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Abstract—In classification problem, several different classes may
be partially overlapped in their borders. The objects in the border
are usually quite difficult to classify. A Hybrid Classification Sys-
tem (HCS) is proposed to adaptively utilize the proper classification
method for each object according to the K nearest neighbors,
which are found in the weighting vector space obtained by Self-
Organizing Map (SOM) in each class. If the K close weighting
vectors (nodes) are all from the same class, it indicates that this
object can be correctly classified with high confidence, and the
simple hard classification will be adopted to directly classify this
object into the corresponding class. If the object likely lies in the
border of classes, it implies that this object could be difficult to
classify, and the credal classification working with belief functions
is recommended. The credal classification allows the object to
belong to both singleton classes and sets of classes (meta-class)
with different masses of belief, and it is able to well capture the
potential imprecision of classification thanks to the meta-class and
also reduce the errors. Fuzzy classification is selected for the object
close to the border and hard to clearly classify, and it associates
the object with different classes by different membership (prob-
ability) values. HCS generally takes full advantage of the three
classification ways and produces good performance. Moreover, it
requires quite low computational burden compared with other K-
NN based methods due to the use of SOM. The effectiveness of
HCS is demonstrated by several experiments with synthetic and
real data sets.

Keywords: belief function, evidence theory, pattern classifica-
tion, uncertain data, Dempster-Shafer theory.

I. INTRODUCTION

The K-nearest neighbors (K-NN) classifier [1] remains an
important nonparametric method for data classification. The
original voting K-NN classifier [1] consists to directly classify
the object (test sample) into the majority class of its KNNs in the
training data space. This method is called a hard classification
technique because it answers to the classification question by
only yes or no (i.e. the object belongs, or not to the class under
concern). In the voting K-NN, the K selected neighbors are
considered with equal weight. In order to improve the perfor-
mance of voting K-NN, the fuzzy version of K-NN (denoted by
FK-NN) [2], [3] was developed taking into account the distance

between the object and its neighbors1, and the neighbor with the
smaller distance to the object has bigger weight (contribution) in
the classification. In this way, the object is allowed to belong to
different classes with different membership (probability) values,
and such kind of classification is referred as fuzzy classification
in the literature. There exist various K-NN based classifiers
working with probability framework, and they attempt to acquire
the better classification performance using different ways. For
example, some methods e.g. [4] focus on the selection of
distance measure, and the proper metric is obtained for weighing
each feature in the calculation of distance to the neighborhoods.
The kernels are also introduced in some other methods e.g.
[5] to estimate the curved local neighborhood. In [6], a nearest
neighbor algorithm is presented to reduce the negative influence
of the bad contributing samples, and the object is classified
according to the distance between the object and the local
categorical probability centers, and the posterior probability of
the object. These methods can provide good performances in
some particular cases.

The classification methods working with belief functions
framework [7]–[9] as an extension of probability framework
have been also developed to deal with the uncertainty of
classification. In the classification of uncertain data, the different
classes can partially overlap in their borders, and the object
in the border2 becomes hard to correctly classify according to
the used attributes, because these classes appear undistinguish-
able for the object. Belief function theory [7]–[9] also called
Dempster-Shafer Theory (DST) can well model such uncertainty
and imprecision [10], and it has been applied in many fields,
such as classification [11], [12], [14]–[21], clustering [22]–[24],
decision making support [25]–[30], and so on. Particularly, the
Evidential K-NN (EK-NN) [11] and Evidential Neural Network
(ENN) classifiers [12] have been introduced by Denœux based
on DST, and they generally produce good performance in
data classification thanks to the use of belief functions for
modeling the ignorant information. A recent evidential classifier

1K-NN denotes the classifier, whereas KNNs is the acronym of K-nearest
neighbors.

2If the KNNs of one object belong to several different classes, this object
will be considered quite likely lying in the border of these several classes.
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[15] consisting of a feature selection procedure and a two-
step classification strategy has been further developed by Lian
and Ruan to improve the classification accuracy. We have
also proposed several credal classification methods [16], [19]
inspired by the previous evidential classifiers [11], [12] to deal
with the partly overlapping classes in different cases, and the
object can be committed not only to singleton classes but also
to sets of any classes (i.e. meta-class) with different masses
of beliefs. The credal classification is able to well characterize
the imprecision of classification due to the meta-class, and can
also reduce the misclassification errors. The recent Belief K-
NN (BK-NN) classifier [16] works with credal classification,
but it requires a quite high computational burden because of
the complicate construction and fusion of the Basic Belief
Assignments (BBA’s).

In summary, the K-NN methods can be broadly grouped into
three families according to the framework working with: 1)
the hard classification methods [1], 2) the fuzzy classification
methods [2] and 3) the credal classification methods [16]. The
hard classification approach is simple but it generates a high risk
of error for the uncertain data (like the KNNs from different
classes). The fuzzy classification captures the uncertainty of
classification using fuzzy membership, whereas the meta-class
(i.e. disjunction of several classes), which can well represent
the partial ignorant knowledge of classification especially for
the data lying in the overlapping border of several classes, is
not taken into account in the Frame of Discernment (FoD). The
credal classification approach is able to deal with the uncertain
and ignorant information using the belief functions defined over
the power-set of FoD, but it usually requires high computational
complexity, which is ”price” one has to pay for attaining the
power of expressiveness of the power-set.

In fact, the simple hard classification is suitable for dealing
with the object far from the border of class and easy to clearly
classify with quite low complexity. Credal classification should
be employed when the object is hard to classify and becomes
undistinguishable with respect to several different classes. Other
objects close to the border could be classified using the fuzzy
classification way to properly characterize the uncertainty of
classification with the fuzzy membership. So a Hybrid (i.e.
Hard-Fuzzy-Credal) Classification System (HCS) is proposed
in this work which allows to automatically select the proper
classification method according to the KNNs of the object to
classify.

The main drawback of K-NN based method is the high
computational burden because of the calculation of the distances
of each object to all the training samples especially when the
number of the training data is big. Various methods have been
developed to circumvent this drawback based on data reduction
technique [31]. Self-Organizing Map (SOM) technique [32] has
been successfully applied to reduce the computational burden of
K-NN. In [34], a method referred by SOM-KNN was presented,
and SOM is employed for the pre-processing of data set. One
can define the potential similar patterns region according to

the distance between the object and the weighting vectors of
SOM, and then the neighborhoods of the object can be found
in the given region. By doing this, one reduces substantially the
execution time for seeking the neighborhoods. Another K-NN
classification method consisting of the feature reduction based
on SOM and the prototype selection using the neighborhood
chains has also been developed in [33] to reduce the complexity
when working with high dimensional data sets. SOM coupled
with K-NN technique seems also very helpful here for automatic
selection of a suitable (hard, fuzzy or credal) classification rule
in different contexts. So HCS classification is presented based
on SOM and K-NN in order to make the problems of classifica-
tion of uncertain data tractable with admissible computational
burden. SOM can produce a small number of weighing vectors
that are able to preserve the topological properties of the input
data. Therefore, SOM will be applied in each training class,
and the optimized weighting vectors are used to represent the
corresponding class. By doing this, the object can be classified
according to the Ko nearest weighting vectors, and we just
need to calculate the distances to the small amount of weighting
vectors rather than the original training data, which can greatly
improve the computation efficiency.

In HCS, the optimized weighting vectors corresponding to the
nodes in SOM are found at first to characterize each training
class. The nodes whose K nearest neighbors are from different
classes quite probably lie in the overlapping zone of different
classes, and they will be labeled as border nodes. The border
nodes are considered providing different support degrees to the
associated close classes. Then the Ko nearest nodes of the object
are found. If the Ko nodes all come from the same class say
wi, the hard classification is adopted, and the object will be
directly classified into the class wi. If the Ko nodes are from
different classes, but the nearest one is not in the border, which
indicates that this object is not very likely in the border either,
then the fuzzy classification is adopted. One can construct Ko

BBA’s based on the distances to these Ko nodes and the support
degree functions of these nodes associated with different classes,
and the combination of the Ko BBA’s by Dempster’s rule3 of
combination [7] will be used for the fuzzy classification. If the
Ko nodes originate from different classes and the nearest node
lies in the border of several classes, the credal classification
is employed and the proper meta-class is used to capture
the imprecision of classification (if necessary). In the credal
classification of the object, the Ky1

4 nearest original training
data of the object, which can provide more refined neighborhood
information than the nodes, will be found in close neighborhood
area of the nearest node. Then the Ky1 BBA’s obtained from
the Ky1 nearest training data will be fused by the proposed rule
in which the conflicting beliefs are conditionally transferred to
the meta-class, and the credal classification of the object will

3At this step, other combination rules could be used as proposed in [8]
but these rules requires higher complexity in general that is why we choose
Dempster’s rule in this work.

4Usually, one takes Ky1 = Ko.
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be done based on the global fusion result.
This paper is organized as follows. After a brief introduction

of the background knowledge including the basics of SOM
and belief function theory in section II, the proposed Hybrid
Classification System (HCS) is presented in section III. This
new method is then tested and evaluated in section IV with
respect to several other methods. Section V concludes and gives
some perspectives for related works.

II. BACKGROUND KNOWLEDGE OF SOM AND BELIEF
FUNCTIONS

In order to reduce the computational burden of K-NN method,
SOM technique is adopted to find the optimized weighting
vectors, which can represent the corresponding class. Belief
Function Theory (BFT) is also introduced here to deal with
the uncertain and imprecise information in the classification. So
the basic knowledge on SOM and BFT is briefly recalled.

A. Overview of Self-Organizing Map

Self-Organizing Map (SOM) also called Kohonen map [32],
[33], [35] is a type of artificial neural network, and it is trained
by unsupervised learning method. It defines a mapping from the
input space to a low-dimensional (typically two-dimensional)
grid of M ×N nodes. So it can approximate the feature space
dimension (e.g. a real input vector x ∈ Rp) into a projected 2D
space. SOM allows to preserve the topological properties of the
input space using a neighborhood function. The node at position
(i, j), i = 1, . . .M, j = 1, . . . , N corresponds to a weighting
vector denoted by o(i, j) ∈ Rp. An input vector x ∈ Rp is to
be compared to each o(i, j), and the neuron whose weighting
vector is the most close (similar) to x according to a given
metric (e.g. Euclidean distance) is called the Best Matching Unit
(BMU), which is defined as the output of SOM with respect
to x. The competitive learning is adopted in SOM, and the
training algorithm is iterative. After the optimization procedure,
the close input patterns will be mapped to the close nodes with
the weighting vectors.

In this work, SOM is applied with each training class, and the
normal Euclidean distance measure is used here. The optimized
weighting vectors corresponding to the nodes can well represent
this training class. The number of the weighting vectors (nodes)
usually is much smaller than the original training samples.
So computational burden of seeking the K nearest weighting
vectors of the object could be quite low.

B. Basis of belief function theory

The Belief Function Theory (BFT) is also known as
Dempster-Shafer Theory (DST) [7]–[9]. Let us consider a
frame of discernment consisting of c exclusive and exhaustive
hypotheses (classes) denoted by Ω = {ωi, i = 1, 2, . . . , c}.
The power-set of Ω denoted 2Ω is the set of all the subsets
of Ω, empty set included. In BFT, one object can belong to
different singleton elements and any sets of elements in the

power-set with a Basic Belief Assignment (BBA). BBA is a
function m(.) from 2Ω to [0, 1] satisfying m(∅) = 0 and the
normalization condition

∑
A∈2Ω

m(A) = 1. The subsets A of Ω

such that m(A) > 0 are called the focal elements of the belief
mass m(.). The credal classification (or partitioning) [22] is
defined as n-tuple M = (m1, · · · ,mn) of BBA’s, where mi is
the basic belief assignment of the object xi ∈ X , i = 1, . . . , n
associated with the different elements in the power-set 2Ω.

In BFT, the combination of multiple sources of evidence rep-
resented by a set of BBA’s, is done with Dempster’s rule (called
DS rule for short) [7]. The combination of two BBA’s m1(.) and
m2(.) over 2Ω using DS rule is defined by mDS(∅) = 0 and
for A ̸= ∅, B, C ∈ 2Ω by

mDS(A) =

∑
B∩C=A

m1(B)m2(C)

1−
∑

B∩C=∅
m1(B)m2(C)

(1)

DS rule is commutative and associative. The total conflicting
mass

∑
B∩C=∅

m1(B)m2(C) is redistributed back to the focal

elements through a classical normalization step in (1). However,
this normalization can unfortunately yield unreasonable results
in the high conflicting cases, as well as in some special low
conflicting cases as well [36]. That is why different rules of
combination have emerged to overcome its limitations [8].

III. HYBRID CLASSIFICATION SYSTEM

Hybrid Classification System (HCS) includes three families of
classification methods (hard classification, fuzzy classification
and credal classification). One proper classification method
will be automatically selected according to the context. If
one object can be clearly classified with high confidence, the
hard classification will be adopted. If one object lying in the
border of different classes is difficult to correctly classify, one
uses the credal classification to well capture the imprecision
of classification and to reduce the risk of error. The border
zone is determined according to the neighborhood information.
The fuzzy (probabilistic) classification lies between the credal
classification and hard classification, and it is applied for the
object close to the border and hard to clearly classify.

A. Transformation of training data using SOM

Let us consider a set of test data (samples) X = {x1, . . . ,xn}
to be classified using a set of labeled training data Y =
{y1, . . . ,ys} over the frame of discernment Ω = {ω1, . . . , ωc}
of classes.

In the classification problem, the big computational burden
is the main drawback of the K-NN classifier especially for the
big training data set, since the distances between the object and
all the training data have to be calculated. In order to solve this
problem, we attempt to seek a small number of data points to
well represent the training data set. SOM technique [32] will
be applied in each training class, and the optimized weighing
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vectors corresponding to nodes in SOM are able to preserve the
topological properties of the input data. Each training class (i.e.
wg, g = 1, . . . , c) is characterized by z = M × N weighting
vectors (nodes) Owg = {owg

1 , . . . ,o
wg
z } obtained by SOM, and

the weighting vector space is denoted by O = {Ow1 , . . . ,Owc}.
If one node lies in the border (overlapped zone) of several

classes, the class of object in the close neighborhood zone of
this node will be considered uncertain because these different
classes appear undistinguishable for the object. In other words,
this node provides uncertain support degree for these different
classes close together. In this work, the K-NN method is used
to detect the border node. At first, Ko nearest neighbors (in the
weighting vector space) of each weighting vector (e.g. owg

i ) are
found5. If the Ko neighbors coincide all with the same class
(e.g. wg) for this node, then this node defined by non-border
node is considered totally reliable to support this class, and its
support degree is given by m̃o

i (wg) = 1. If the Ko neighbors
belong to distinct classes, this node will be labeled by border
node because it seems very likely in the border zone of these
different classes.

Let us consider a border node o
wg

i obtained from training
class wg, and the Ko nearest neighbors of owg

i are respectively
from wl, . . . , wg . The support degree of this border node for
its close classes can be calculated by a normal classifier. The
Evidential K-NN (EK-NN) method, which is an evidential
extension of K-NN proposed in [11], is adopted here to classify
the border node using the original training data in these close
classes, since this K-NN based method generally produces good
performance [11]. The output of EK-NN is denoted by m̃o

i (.),
and it includes the singleton elements corresponding to these
involved classes and the total ignorant class Ω. If the class
mainly supported by m̃o

i (.) is wg, i.e. max{m̃o
i (.)} = m̃o

i (wg),
it implies that m̃o

i (.) is consistent with the fact that the border
node o

wg

i originates from wg . Consequently, m̃o
i (.) can be

directly used to reflect the support degree of the node o
wg

i for
these associated close classes.

If the mainly supported class by m̃o
i (.) is not wg, i.e.

max{m̃o
i (.)} ̸= m̃o

i (wg), it indicates that m̃o
i (.) highly conflicts

with the truth that the border node o
wg

i is from wg. In such
case, this result m̃o

i (.) doesn’t bring information for supporting
the object classification in the specific class wg, and one can
just obtain the partial ignorance mo

i (wl ∪ . . . ∪ wg) = 1 from
o
wg

i in the classification. The support degree characterized by a
BBA mo

i (.) of the node o
wg

i for its close classes is given by{
mo

i (A) = m̃o
i (A), A ⊆ Ω, if max{m̃o

i (.)} = m̃o
i (wg)

mo
i (wl ∪ . . . ∪ wg) = 1, if max{m̃o

i (.)} ̸= m̃o
i (wg)

(2)

B. Data classification using K-nearest neighbors

The Ko nearest weighting vectors (also called nodes) in SOM
of each object (say xi, i = 1, . . . , n) are sought at first. In this
step, one just needs to calculate the distances of the object to

5Ko being a small number, e.g. two or three.

the c×z (c being the number of classes, and z being the number
of nodes in each class) nodes rather than all the training data,
which maintains the computational burden relatively low.

1) Hard classification: If the Ko selected nodes are all from
the same class (say wg), it indicates that this object is easy to
clearly classify, and one can be very confident in committing
directly this object to this class wg in hard classification man-
ner. This is a very simple way with quite low computational
complexity.

2) Fuzzy classification: If the Ko nodes are from distinct
classes but the closest one is not labeled as border node, it
indicates that the object is likely close to these different classes.
The hard classification of this object can cause high risk of error,
and the fuzzy classification method is adopted.

The Ko pieces of support degree functions mo
i,k(.)(k =

1, . . . ,Ko) corresponding to the Ko nodes will be weighted
combined for the classification of this object. The weighting
factor of each support degree function mo

i,k(.) is determined by
the distance of the object to the corresponding node oi,k. The
weighting factor αi,k is defined by

αi,k = e−dikγo (3)

with

γo =

2
cz∑
i=1
i ̸=j

cz∑
j=1

d(oi,oj)

cz(cz − 1)
(4)

where dik is distance between object xi and the node oi,k,
and γo is the average distance between each pair of weighting
vectors. The parameter c is the number of classes, and z is the
number of nodes in each class.

The classical Shafer’s discounting method [7] is employed
here to discount the support degree function mo

i,k(.), k =
1, . . . ,Ko obtained from oi,k using the weighting (discounting)
factors αi,k, and the discounted BBA is given by{

m′
i,k(wg) = αi,km

o
i,k(wg), for wg ∈ Ω

m′
i,k(Ω) = 1− αi,k + αi,km

o
i,k(Ω)

(5)

These discounted BBA’s m′
i,k(.) will be combined using DS

rule by eq.(1) for the fuzzy classification of the object, and it
is given by A,Bk ∈ 2Ω:

mi(A) =

∑
Ko∩
k=1

Bk=A

Ko∏
k=1

m′
i,k(Bk)

1−
∑

Ko∩
k=1

Bk=∅

Ko∏
k=1

m′
i,k(Bk)

(6)

Due to the particular structure of BBA’s to combine with DS
rule, the combination result here contains only the singleton
elements (classes) and the total ignorant class denoted by Ω
which usually represents the ignorance (i.e. outliers). The mass
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of belief on Ω can be redistributed to other focal elements if the
outliers (noisy data) is not applicable. To get a Bayesian BBA
(homogeneous to a probability measure) denoted pi(.) to make
the fuzzy classification, one just needs to normalize the masses
of singleton classes by 1 −mi(Ω). More precisely, the output
of the fuzzy classification say pi(.) is a probabilistic measure
given by

pi(wg) =
mi(wg)

1−mi(Ω)
(7)

3) Credal classification: If the closest node (e.g. oi,l) of one
object is in the border of different classes and the Ko selected
nodes of this object belong to different classes, it indicates
that the object probably lies in the overlapped zone of these
classes, and it becomes very difficult to correctly classify this
object. In such case, the credal classification must be employed
to capture the imprecision of classification and to reduce the
misclassification errors.

The object in the border of classes must be treated more
cautiously, and a more refined neighborhood information is
necessary for making the classification. So, it could be better
to seek the Ky1 (Ky1 usually is equal to Ko) nearest neighbors
of this object in the original training data space Y than in the
node (weighting vector) space O, because the original training
data space can provide more specific information in the local
area than the nodes of SOM.

However, finding the Ky1 nearest neighbors of xi directly in
the whole training data set can be a very time consuming task
which is not satisfactory for real applications. In fact, the Ky1

nearest neighbors to find generally lie in the close neighborhood
of the nearest node oi,l. In this work, the Ky2 = ρKy1

nearest neighbors of oi,l in the training data space are used
to characterize the close neighborhood (local area) information
around oi,l, and fortunately this step can be done off-line during
the transformation of training data for the SOM construction.
The tuning parameter ρ > 1 is a positive number with a
recommended default value of ρ = 3. So we can choose the
Ky1 nearest neighbors of xi from the Ky2 selected training
data around oi,l, and we just need to calculate the distances
between the object and the Ky2 selected training data rather
than the whole training data set, which reduces drastically the
computational complexity of the search.

Each selected training sample can provide a BBA’s of the
object xi associated with the class this training sample belongs
to. The BBA’s of the object xi associated with one selected
neighbor yk, k = 1, . . . ,Ky1 labeled by the class wg can be
defined by. {

m̂i,k(wg) = e−dikγy

m̂i,k(Ω) = 1− e−dikγy
(8)

with

γy =

2
s∑

i=1
i ̸=j

s∑
j=1

d(yi,yj)

s(s− 1)
(9)

where dik is the distance between the object xi and yk. One can
see that the smaller distance dik leads to the more mass of belief
on the class wg and less belief on the ignorance. However, if the
neighbor is far from the object xi, it can provide low support
degree for xi belonging to the corresponding class wg , and the
ignorance degree will become high. γy is the average distance
between each pair of training samples, and s is the number of
training samples. The Ky1 BBA’s can be obtained based on the
distance of the object to each neighbor in the similar way. The
Ky1 BBA’s will be globally fused for the credal classification
of this object.

In the fusion process, the BBA’s obtained from the the same
class are grouped into one cluster at first, and we can get
several distinct groups G1, G2, . . . , Gr corresponding to class
w1, w2, . . . , wr. The BBA’s in the same cluster (e.g. Gg) are
generally consistent, since they all mainly support the same class
(e.g. wg). We propose to combine these BBA’s with DS rule,
denoted symbolically by ⊕, according to Eq. (1) because the
conflict between them should be relatively low, more precisely
one will get for A ⊆ Ω, and with m̂i,h ∈ Gg, h = j, . . . , k

m̂
wg

i (A) = [m̂i,j ⊕ . . .⊕ m̂i,k](A) (10)

The sub-combination results of BBA’s in the different clusters
(i.e. m̂

ωg

i , g = 1, . . . , r) will be globally fused for the final
classification. These sub-combination results m̂wg

i , g = 1, . . . , r
are usually in high conflict because they strongly support distinct
classes. If DS rule is still directly applied in this global fusion,
the conflicting beliefs will be totally distributed to other focal
elements. Nevertheless, the conflicting beliefs are very important
to reveal the imprecision of classification for the object in the
border of classes. We argue that the conflicting beliefs should
be conditionally preserved according to the distinguishability
degree of the object with respect to the different classes.

The class having the biggest mass of beliefs among these
pieces of sub-combination results will be considered as the most
expected one in classification of the object, and it will obtained
by:

m̂wt
i (wt) , max{m̂w1

i (w1), . . . , m̂
wr
i (wr)} (11)

where wt is the most expected class.
The distinguishability degree of one object between the class

wt and an other class is defined by:

κt,g , m̂wt
i (wt)− m̂

wg

i (wg) (12)

If the condition κt,g ≤ ϵ (ϵ being a small threshold number) is
satisfied, it indicates the classes wg and wt cannot be clearly
distinguished for the object with respect to the threshold ϵ. The
undistinguishable class set is defined by Ψ , {wg|κt,g ≤ ϵ}.
The subsets of Ψ called meta-classes should be kept to reflect
the imprecision of classification, and the associated conflicting
beliefs will be transferred to the proper meta-class to reflect the
imprecision degree.

Therefore, the global fusion rule for these sub-combination
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results is defined by:

m̃i(A) =



∑
r∩

j=1

Bj=A

|A|∏
j=1

m̂
wj

i (Bj), A ∈ Ω, or A = Ω

∑
|A|∩
j=1

wj=∅

|A|∪
j=1

wj=A

[
|A|∏
j=1

m̂
wj

i (wj)
r∏

g=|A|+1

m̂
wg

i (Ω)], A ⊆ Ψi

(13)
Because not all partial conflicting masses of belief are trans-

ferred into the meta-classes through the global fusion formula
(13), the combined BBA is normalized by the classical way as
follows before making a decision:

mi(A) =
m̃i(A)∑

Bi⊆Ω

m̃i(Bj)
(14)

The object is then classified into the class A (A being a
singleton class or meta-class) according to the maximum mass
of belief, that is if mi(A) = max{mi(.)}. This procedure is
called hard credal classification.
Guideline for tuning the parameters: In SOM training proce-

dure, the number of the nodes (weighting vectors) z = M×N is
determined according to the number of the training data points,
and the default value 5 × 6 is generally recommended. The
distinguishability degree threshold ϵ ∈ (0, 1) is usually a very
small positive value, and the smaller value will lead to fewer
number of objects in the meta-class. So ϵ can be tuned according
to the imprecision degree one can accept in the classification.

IV. EXPERIMENTS

Three experiments are presented to evaluate the performance
of HCS with respect to five other K-NN based methods (i.e. K-
NN [1], FK-NN [2], EK-NN [11], SOM-KNN [34] and BK-NN
[16]), and ENN classifier [12]. The different methods have been
programmed and tested with MatlabTM software. The parameters
of EK-NN were automatically optimized using the method
introduced in [18]. The tuning threshold ϵ in HCS is optimized
using the training data. The optimized value corresponds to a
suitable compromise between error rate and imprecision rate.
The training data preparation with the parameter optimization
can be done off-line.

In HCS, SOM will be trained in each class. For the class
ωi, i = 1, . . . , c, the corresponding SOM consists of M × N
grid notes associated with M ×N weighting vectors, which are
obtained by the competitive learning (i.e. iterative training algo-
rithm) using the training patterns in ωi. Each training pattern is
mapped by SOM to one node with the closest weighting vector
to this pattern. So the close patterns will be mapped to the close
nodes in SOM. Thus, SOM preserves the topological properties
of the training patterns, and the nodes can well characterize the
distribution of the corresponding class. Euclidean distance is

adopted here. The choice of number of the nodes, i.e. M ×N ,
remains an open problem, and it mainly depends on the actual
applications. If the number of nodes as M×N is too big, it will
lead to high computation complexity here. Whereas, the too few
nodes can not well characterize the whole training data space. In
the experiments, the value of M×N is determined based on the
cross validation (leave-one-out) in training data space, and the
selected value can produce the good classification performance.
For example, M × N = 5 × 6 generates good performance
according to the cross validation using training data, and it is
employed in the following experiments. The number of epochs
can be set from 200 to 1000 according to the applications,
but the big number of epochs can cause big computational
burden. In this work, we take number of epochs as 250, which
can yield good results with admissible complexity. In the class
decision making step, the object with the hard classification is
directly classified into a particular class, and the object with
fuzzy classification is considered belonging to the class with
maximum probability, and the object with credal classification
is committed to the class (set) having the maximum mass of
belief.

In the performance evaluation, the error rate, imprecision
rate (related with the meta-classes), and the utility value [37]
are used for the comparison between HCS and several other
methods. For one object originated from wi, if it is classified
into A with wi ∩ A = ∅, it will be considered as an error. If
wi ∩ A ̸= ∅ and A ̸= wi, it will be considered with imprecise
classification. The error rate denoted by Re is calculated by
Re = Ne/T , where Ne is number of objects wrongly classified,
and T is the total number of the objects tested. The imprecision
rate denoted by Rij is calculated by Rij = Nij/T , where Nij

is number of objects committed to the meta-classes with the
cardinality value j. We take j = 2 in the following experiments,
since there is no object committed to the meta-class with the
cardinality value bigger than two. So it holds that the sum of
the accuracy rate denoted by Ra

6 and error rate Re and the
imprecision rate Ri must be one as Ra + Re + Ri = 1. The
small error rate may cause high imprecision rate, since the object
hard to classify may be committed to the meta-class (disjunction
of several classes) by credal classification method.

In [37], the utility-discounted predictive accuracy was in-
troduced to evaluate the credal classifier based on imprecise-
probability models, and the measure of utility value is also
adopted here. The utility value for the classification of one
object can be given by

U65(xi) =


1, if A = L(i)

0, if A ∩ L(i) = ∅
0.65, if L(i) ∈ A, and |A| = 2

(15)

where A is the classification result of the object xi in HCS,
and L(i) is the real class that xi belongs to. It indicates that the
object correctly classified contributes the utility value 1, and the

6Ra = Na
T

, where Na is the number of objects correctly classified.
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object committed to the the proper meta-class with cardinality
value 2 produces the utility value 0.65. The utility value for the
misclassified object is zero. The utility value is denoted by U
for short in the sequel.

A. Experiment 1

This experiment is used to clearly illustrate the use of hybrid
classification with respect to the EK-NN and K-NN methods.
A particular 3-class 2-D data set composed by three rings
corresponding to three classes w1, w2 and w3 are shown by
Fig. 1-(a). Each class contains 303 training samples and 303
test samples. The centers and radiuses interval of the three rings
are given by Table I below.

Table I
PARAMETERS OF SIMULATED ARTIFICIAL DATA SETS.

Center Radius interval
w1 (4, 5) [3, 4]
w2 (8, 5) [3, 4]
w3 (16, 11) [3, 4]

The particular values of Ko = Ky1 = 4, ρ = 3 in HCS and
the default value M×N = 5×6 in SOM are used here because
they provide good performances. The classification results of
test data by K-NN, EK-NN and HCS are respectively shown
in Fig. 1-(b)-(d). For notation conciseness, we have denoted
wte , wtest, wtr , wtraining, wi,...,k , wi ∪ . . . ∪ wk and
wH

i , i = 1, 2, 3 represents the class wi obtained by the hard
classification, wF

i , i = 1, 2, 3 represents the class wi obtained
by the fuzzy classification, and wC

i , i = {1, 2} represents the
class wi obtained by the credal classification. The classification
performance including the error rate Re, imprecision rate Ri2 ,
the execution time T in millisecond (ms) and the utility value
U as expressed in eq. (15) is given in table II with respect to
different methods. “NA” means “No Applicable”.

Table II
CLASSIFICATION RESULTS OF DIFFERENT METHODS IN EXP. 1 (IN%).

K-NN [1] EK-NN [11] HCS
Re 4.84 4.85 0.77
Ri2 NA NA 6.05
U 95.16 95.15 97.11
T 10.94 9.38 6.18

In Fig. 1-(a), one can see that the the classes w1 and w2 are
crossed, and it is quite hard to correctly classify the objects in
the crossed (overlapped) zones. Each object has been classified
into a particular class w1, w2 or w3 by K-NN and EK-NN
according to the maximum probability (for K-NN) or belief (for
EK-NN) measure, but this causes many misclassification errors
for the objects in the overlapped zones. With HCS, the objects
that can be easily classified have been directly classified into a
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Figure 1. Classification results of a 3-class data set by K-NN, EK-NN and
HCS .

specific class by hard classification, and this result is considered
very confident for the decision making support. The objects
close to the overlapped zone are cautiously classified using
fuzzy classification way, and the object is assigned to a class
with the maximum probability. For the objects in the overlapped
zone, they are really difficult to be correctly classified, and it
is more reasonable to commit them into the proper meta-class
w1 ∪ w2 thanks to the credal classification. By doing this, one
is able to well characterize the imprecision of classification and
also to reduce the risk of error. So HCS obtains the biggest
unified value shown in table II compared with other methods.
The credal classification can warn the user that the used attribute
information is not sufficient for making a clear classification of
the object, and other information source or technique should
be necessary (if available) to get a more precise classification
result.

B. Experiment 2

We evaluate the performance of HCS using a 4D data set
which includes 3 classes ω1, ω2, and ω3. The artificial data are
generated from three 4D Gaussian distributions characterized by
the following means vectors and covariance matrices, where I
denotes the 4× 4 identity matrix:

µ1 = (10, 50, 100, 100)T ,Σ1 = 10 · I
µ2 = (30, 30, 80, 90)T ,Σ2 = 15 · I
µ3 = (20, 80, 90, 130)T ,Σ3 = 12 · I

We have used n training samples, and n test samples (for
n = 500, 1000, 2000) in each class. So there is a total of
N = 3×n training samples and N = 3×n test samples. Three
other methods K-NN, FK-NN and EK-NN are also applied
here for the performances comparison. The average error rates,
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imprecision rates and execution time with standard deviation are
reported in Table III according to the 10 trials performed with 10
independent random generation of the data sets, with a number
of neighbors K ranging from 5 to 20. In HCS, we still use the
values Ko = Ky1 = 4, ρ = 3 with M × N = 5 × 6 in SOM,
and the parameter ϵ has been optimized to obtain an acceptable
compromise between error rate and the imprecision degree. The
classification performance of the five tested methods (i.e. K-NN,
FK-NN, EK-NN, SOM-KNN and HCS) consisting of error rate
Re, imprecision rate Ri2 , execution time T in millisecond (ms)
and the utility value U are given in Table III.

One can see that the proposed HCS produces a lower error
rate with respect to K-NN, FK-NN and EK-NN thanks to
introduction of the meta-classes. The objects really hard to
be clearly classified are committed to the proper meta-class,
which brings the partial imprecision of classification in HCS.
Moreover, HCS has a much shorter execution time than K-
NN, FK-NN, EK-NN, and even SOM-KNN methods thanks
to the use of SOM technique. In HCS, the KNNs of object
are found in the weighting vectors space obtained by SOM,
and one just needs to calculate the distances of object to the
few (3 × 30 = 90) weighting vectors. The hard classification
is adopted for many objects that can be easily classified, and
there is no need to calculate the distance between the object
and the original training samples for hard classification. So the
computational burden of HCS is much lower than these other
K-NN methods especially when dealing with large training data
sets.

C. Experiment 3

We use eight real data sets7 from UCI 8 to test the perfor-
mance of HCS with respect to the evidential neural network
(ENN) [12] and five other K-NN based methods (i.e. K-NN
[1], FK-NN [2], SOM-KNN [34], EK-NN [11] and BK-NN
[16]). The basic information about the used data sets are given
in Table IV.

Table IV
BASIC INFORMATION OF THE USED REAL DATA SETS.

Name Classes Attributes Instances
Statlog Heart (H) 2 13 270
Breast(B) 2 9 699
Iris (I) 3 4 150
Seeds (S) 3 7 210
Wine (W) 3 13 178
Yeast (Y) 3 8 1055
Vehicle (V) 4 18 946
Knowledge (K) 4 5 403

7Three classes (CY T,NUC and ME3) are selected in Yeast data set to the
evaluate our method, since the objects in these three classes are hard to classify.

8The data sets can be freely downloaded in http://archive.ics.uci.edu/ml

The 10 -fold cross validation is performed on these data sets
by different classification methods. The data set is divided into
10 parts, and each part will be considered as test patterns and
all the other parts are used as training patterns in each fold. The
normal Euclidean distance is applied here. The tuning parameter
ϵ in HCS is optimized using the training samples in each fold,
and we have chosen9 Ko = Ky1 = 4, ρ = 3 with 3×4 nodes in
SOM. The classification results by K-NN, EK-NN and BK-NN
with different values of K ranging from 5 to 15 are respectively
shown on Table V. The average error rate Re, imprecision rate
Ri2 (for BK-NN and HCS), the unified value U expressed in
eq. (15) and the execution time T in millisecond (ms) with the
standard deviation std are given in Table V. Each data set is
represented by the first letter of world (e.g. I=Iris) here.

The results of Table V show that HCS can provide lower
error rate and higher utility value than EK-NN and K-NN
methods thanks to the introduction of meta-class in the credal
classification. HCS generally produces performances similar to
BK-NN method according to the compromise between the error
rate and imprecision rate, but the computational burden of HCS
is much lower than BK-NN thanks to the use of hard and fuzzy
classification based on SOM technique. Therefore, the execution
time of HCS is quite shorter than BK-NN. So HCS produces
a good compromise between classification performance and the
computational burden. In HCS, when the object is committed to
the meta-class, it indicates that this object is really difficult to
correctly classify based on the used attributes, and other costly
technique or new information source should be employed if one
wants to get more precise classification results. So the HCS can
provide more useful information in the classification for the user
with a tractable computational complexity.

V. CONCLUSION AND PERSPECTIVES

The Hybrid Classification System (HCS) has been proposed
in this work, and the proper method (i.e. hard classification,
fuzzy classification or credal classification) is adaptively se-
lected for the classification of object according to the Ko nearest
weighting vectors (corresponding to the nodes) obtained by
SOM technique. The hard classification is adopted when the
object can be easily classified, and the hard classification result
is usually considered very trustable. The fuzzy classification will
be employed if the K selected nodes are from different classes
but the nearest one is not in the border of classes, and the object
is classified based on the fusion of Ko BBA’s associated with
the Ko nodes. If the nearest node is in the overlapped border of
several classes and the Ko nodes come from various classes, it
implies that this object very likely lies also in the border. Such
object could be very difficult to classify because it cannot be
clearly distinguished with respect to these classes close together.

9If the values of Ko and Ky1 are too big, it will increase drastically the
computation burden. Whereas, the rather small value of Ko and Ky1 may
cause high error rate. Ko = Ky1 = 4 is selected for a good compromise
between computation burden and misclassification errors according to the cross
validation on the training data set.
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Then the K nearest training data of the object are found in
the close neighborhood area of this nearest node for the credal
classification, which can well capture the potential imprecision
of classification using the meta-class, and also reduce the errors.
The effectiveness of this new HCS has been demonstrated by
three experiments using artificial and real data sets. One has
shown that HCS can produce lower error rate at the price of
partial imprecision with respect to K-NN and EK-NN methods,
and the computational burden of HCS is much smaller than the
classical K-NN based methods thanks to the use of SOM. As
future research works, we will try to find an efficient method to
automatically determine the number of nodes in SOM and the
K value in K-NN classifier according to the training data set.
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Table III
CLASSIFICATION RESULTS OF THE 3-CLASS DATA SET BY DIFFERENT METHODS (IN %).

Training samples N=1500 N=3000 N=6000
Re 6.45±0.43 6.25±0.39 6.21±0.32

K-NN U 92.55±0.43 93.75±0.39 93.79±0.32
T 40.63±5.42 258.59±15.75 904.69±18.90
Re 6.63±0.46 6.33±0.40 6.28±0.38

FK-NN U 93.37±0.46 93.67±0.40 93.72±0.38
T 49.21±4.152 287.5±20.51 975.78±26.73
Re 6.28±0.48 6.12±0.29 6.16±0.35

EK-NN U 93.72±0.48 93.88±0.29 93.84±0.35
T 47.09±4.78 279.76±20.77 931.96±32.85
Re 8.27±0.41 8.23±0.59 8.15±0.61

SOM-KNN U 91.73±0.41 91.77±0.59 91.85±0.61
T 32.81±5.30 109.38±6.15 445.62±2.80
Re 5.07±0.33 4.83±0.45 4.81±0.47

HCS Ri2 3.2±1.23 3.03±0.49 3.08±0.73
U 93.81±0.1 94.11±0.27 94.11±0.22
T 40.63±4.42 95.31±19.72 267.19±28.09

Table V
CLASSIFICATION RESULTS OF DIFFERENT METHODS (IN%) WITH REAL DATA SETS.

ENN [12] K-NN [1] FK-NN [2] EK-NN [11] SOM-KNN [34] BK-NN [16] HCS
H Re 42.47±0.86 35.42±1.05 36.20±0.68 35.35±0.87 40.86±0.57 35.13± 1.25 33.52±0.26
H Ri2 NA NA NA NA NA 2.35±1.81 3.89±0.76
H U 57.53±0.86 64.58±1.05 63.80±0.68 64.65±0.87 59.14±0.57 64.05±0.51 65.12±0.54
H T 11.35±0.24 2.20±0.14 2.82±0.54 3.14±0.73 3.26±0.39 2.33±0.35 2.05±0.33
B Re 3.09±0.01 3.03±0.16 2.91±0.18 2.86±0.18 4.07±0.16 2.85±0.23 2.51±0.20
B Ri2 NA NA NA NA NA 1.43±0.23 1.53±0.12
B U 96.91±0.01 96.97±0.16 97.09±0.18 97.14±0.18 95.93±0.16 96.55±0.31 96.95±0.18
B T 24.84±2.33 5.32±2.5 6.43±1.05 6.97±3.19 4.06±1.88 9.53±1.6 4.53±1.25
I Re 5.50±1.67 4.03±0.69 3.89±0.47 3.67±0.47 4.13±0.28 2.10±1.13 2.67±0.47
I Ri2 NA NA NA NA NA 5.78±1.35 2.67±0.01
I U 94.50±1.67 95.97±0.69 96.11±0.47 96.33±0.47 93.27±1.15 95.88±0.86 96.40±0.16
I T 8.28±0.66 0.31±0.11 0.44±0.15 0.47±0.14 0.56±0.19 0.50±0.16 0.38±0.13
S Re 11.33±0.20 10.69±0.86 10.69±0.33 10.43±0.84 8.81±0.46 7.68±1.10 5.48±0.34
S Ri2 NA NA NA NA NA 2.16±1.85 3.62±0.78
S U 88.67±0.20 89.31±0.86 89.31±0.33 89.57±0.84 91.19±0.46 91.56±0.69 93.25±0.41
S T 15.03±1.25 0.66±0.15 2.40±0.45 1.01 ±0.43 0.50±0.13 1.21±0.19 0.56±0.13
W Re 29.83±2.16 31.97±1.54 25.76±0.76 28.65±2.43 29.89±0.23 21.01±1.89 18.06±1.18
W Ri2 NA NA NA NA NA 11.55±3.16 16.67±1.57
W U 70.17±2.16 68.03±1.54 74.24±0.76 71.35±2.43 69.08±1.5 74.95±1.57 76.11±1.21
W T 20.44±1.24 0.18±0.17 0.89±0.26 0.57±0.15 0.33±0.21 10.32±1.20 0.19±0.13
Y Re 43.41±0.76 35.11±0.93 33.09±1.10 34.66±0.90 37.07±0.43 28.23±2.68 26.85±0.93
Y Ri2 NA NA NA NA NA 14.12±2.33 14.76±0.20
Y U 56.59±0.76 64.89±0.93 66.91±1.10 65.34±0.90 62.93±0.43 66.83±1.38 67.94±0.86
Y T 76.08±10.10 13.71±0.21 19.79±1.61 15.54±0.82 9.30±8.11 23.63±2.10 5.63±1.09
V Re 56.62±0.87 36.88±1.83 37.59±1.03 36.93±1.75 37.88±0.52 33.76±0.72 33.71±0.01
V Ri2 NA NA NA NA NA 5.72±1.50 6.06±0.01
V U 43.38±0.87 63.12±1.83 62.41±1.03 63.07±1.75 62.12±0.52 64.24±0.83 64.17±0.11
V T 149.06±5.11 11.44±0.33 13.41±0.52 12.57±3.66 10.16±5.81 35.26±4.07 11.06±7.43
K Re 22.59±0.91 13.09±1.01 12.79±0.53 12.73±0.43 16.20±0.71 11.93±1.12 10.24±1.90
K Ri2 NA NA NA NA NA 2.12±1.02 2.93±1.55
K U 77.41±0.91 86.91±1.01 87.21±0.53 87.27±0.43 83.80±0.71 87.33±1.03 88.73±1.81
T T 17.89±0.76 3.40±0.30 3.59±0.67 3.42±1.63 3.22±1.67 9.22±1.72 3.25±0.56


