000; 
Jenouvrier, Péron, & Weimerskirch, 2015). In addition, failed breed-
ers return earlier to pre- breeding grounds and have extended winter 
and pre- breeding periods, suggesting that they require longer forag-
ing periods to build the energetic reserves necessary to reproduce 
compared to successful breeders (Desprez et al., 2018). These differ-
ences in functional traits and demographic rates between failed and 
successful breeders may indicate a lower intrinsic quality of failed 
breeders (sensu Wilson & Nussey, 2010). Finally, first- time breed-
ers have lower reproductive success and survival than experienced 
breeders probably because they are less experienced in foraging and 
breeding activities (Nevoux et al., 2007). Consequently, it is import-
ant to consider breeding experience and breeding states (successful 
breeders, failed breeders and non- breeders) in seabirds’ life cycles 
to comprehend the effects of climate on their population dynamics 
(Jenouvrier, Barbraud, Cazelles, & Weimerskirch, 2005; Jenouvrier, 
Barbraud, & Weimerskirch, 2005).

Here, we investigate the functional dependence of population 
growth rate on demographic rates, functional traits and climate vari-
ables to address the following prospective question (Caswell, 2000): 
“Of all the changes in the climate and functional traits, which would 
produce the biggest impact on the population growth rate of the 
black- browed albatross?” We explicitly link the following processes: 
climate changes → functional traits → demographic rates → popu-
lation growth rate, across the full life cycle by developing a life cycle 
structured by age classes, breeding experience and breeding states. 
Our analysis is based on a 35- year longitudinal demographic dataset 
combined with data on fledging body condition (29 years) and adult 
foraging behaviour and migratory schedule inferred from tracking de-
vices (8 years). We use sensitivity analysis to predict the changes in the 
population growth rate that would result from any specified change in 
the demographic rates, functional traits and climate variables and char-
acterize pathways by which climate, functional traits and demographic 
rates produce the biggest impact on the population growth rate.

2  | MATERIAL S AND METHODS

The key to studying population response to climate variability is to 
define the demographic rates (!) as a function of climate variables 
(c) (Jenouvrier, 2013). These relationships may be mediated through 
the effect of climate on functional traits (f) (Jenouvrier & Visser, 
2011). First, we describe the study species (Section 2.1), climate 
variables and functional traits (Section 2.2). Second, we develop a 
structured matrix population model (Section 2.4) that includes the 
effect of climate and functional traits on the entire BBA life cycle 
(Section 2.3) to understand their respective effects on the long- term 
deterministic population growth rate λ. Finally, to understand the 
main pathway by which climate and functional trait changes affect 
the population growth rate, we conducted a detailed sensitivity 
analysis (Section 2.5).
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2.1 | Study species: the BBA

Black- browed albatrosses are large Procellariiformes (3–4 kg, 
2–2.5 m wingspan) breeding on sub- Antarctic islands during the aus-
tral summer. Adults arrive in September at their breeding site and 
lay a single egg in October that will hatch in December. The chick 
fledges in late March at a size similar to that of an adult.

Our BBA study population is located at Kerguelen Island (49°41′S, 
70°14′E), in the colony of Cañon des Sourcils Noirs (≃1,100 breeding 
pairs), where ca. 200 breeding pairs were monitored annually since 
the season 1979/1980. BBAs forage over sub- Antarctic waters on 
the north- eastern edge of the Kerguelen shelf during the breeding 
season from October to April (Pinaud & Weimerskirch, 2002) and 
in Tasmanian waters during winter (Desprez et al., 2018). Their diet 
is composed of fish (73%), penguin carrion (14%) and squids (10%) 
(Cherel, Weimerskirch, & Trouvé, 2000).

Adults and chicks are leg- banded with stainless steel rings and 
a capture–mark–recapture programme is ongoing annually during 
the breeding season. The rings of breeding birds are checked just 
after egg laying, and all chicks are ringed just before fledging and 

body condition measurements (e.g., mass [g], wing length [mm]) are 
recorded.

2.2 | Climate variables and functional traits

We have a reasonable knowledge of the links between climate variables 
(c) and functional traits (f), and how those traits affect the demographic 
rates (θ[f(c), c]) from previous studies (R. Fay, M. Desprez, S. Jenouvrier, 
C. Barbraud, K. Delord, & H. Weimerskirch, unpublished data; Desprez 
et al., 2018; Nevoux et al., 2007; Rolland, Barbraud, & Weimerskirch, 
2008; Pinaud & Weimerskirch, 2002). Figure 1 summarizes the statisti-

cally significant relationships and hereafter, we will refer to the various 
pathways on Figure 1 by their letter [x]. Desprez et al. (2018) estimated 
pathways [b, g, h, i, j, k, n], and Supporting Information Methods and 
Results detail the estimation of other pathways.

Sea surface temperatures (SSTs) were extracted from satellite 
data from 1982 to 2015 in several spatial sectors that correspond to 
the different foraging areas during various seasons of the BBA life 
cycle (hereafter SST*, Supporting Methods 1.1, Figure S1a). In addi-
tion, we used SST during the wintering season (July to September) 

F IGURE  1 Diagram summarizing the relationships between the different hierarchical levels through which climate variables affect 
population growth rate. A change in climate can impact functional traits, which in turn can affect demographic rates, and subsequently 
population dynamics. Letter shows specific pathway we refer to in the main text, and the thickness of the line refers to the magnitude of the 
sensitivity of an output variable (y) to an input variable (x) of the model: dy

dx
 (Table 1). The relationships that were not statistically significant 

are not shown. For example, no relationship between climate and the following functional traits has been detected: wing length, proportion 
of time on the water, the number of air/water transition (Desprez et al., 2018, Supporting Information). Note these relationships may vary 
with the breeding status of the individuals during the previous breeding season
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recorded by Global Location Sensor (GLS) fitted on birds (thereafter 
SSTG, Figure S1b; Desprez et al., 2018).

The functional traits measured are body condition standardized 
at a reference date during the breeding season and foraging vari-
ables (Supporting Methods 1.2 and Figure S2). We focus on wing 
length in our analysis, as this was the body condition measure-
ment most strongly associated with demographic rates (Supporting 
Results 2). Two foraging variables during the pre- breeding period 
were calculated from GLS data (see Desprez et al., 2018): (1) the per-
centage of daily time spent sitting on the water (Time

w
), and (2) the 

minimal number of daily transitions between air and water (#T
a/w

) 
(Supporting Methods 1.3, Figure S2). The last functional trait is the 
date of return on the pre-breeding ground calculated from GLS data.

All our variables are expressed as standard score, which is a di-
mensionless quantity obtained by subtracting the population mean 
from an individual raw value and then dividing the difference by the 
population standard deviation. For the climate variables, we used the 
2006–2013 (excluding 2008), which is the overlapping period of the 
SST measurements between GLS and satellite.

2.3 | The BBA life cycle

Our analysis is based on a life cycle that includes 25 states (s = 25), 
based on breeding states and age defined at the end of the breed-
ing season in March of year t (Figure 2). Note that while the demo-
graphic rates may, in general, vary with state j and time t, we include 
only the state subscript in the following notation for clarity, where j 
corresponds to the life cycle state ( j = 1,…,s).

The breeding states are defined as follows:

1. Pre-breeders: individuals that have yet to breed; this state 
includes fledged chicks produced during the current season 
(from October of year t − 1 to March of year t).

2. Successful inexperienced breeders: individuals that breed for the 
first time and successfully raised a chick during the current season.

3. Failed inexperienced breeders: individuals that breed for the first 
time and either failed to hatch an egg or failed to raise a chick dur-
ing the current season.

4. Successful experienced breeders: individuals that have bred at least 
once before and successfully raised a chick during the current season.

5. Failed experienced breeders: individuals that have bred at least 
once before and either failed to hatch an egg or failed to raise a 
chick during the current season.

6. Non-breeders: individuals that have bred at least once before, but 
did not breed in the current season.

From 1 to 10 years of age, individuals can be pre- breeders or 
successful or failed inexperienced breeders. However, there is no 
age class once individuals have bred at least once in their lifetime 
(i.e., experienced individuals, states 23–25).

The annual life cycle starts in March of year t, immediately after 
the fledging period. The demographic rates associated with the life 
cycle transitions among states are defined as follows:

1. State-specific survival probability ϕj: the probability of surviving 
and not permanently emigrating to a different colony from the 
end of the breeding season in 1 year t (i.e., March t) to the 
end of the breeding season in the next year (i.e., March t + 1).

2. State-specific breeding probability βj: the conditional probability 
of returning to the colony and breeding in the next breeding sea-
son (i.e., October t), given survival.

3. State-specific success probability γj: the conditional probability of 
successfully raising a chick to fledging in the next breeding season 
(i.e., March t + 1), given survival and breeding.

For example, pre- breeders older than 5 years old at year t may pro-
duce offspring the following year at t + 1, if they survive from March 
t to t + 1 with probability ϕj (j∈ [5 10]), and return to the colony and 
breed in October of year t with probability βj, and raise successfully a 
chick to fledging in March t + 1 with probability γj. These transitions 
appear on Figure 2 (dashed lines from nodes j∈ [5 10] to node 1).

These state- specific survival, breeding and success probabili-
ties were estimated using a multi- event capture–recapture model 
(Pradel, 2005) (Supporting Methods 1.4). We performed goodness- 
of- fit tests (Supporting Methods 1.5) and a model selection accord-
ing to the parsimony criteria Akaike information criterion ([AIC]; 
Burnham & Anderson, 2002) (Supporting Methods 1.6). 

2.4 | The matrix population model

Based on this life cycle, we construct a climate-  and trait- dependent 
matrix population model (Caswell, 2001). The matrix population 
model predicts the population from time t to t + 1 by n

t+1 = A
t
n

t
 

TABLE  1 Outputs of the climate-  and trait- dependent matrix 
population model and sensitivity analysis

Variable Notation Calculation

Population growth 
rate

λ Dominant eigenvalue of A

Stable state 
distribution

w Right eigenvector  
corresponding to λ

Reproductive value v Left eigenvector  
corresponding to λ

Sensitivity of λ to 
population matrix 
A

dλ

dvec
⊤

A

w⊤⊗v⊤

w⊤v

Sensitivity of λ to 
vital rate !

dλ

d!⊤
dλ

dvec
⊤

A

dvecA

d!⊤

Sensitivity of λ to 
functional traits f

dλ

df⊤
dλ

dvec
⊤

A

dvecA

d!⊤
d!

df⊤

Sensitivity of λ to 
climate variables c

dλ

dc⊤
dλ

dvec
⊤

A

dvecA

d!⊤

(

d!

df⊤
df

dc⊤
+ d!

dc⊤

)

For the calculation of the sensitivity of the population growth rate λ with 
respect to the climate variables c, the term dθ

dc⊤
 represents the direct meas-

ured effect of climate variables on θ; that is, that does not occur through 
an indirect impact of climate on body size and foraging processes. Notation 
as in Caswell (2008) with vec is the vec operator, which transforms a ma-
trix to a column vector by stacking each column on top of the next.
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where n
j
 is the abundance of state j and A

t
 is the population pro-

jection matrix at time t, which contains the demographic rates (!t, a 
vector of 68 entries) (Supporting Method 1.7). The population matrix 
at time t depends on the vectors of functional traits f and climate 
variables c: A

{

![ft, ct, f(ct)]
}

 (Figure 1). From this model, we calculate 
the asymptotic deterministic population growth rate λ (maximum ei-
genvalue of A; Caswell, 2001) as a function of functional traits and 
climate variables. This analysis provides information under the hy-
pothetical scenario in which individuals experience a constant set of 
climate conditions or persistent functional traits over their entire life.

2.5 | Sensitivity analysis

Sensitivity analysis allows us to understand the respective role of 
demographic and functional traits underlying population responses 

to climate change (McLean et al., 2016) and address the question 
“To which climate variables and traits is λ most sensitive, when the 
climate variables and traits are scaled relative to their variation?” 
(Supporting Methods 1.8). It measures the effects of absolute, or 
unit change in an input parameter x on an output y. Sensitivity of 
λ can be calculated with respect to any parameters: demographic 
rates or functional traits (e.g., body size or foraging behaviours) of 
the model: dλ

dx
 using derivative chain rule (Caswell, 2008; Table 1).

Because multiple climate variables and various functional traits 
affect the population growth rate with various interactive effects, 
we conducted our analysis over all possible combinations of c and 
f over their observed range. Specifically, we used 10 values per 
variable distributed evenly over the minimum and maximum values 
observed (except for the number of transition air/water for which 
we restricted the range, see Supporting Methods 1.3, Figure S3). 

F IGURE  2 Life cycle of the black- 
browed albatross. It includes 25 states 
based on breeding states and age defined 
at the end of the breeding season in 
March t. The numbering of the nodes 
corresponds to the rows of the population 
vector n. Colours and patterns refer to 
specific breeding states (see Section 2.3). 
Fertilities are represented by dashed 
lines, and the transitions between states 
of individuals already present in the 
population are represented by solid lines
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Furthermore, we set SST* in the juvenile and adult sector during 
the wintering period to be equal because they were calculated over 
similar seasons and sectors and are highly correlated (Pearson’s 
correlation coefficient of 0.77, p- value <.0001, Figure S1). Thus, we 
vary seven variables (three climate variables and four functional 
traits), that is study 107 samples of the parameter space.

3  | RESULTS

Changes in climate and functional traits cause changes in the 
demographic rates (Section 3.1) and population growth rate 
(Section 3.2). The sensitivity analysis determines how much change 
in the population growth rate is caused by a change in a parameter 
(climate or a functional trait or a demographic rate, Section 3.3).

3.1 | Effect of climate and functional traits on 
demographic rates

SST* during winter in the juvenile sector (Figure 1 pathway [a]) and 
wing length [g] both affect survival during the first year at sea (ϕ1), 

but wing length is not related to the climate variables studied. ϕ1 is 
maximized at SST* standard scores ~−0.4 (hereafter optimal SST* 
that are slightly cooler than the 2006–2013 average) and declines at 
higher or lower values (Supporting Results 2, Figure S4). This non-
linear relationship is stronger for individuals with larger wing length. 
Wing length but not climate affects recruitment probabilities [h]: 
the probability to recruit increases for individuals with a longer wing 
length, especially for younger individuals (Figure S5).

Foraging and phenology variables during the pre- breeding period 
(Time

w
, #T

a/w
 and the date of return) influence the success probabil-

ity of experienced breeders (Desprez et al., 2018), [i, j, k]. During the 
pre- breeding period, individuals that spent less time on water and 
did more take- offs and landings (i.e., likely having a higher foraging 
effort) were more likely to breed successfully during the subsequent 
breeding season (Figure S6a). Earlier return date to the pre- breeding 
grounds was associated with higher SSTG in the wintering sector and 
lower breeding success (Desprez et al., 2018) (Figure S6b). This is the 
only relationship through which the effect of climate is mediated by 
a functional trait [bin].

SST* during winter and during the breeding season both affect 
the probability to successfully raise a chick for inexperienced breeders 

F IGURE   3  Impact of sea surface temperatures (SST) and functional traits on the deterministic population growth rate of black- 
browed albatross breeding at Kerguelen Island. SST is expressed as a standard score relative to the time period 2006–2013. Each figure 
shows a combination of variables varying over their observed range, while the other variables not shown are set to their mean. (a) Is the 
effect of wing length (x- axis) and SST* in the juvenile sector (colour lines). (b) Is the impact of the number of daily transitions between 
air and water (#T

a/w
 x- axis) and the percentage of daily time spent sitting on the water Time

w
 (colour lines). (c) Is the effect of SST* in the 

juvenile sector equal to SST* in the adult non- breeding sector during the wintering period (x- axis) and SST* during the breeding season 
(colour lines). (d) Is the impact of SSTG during the wintering season
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(γ5, [c] and [e], Figure S6c) and the probability to breed for experienced 
breeders (β, [d] and [f], Figure S7). γ5 are maximized at cold SST* in the 
wintering sector and decline at warmer values. β are maximized at SST* 
in the wintering sector cooler than the 2006–2013 average and decline 
at warmer or lower values. Although the relationships are nonlinear, 
overall warmer SST* in the breeding sector increase γ5 and β.

3.2 | Effect of climate and functional traits on 
population growth rate

The population growth rate increases when the wing length of in-
dividuals is larger (Figure 3a). This effect is mediated by SST* in the 
juvenile sector, with a larger wing length effect observed for optimal 
SST* values (Figure 3a). For example, a population of individuals with 
small wing length living in an environment characterized by the cool-
est or warmest SST∗

J
=SST

∗

W
 is predicted to decline dramatically by 

~6.3% per year). A population of individuals with large wing length 
living in an environment characterized by optimal SST* is predicted 
to increase up to 2.5% per year.

The population growth rate decreases when the percentage of 
daily time spent sitting on the water increases, and it increases when 
the number of daily transitions between air and water increases 
(Figure 3b). These relationships are nonlinear, and for high values of 
the number of transition air/water and low values of time sitting on 
the water, the effect of these foraging variables is smaller. For a pop-
ulation of individuals spending a high proportion of their time on the 

water, with few take- offs and landings (i.e., low foraging activity), the 
population growth rate is predicted to decline up to 5.3% per year. 
However, for a population of individuals with high foraging activity 
(high #Ta∕w low Timew), the population growth rate is predicted to 
increase by up to 1.8% per year.

The population growth rate is maximized at optimal 
SST

∗

J
=SST

∗

W
≃−0.4 in the wintering season and declines at higher 

or lower values (Figure 3c). For example, for warm SST* during the 
breeding season (SST* = 2.6), the population growth rate is predicted 
to increase by ~1.3% per year for a range of winter SST∗

J
=SST

∗

W
 of 

[−0.6 −0.2]. Although the relationship is nonlinear, overall warmer 
SST* in the breeding season slightly increases the population growth 
rate. The effect of SSTG during the wintering season on the popula-
tion growth rate is small (Figure 3d).

3.3 | Sensitivity analysis

The sensitivity of λ to any variable (climate, functional trait or demo-
graphic rate) is a local result that depends on specific values of all the 
other parameters (climate variables and functional traits) that deter-
mine the demographic rates. For example, Figure 4 details the sensi-
tivity of λ to SST∗

J
 in the juvenile sector as function of two  influential 

variables: wing length and SST∗

J
. The population growth rate is maxi-

mized at SST∗

J
≃−0.4 with a wide range of values almost equal to this 

optimum. Hence, the sensitivity of λ to SST∗

J
 is close to zero at these 

optimal SST∗

J
. From coolest SST∗

J
 to the optimum, λ increases while the 

opposite pattern occurs from the optimum to warmest SST∗

J
. Thus, the 

sensitivity of λ to SST∗

J
 is positive for cooler SST∗

J
, while it is negative 

for warmer SST∗

J
. The concavity of this relationship increases when 

the wing length of individuals is larger, and as a result, the sensitivities 
are larger in a population of larger individuals (green lines on Figure 4). 
The same pattern is observed qualitatively regardless of the values of 
other climate variables and functional traits: SSTG (Figure S8); SST* 
during breeding (Figure S9); and foraging activity (Figure S10).

Confronted with such a range of interacting parameter values, 
we calculated results for a set of 107 samples of the parameter 
space, calculating the sensitivity of λ for each. We summarize the 
results with bar figures showing the 90% and 50% envelopes of ab-
solute sensitivity of λ to each parameter. The distribution of these 
sensitivities is detailed in Figures S11–S15. To infer general pattern 
on which traits the population growth rate is mostly sensitive, we 
compare the distribution of the absolute sensitivity of λ to a variable. 
For clarity, we refer to the sensitivity of λ to a variable instead of 
detailing its distribution in the following paragraphs.

As expected for a long- lived species, λ is mostly sensitive to adult 
survival of experienced breeders (Figures 5 and 1: pathway [o]). The 
sensitivity of λ to the first- year survival [l] is larger than the sensi-
tivity of λ to survival of inexperienced [p], and breeding and suc-
cess probabilities [r,n,q]. The sensitivity of λ to breeding and success 
probabilities are larger for experienced breeders than  pre- breeders 
or inexperienced breeders.

The sensitivity of λ to the number of air/water transitions is larger 
than the sensitivity of λ to other functional traits (Figures 6 and S14). 

F IGURE  4  (Top panel) Impact of sea surface temperatures in 
the juvenile sector (SST∗

J
, x- axis) and wing length (coloured lines) on 

the deterministic population growth rate of black- browed albatross 
breeding at Kerguelen Island. SST∗

J
 and wing length are standard 

scores. (Lower panel) The sensitivity of the population growth rate 
λ with respect to SST∗

J
 in the juvenile sector. Other climate variables 

and functional traits are fixed to their mean value, except the SST* 
during winter which is equal to SST∗

J
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Among foraging variables, the sensitivity of λ to the number of air/
water transitions is larger because the sensitivity of the success proba-
bilities to this trait (pathway [k] on Figure 1) is larger than the sensitivity 
of the success probabilities to other foraging traits ([i] and [j], Figure 
S16).

The sensitivity of λ to the number of transitions air/water is 
larger than the sensitivity of λ to wing length (Figure 6), despite the 
fact that the sensitivity of λ to the breeding success is smaller than 

the sensitivity of λ to first- year survival ([n] < [l], Figure 5). Indeed, 
the sensitivity of the breeding success probabilities γ

i
 to the number 

of air/water transitions [k] is much larger than the sensitivity of ϕ1 to 
wing length ([g], Figure S16).

The sensitivity of λ to the SST in the juvenile sector is poten-
tially much larger than the sensitivity of λ to other climate variables 
(Figure 6), despite the sensitivity of the demographic rates to SST 
during the breeding season being relatively comparable to the 

F IGURE  5 The sensitivity of the population growth rate λ with respect to demographic rates. Panels show, respectively, the following: 
(higher)—the sensitivity of λ to survival probabilities ϕ

j
 for the 25 states j of the life cycle (Figure 2); (intermediate)—the sensitivity of λ to 

breeding probabilities β
j
; and (lower)—the sensitivity of λ to breeding success probabilities γ

j
. The bar shows the range of sensitivity values 

to each demographic parameter, with the grey and black areas representing the 90% and 50% envelope of the 107 samples of the parameter 
space. Figures S11–S13 detail the distribution of these sensitivities

φ

β

γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ

β β β β β β β β β β β β β β β β β β β β

φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ

F IGURE  6 The sensitivity of the 
population growth rate λ with respect to 
climate and to functional trait. The bar 
shows the range of absolute sensitivity 
values to each parameter, with the grey 
and black areas representing the 90% 
and 50% envelope of the 107 samples 
of the parameter space. Figures S14 
and S15 detail the distribution of these 
sensitivities
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sensitivity of the first- year survival to the SST in the juvenile sector 
([a] vs. [e,f], Figure S17). This pattern occurs because the sensitivity 
of λ to the first- year survival is much larger than the sensitivity of λ 
to the breeding and success probabilities ([l] > [q,r], Figure 5).

The sensitivity of λ to the SST recorded by GLS is small because 
both the sensitivity of the breeding success probabilities to the SST 
recorded by GLS ([ib], Figure S17) and the sensitivity of λ to the 
breeding success [n] are small.

4  | DISCUSSION

Our results suggest that the population dynamics of BBA are driven 
by the combined effects of climate over various seasons, multiple 
functional traits and demographic processes across the full life cycle. 
Sensitivity analyses indicate that changes in sea surface temperature 
(SST) during late winter cause the biggest changes in the population 
growth rate through their effect on juvenile survival, except if winter 
environmental conditions are close to the SST optimum. Among func-
tional traits, adult foraging activity during the pre- breeding period has 
the biggest impact on population growth rate, but this trait was not 
influenced by the studied climate variables. Adults appeared to re-
spond primarily to changes in winter climate conditions by modifying 
their migratory schedule rather than by changing their at- sea foraging 
activity (Desprez et al., 2018). Indeed, BBA tended to advance their 
spring migration to pre- breeding grounds when SSTG during winter 
were warmer, which had a negative impact on their breeding success 
the following breeding season. However, changes in SSTG affecting 
their migratory schedule have little impact on the population growth 
rate. Our analysis illuminated the population consequences of climate 
changes on demographic rates and functional traits through complex 
carry- over effects. In addition, it unravelled the important role of the 
wintering season and juvenile phase of the life cycle, two understud-
ied parts of the life cycle in migratory species.

4.1 | Population response to climate

Juvenile survival, breeding and success probabilities showed nonlin-
ear relationships with SST* during various seasons, and return date 
to the pre- breeding grounds was negatively correlated with SSTG 
during late winter. SST is widely used as an indicator of food availabil-
ity for marine predators because warmer SST usually results in lower 
primary productivity in several water masses and oceanographic 
systems, ultimately reducing prey availability (Constable et al., 2014; 
Sydeman, Thompson, & Kitaysky, 2012). The relationships between 
SST and BBA demographic rates are strongly bell- curve- shaped 
(i.e., concave), which could result from contrasted relationship be-
tween SST and primary productivity among areas of the Southern 
Ocean (Arrigo, van Dijken, & Bushinsky, 2008; Behrenfeld et al., 
2006). Alternatively, this bell- curve suggests that the optimal SST 
for various demographic rates is a balance of trade- offs in the un-
derlying unobserved functional traits and their response to climate 
(Cornioley et al., 2017).

Black- browed albatross breed at the colony in Kerguelen Islands 
during October–April and are at sea off Australia in austral winter 
(May–September). During the breeding season, higher SST over 
BBA’s main foraging grounds around Kerguelen Islands positively 
affects BBA demographic rates (Nevoux et al., 2007; Pinaud & 
Weimerskirch, 2002) and thus the population growth rate. Warmer 
SST during breeding may reflect a change in water masses distri-
bution and an increase in primary productivity in this naturally 
fertilized region off the Kerguelen Islands, resulting in higher food 
availability during the breeding season and a higher breeding prob-
ability and breeding success (Blain et al., 2007; Nevoux et al., 2007). 
However, potential changes in SST during the breeding season have 
little effect on the population growth rate compared to the impact 
of changes in SST during the wintering season.

The optimal population growth rate predicts a population in-
crease of 5.5% per year for a population of individuals with the larg-
est observed wing length and maximal foraging activity (i.e., large 
number of landings and take- offs but little time resting on the water) 
in an environment characterized by warm SST during breeding but 
intermediate SST during winter. The minimal growth rate (a popula-
tion decline of 7.8% per year) is predicted for a population of indi-
viduals with the smallest observed wing length and minimal foraging 
activity in an environment characterized by warm SST during winter 
and cold SST during breeding.

The concave population response to SST during winter (SST∗

J
) 

has important implications for BBA population response to future 
climate change. Indeed, Pardo, Jenouvrier, Weimerskirch, and 
Barbraud (2017) found that the historical mean SST (1982–2015) 
was lower than the optimal SST for this species providing a “cli-
mate safety margin” (i.e., difference between optimal and histor-
ical climatic conditions). If the mean SST increases, BBA will thus 
first experience SST that will be more often at or near the op-
timum range for the species that buffer the negative effects of 
the extreme warming SST. Here, we found a negative optimal SST 
and thus no climate safety margin. This pattern occurs because 
our standard scores are calculated relative to the SST mean over 
period 2006–2013, which is warmer than the historical SST mean. 
Furthermore, our results show that the population growth rate 
will become more sensitive to change in SST∗

J
 for warmer SST than 

the recent period 2006–2013 (Figure 4). Hence, if SST increases 
relative to the recent period, the BBA population is predicted to 
decline and will do so at a faster rate as the climate warms.

4.2 | Population response to functional traits

The effect of climate changes on BBA population growth rate 
mediated by their impacts on a functional trait (date of return 
on pre- breeding ground) are small. Several studies did not iden-
tify an effect of phenological changes on population dynamics, 
despite the strong responses of the timing of life cycle events 
to climate changes (Reed, Grøtan, Jenouvrier, Sæther, & Visser, 
2013; Reed, Jenouvrier et al., 2013; Wilson & Arcese, 2003). 
However, the direct effects of other BBA functional traits (body 
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size at fledging and adult foraging activity during pre- breeding) 
on demographic rates exhibit a larger influence on the population 
growth rate.

In an environment characterized by favourable climate condi-
tions, the BBA growth rate of a population comprising smaller fledg-
ing and foragers with low activity is predicted to decline by 7.2% per 
year, while the growth rate of a population with larger fledging and 
foragers with intense activity is predicted to increase by 5.5% per 
year. Interestingly, in an environment characterized by unfavourable 
climate conditions, a population with larger fledging and foragers 
with intense activity is still viable (increase of ~1% per year) despite 
extremely poor environmental conditions. Thus, a population of in-
dividuals with the optimal functional traits (large structural size and 
intense foraging activity) could buffer the negative impact of unfa-
vourable climate conditions.

For BBA, fledglings with longer wings are more likely to sur-
vive the first year at sea and to recruit into the population. This re-
sult supports the size advantage hypothesis, whereby larger body 
size confers an advantage in physical competition for resources 
(Garnett, 1981), with consequently higher juvenile survival and 
recruitment probabilities (Maness & Anderson, 2013; Rodríguez, 
van Noordwijk, Álvarez, & Barba, 2016) hence fitness (Marshall, 
Pettersen, & Cameron, 2018). Seabirds should also maximize the 
length of flight feathers as opposed to that of weight or other body 
size structure because flight is required to forage when they reach 
independence after fledging. Structural size may also be related to 
an individual’s physiology, foraging behaviour, competitive abilities 
and cognitive capabilities that will influence its performance after 
fledging (Maness & Anderson, 2013). In addition, wing length may be 
a proxy of age at fledging as this measure attains an asymptote only 
at fledging (Ricketts & Prince, 1981; Warham, 1990). In that case, 
our results are consistent with the timing effect hypothesis; that is, 
chicks hatching earlier in the season have a longer wing length and 
thus a greater fitness (Perrins, 1970) and population growth rate. 
Obviously, the size advantage hypothesis and the timing hypotheses 
are not mutually exclusive (Maness & Anderson, 2013), and more 
work is needed to understand the processes by which wing length 
affects BBA juvenile survival and recruitment, with consequences 
for the population growth rate.

The population growth rate of BBA is mostly sensitive to the 
adult foraging activity of individuals, specifically the number of 
take- offs and landings during the pre- breeding period. More active 
individuals are likely able to accumulate more energetic reserves in 
preparation for the breeding season and to raise a chick until fledg-
ing during the following breeding season (Desprez et al., 2018). 
At the population level, only one study, to our knowledge, related 
population growth to foraging effort (Lewis et al., 2006) and found 
correlations between population growth rates of several colonies of 
Cape Gannet (Morus capensis) and foraging trip duration, energy gain 
and body condition during a single breeding season. Making general 
inferences about the importance of foraging activity for population 
dynamics requires further studies across a broader range of species 
and ecosystems.

4.3 | Importance of studying the full life cycle

For long- lived migratory species, population responses to climate 
are constrained by different climate conditions during the breeding 
and non- breeding seasons (Small- Lorenz, Culp, Ryder, Will, & Marra, 
2013; Thaxter, Joys, Gregory, Baillie, & Noble, 2010). Our results 
showed that the population dynamic of BBA is driven by processes 
occurring during multiple seasons (the wintering, pre- breeding and 
breeding season) through carry- over effects, whereby climate or 
functional traits that affect an individual in one season also affect 
its demographic rates during a subsequent season (Harrison, Blount, 
Inger, Norris, & Bearhop, 2011; Norris & Marra, 2007). Changes in 
SST during the breeding season have little impact on the population 
growth rate. However, the population growth rate is highly sensitive 
to both winter climate conditions and foraging activity during pre- 
breeding season. For adults, winter climate conditions and foraging 
activity during pre- breeding season have large carry- over effects on 
the breeding and success probabilities during the next breeding sea-
son. Carry- over effects of winter climate conditions on functional 
traits (e.g., body conditions) and reproductive performance during 
the successive breeding season have been reported in several spe-
cies (Barbraud & Weimerskirch, 2001; Inger et al., 2010). Carry- over 
effects have potentially large impacts on populations (Harrison et al., 
2011), and it is thus very difficult to draw general conclusions about 
which season of the life cycle is the most critical for population dy-
namics without analyses integrating the complete life cycle (Sæther 
& Engen, 2010).

While changes in adult survival cause the largest effects on 
BBA population growth rates, our model selection results indicated 
that adult survival was relatively constant through time (Supporting 
Results). For long- lived species, it is well established that temporal 
variation in adult survival is buffered against environmental variations 
(Gaillard & Yoccoz, 2003; Sæther & Bakke, 2000). For these species, 
the demographic rates of young individuals are usually highly variable 
and more likely influenced by climate variations than the one of adults 
(Fay, Weimerskirch, Delord, & Barbraud, 2015; Oro, Torres, Rodríguez, 
& Drummond, 2010). We found that BBA population growth rate is 
mostly sensitive to a change in winter SST that impacts juvenile sur-
vival. There is increasing evidence that during the first year at sea, 
juvenile seabirds experience a high mortality (Fay et al., 2015; Oro 
et al., 2010), as documented in other taxa (Baron, Le Galliard, Tully, & 
Ferrière, 2010; Gaillard et al., 1997; Ozgul, Armitage, Blumstein, & Oli, 
2006). Due to their inexperience and potentially incomplete growth, 
young individuals may exhibit lower foraging efficiency relative to that 
of adults (Enstipp et al., 2017; Orgeret, Weimerskirch, & Bost, 2016). 
Indeed, in other seabirds, the development of tracking technology has 
revealed lower performance of young individual in flying and diver 
activity during foraging or migration trips (Harel, Horvitz, & Nathan, 
2016; Orgeret et al., 2016; Rotics et al., 2016). The important direct 
effect of SST on juvenile survival is probably mediated by unknown/
unmeasured functional traits, and perhaps foraging efficiency since 
adult foraging activity is the trait to which the population growth rate 
is mostly sensitive.
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4.4 | Model considerations

Our analysis is based on a set of traits, which define a set of vital 
rates, which in turn define a population growth rate (among other 
things). This makes the traits equivalent to what are often referred 
to as “lower- level” parameters in a demographic model: quantities 
that determine the transition and fertility terms that appear in the 
population projection matrix.

An extension of these results would incorporate the trait values 
themselves into the state space of the population model, to create 
a stage × trait-  or age × trait- structured model. The population at 
any time would then be composed of a mixture of individuals with 
different trait values, experiencing the vital rates associated with 
their traits in the environment of the moment (e.g., Caswell, 2014; 
Hartemink, Missov, & Caswell, 2017, in which the trait is frailty).

In such an analysis, traits might be fixed over the lifetime of the 
individual, as wing length at fledging clearly is. Or, they might be dy-
namic, changing over the individuals lifetime according to a set of age-  
or stage- dependent transition matrices (e.g., Caswell, 2012; Caswell 
& Salguero- Gómez, 2013; for a general methodology see Caswell, de 
Vries, Hartemink, Roth, & van Daalen, 2018). Foraging behaviours, 
for example, are not necessary static traits and may change over the 
lifetime of an individual. Generally, seabirds are spatially consistent in 
their foraging behaviour, returning to the same site from one foraging 
trip to another (Patrick et al., 2014; Weimerskirch, 2007). However, 
they show a certain amount of plasticity over time as an adaptive re-
sponse to energetic requirements that differ over the breeding cycle 
and to changes in oceanic variability. In BBA within a year, individ-
uals, especially males, show a high degree of repeatability in their 
foraging trips, with important fitness consequences: individuals that 
are more consistent in their foraging behaviours have a higher breed-
ing success (Patrick & Weimerskirch, 2014a). Between years, there is 
little information on repeatability in foraging behaviour, but BBA has 
the ability to adjust their foraging behaviour by increasing foraging 
range when condition are poorer (Patrick & Weimerskirch, 2014b).

Incorporating the dynamics of individual transitions among trait 
categories would require a great deal of very detailed longitudinal 
individual data, which are not available yet for the BBA.

5  | CONCLUSIONS

This study simultaneously quantified the relative effects of climate 
variables, functional traits and demographic rates on the population 
dynamics of a long- lived species and unravelled complex underly-
ing mechanisms of a population response to climate change. Each 
population response to climate effects reflects the unique combi-
nation of meaningful climate factors and species life- history traits 
(demographic rates and functional traits) across different seasons 
and phases of the life cycle. Several studies have proposed some 
general biological traits or characteristics inherent to vulnerability 
of particular species to climate change. Notwithstanding, a robust 
conclusion requires the consideration of the complete life cycle 

and  assessing the sensitivity of multiple pathways by which climate 
 affects population.
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