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Abstract

The context of this paper is programmable matter, which consists of a set of computational

elements, called particles, in an infinite graph. The considered infinite graphs are the square,

triangular and king grids. Each particle occupies one vertex, can communicate with the adja-

cent particles, has the same clockwise direction and knows the local positions of neighborhood

particles. Under these assumptions, we describe a new leader election algorithm affecting a

variable to the particles, called the k-local identifier, in such a way that particles at close

distance have each a different k-local identifier. For all the presented algorithms, the particles

only need a O(1)-memory space.

1 Introduction

Programmable matter can be seen as modular robots (called modules or particles) able to fix
to adjacent modules and send (receive) messages to (from) other modules fixed to the entity.
Thus, the different modules form a geometric shape which is a network. Usually, a module can
fix to another module using a finite number of ports (see Figure 1 for an example of spherical
modules). Also, the modules know the ports that are in contact with other modules and have a
knowledge about the geographic position of their ports. Moreover, the ports are supposed to be
homogeneously distributed along the surface of each module. Such assumptions imply that the
way how the modules are on a plane can be modeled by a grid. In this paper, we only consider
modules on a plane surface, i.e. two dimensional grids. In this context, the geometric amoebot
model [6, 7, 8, 9, 10, 11] aims to model the properties of a network for programmable matter.

Distributed algorithms aim to give a theoretical algorithmic framework in order to model the
execution of an algorithm that runs on a network of computational elements that can cooperate
in order to solve network problems. In distributed algorithm frameworks, it is often supposed
that the different elements of the network do not have a unique identity, i.e., the network is
anonymous. In anonymous networks, a natural question is how to perform a leader election, i.e.,
how to determine a singular element in an anonymous network. It is well known that for some
network structures, the ring for example, there is no deterministic leader election algorithm [1].

In 1999, Antoni Mazurkiewicz [19] has presented a deterministic general algorithm to determine
a leader (in the case it is possible to do so). In the situation where the elements have access to
a random source, then it is also proven that no algorithm can correctly determine a leader in a
ring with any probability α > 0 [15]. Due to the assumption we make about the ports of the
particles in the context of programmable matter (a particle knows the ports which are in contacts
with other particles and knows the geographic position of its ports), the leader election problem
becomes different than in the classical system. In particular, in the field of programmable matter,
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Figure 1: Five spherical particles forming a simple structure (circle: port of the particles).

there exists a probabilistic algorithm that determine a leader (and in particular for a ring) with
probability 1 [5].

Several projects aim to build programmable matter prototypes. One of such projects [20, 23],
financed by the french National Agency for Research, aims to build cuboctahedral particles able
to deform them-selves in order to move. This project can be split in two phases, one consists in
manufacturing the hardware of prototype matters, the second consists in proposing algorithms
for programmable matter. The final goal of this project is to sculpt a shape-memory polymer
sheet with programmable matter. In the continuity of the algorithm phase of this project [20], we
propose algorithms for the self-configuration, i.e., in order to create identifiers and spanning trees.

In the context of programmable matter [3, 4, 14, 18, 23, 24], it is supposed that a network
can contain several millions of modules and that each module has possibly a nano-centimeter size.
These two facts lead us to believe that even a O(log(n))-space memory for each module, n being
the number of modules, is not technically possible. Also, because of the large number of modules,
it can be very challenging and time consuming to implement a unique identity to the modules
when they are created. In this context, we suppose that the modules can not store a unique
identity, i.e., that the network is anonymous. In this paper we propose deterministic O(1)-space
memory algorithms to determine a leader in the network and to create k-local identifiers of the
particles. A k-local identifier is a variable affected to each module of the network which is different
for every two modules at distance at most k. Note that leader election [5, 13] plays a significant
role in numerous problems of programmable matter.

Our contribution is the following: we introduce a leader election algorithm based on local
computations and simple to implement. This algorithm works when the structure the particles
form has no hole (see Section 3). Also, since the algorithm can be described as a sequence of local
computations, its limits (message complexity, required memory-space, etc) are easy to analyze.
We present a distributed algorithm to construct a spanning tree in the context of programmable
matter and, also, a distributed algorithm to re-organize the port numbers of the particles. Finally,
we present an algorithm to assign a k-local identifier to each particle. In order to compute k-
local identifiers, we suppose that we have done a leader election before. The k-local identifiers
are determined using graph theoretical results about the coloring of the kth power of the grids.
An advantage of the given k-local identifiers is that they are really simple to update in case the
particles move and, consequently, the structure that the particles form changes.

This paper is organized as follows: in Section 2, we present our algorithmic framework in the
context of distributed algorithms for programmable network. In the third section, we present
our leader election algorithm. Finally, in Section 4, we present our algorithm to assign k-local
identifiers to the particles (using the colorings from Appendix I).

2 Notation, definitions and our programmable matter algo-

rithmic framework

The geometric amoebot model [6, 7, 8, 9, 10, 11] aims to model the computations that can occur
in the context of programmable matter. In this paper, we use an algorithmic framework inspired
by the geometric amoebot model. We assume that any structure the different particles can form
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Figure 2: Subgraphs of the square (Figure 2.a), triangular (Figure 2.b) and king (Figure 2.c) grids,
with the port numbers of two particles.

is a subgraph of an infinite graph G. In this graph, V (G) represents all possible positions the
particles can occupy and E(G) represents possible connections between particles. The set E(G)
also represents the possible movements from a position to another position (for a particle). We
suppose that two particles can bond each other, i.e., can communicate only in the case they are
on adjacent positions. The two following paragraphs are dedicated to the notation and definitions
we use for graphs.

For a graph G, we denote by V (G) the vertex set of G and by E(G) ⊆ V (G)×V (G) the edge set
of G. We denote by dG(u, v), the usual distance between two vertices u and v in G. If we consider
the distance in a subgraph H of G, the distance will be denoted by dH(u, v). The diameter of G,
denoted by diam(G), is max({dG(u, v)| u, v ∈ V (G)}). The set NG(u) = {v ∈ V (G)| uv ∈ E(G)}
is the set of neighbors of u. By ∆(G), we denote the maximum degree in G, i.e., the maximum
cardinality of NG(u), for u ∈ V (G). Finally, we denote by G[S], for S ⊆ V (G), the subgaph
induced by the vertices from S and by G − S the subgraph of G induced by the vertices from
V (G) \ S.

In the remaining part of this paper, the graphs considered will be the infinite square, triangular
and king grids. We denote by S the square grid, by T the triangular grid and by K the king grid.
A subgraph of each of these three infinite graphs is represented in Figure 2. Moreover, we suppose
that these three grids are represented on a plane as in Figure 2. For these grids, the considered
vertex set is {(i, j)| i, j ∈ Z} and the edge sets are the following:

• E(S) = {(i, j)(i± 1, j)| i, j ∈ Z} ∪ {(i, j)(i, j ± 1)| i, j ∈ Z};

• E(T) = E(S ) ∪ {(i, j)(i+ 1, j − 1)| i, j ∈ Z} ∪ {(i, j)(i− 1, j + 1)| i, j ∈ Z};

• E(K) = E(T ) ∪ {(i, j)(i+ 1, j + 1)| i, j ∈ Z} ∪ {(i, j)(i− 1, j − 1)| i, j ∈ Z}.

We also remind the distance between two vertices (i, j) and (i′, j′) in the three different grids:

• dS((i, j), (i
′, j′)) = |i− i′|+ |j − j′|;

• dT((i, j), (i
′, j′)) =

{

max(|i− i′|, |j − j′|), if (i ≥ i′ ∧ j ≤ j′) ∨ (i ≤ i′ ∧ j ≥ j′);
|i− i′|+ |j − j′|, otherwise;

• dK((i, j), (i′, j′)) = max(|i− i′|, |j − j′|).

Note that there is a way to draw the triangular grid in which each triangle is equilateral. However,
we prefer to draw it as a subgraph of the king grid (see Figure 2) in order to have illustrations
for which the vertex set {(i, j)| i, j ∈ Z} corresponds to the position of the vertices in the plane.
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In both representation, the notion of distance coincide but is easier to observe in our chosen
representation. However, note that the representation of the triangular grid in which each triangle
is equilateral corresponds to the optimal way to pack unit disks in the plane (the position of the
vertices in this representation corresponds to the center of the unit disk and an edge represents a
contact between two disks).

We also denote by i (mod p) or i (mod p), depending on the context, the integer j such that j ≡ i
(mod p) and 0 ≤ j < p. The remaining part of this subsection is dedicated to our programmable
matter algorithmic framework.

We give the following properties about the particles and vertices of the graph:

• each particle occupies a single vertex and each vertex is occupied by at most one particle;

• the subgraph induced by the occupied vertices is supposed to be connected.

The subgraph induced by the occupied vertices of V (G) is called the particle graph and is denoted
by P . The vertex occupied by a particle p is denoted by s(p). For a particle p, NG(p) = {u ∈
V (G)| u ∈ NG(s(p))}. The ports of a particle are the endpoints of communication. Each particle
has ∆(G) ports in a regular grid G (∆(G) = 4 for G = S, ∆(G) = 6 for G = T and ∆(G) = 8 for
G = K). The ports of a particle occupying a vertex u are represented by the edges incident with
u. An edge between two vertices represents a possible communication between two particles p1
and p2 occupying these two vertices using each one a different port. A particle has the following
properties:

• each particle is anonymous, i.e., it does not have an identifier;

• each particle has a collection of ports, each labeled by a different integer from {0, . . . ,∆(G)−
1};

• the port numbers are given as a function of the position of the edges on a plane representation
of the grids (see Figure 2);

• each particle knows the labels of the ports that can communicate with particles from the
neighborhood;

• each particle knows the state of the neighbors.

In our algorithmic framework, we suppose that the particles have their ports labeled following
the same clockwise order. Thus, consecutive port numbers correspond to consecutive edges around
a vertex (as in the representation on the plane from Figure 2). Note that the particles do not have
the same notion of orientation, i.e., there is possibly not a unique label for ports that correspond
to edges going in the same cardinal direction. In the presented algorithms, the state of a particle
will contain a variable corresponding to the status of the particle in the leader election algorithm
and the information regarding its parents and childs for a constructed spanning tree.

The proposed algorithms in our algorithmic framework are results of successive local compu-
tations [2, 21]. In particular, the first presented leader election algorithm from Section 3 can be
described by a graph relabeling system [2] which is a local computation system. In this paper, the
correct execution of the different algorithms is only guaranteed if the algorithms are ran in the
order depicted in Figure 3.

We suppose the following:

• each particle contains the same program and begins in the same state;

• the computation process is represented by successive local computations;

• no local computation occurs simultaneously on two particles at distance at most 2;

• during a local computation, a particle can perform a bounded number of computations and
can send messages to its neighbors;

4



Leader elec-
tion (Algo-
rithm 1)

Spanning tree
(Algorithm 4)
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Figure 3: An illustration of the algorithm dependency (arrow between algorithms/results: depen-
dency of one algorithm to another algorithm/result).

• a round is a sequence of successive local computations for which each particle does at least
one local computation;

• an algorithm finishes in k rounds if after any k successive rounds the algorithm is finished.

Note that the concept of rounds is used to bound the running time of the algorithms. In our
algorithm framework we suppose that no two particles at distance at most 2 perform computations
simultaneously in order to simplify the presentation of our results. However, this supposition can
be removed by implementing, for example, a probabilistic leader election algorithm on the vertices
at distance at most 2 of one of the two vertices, i.e., by computing a random value on the vertices
at distance 2 and doing the local computation following the increasing order of the values. In
order to compute the running time of an algorithm in case of a specific programmable matter
prototype, the complexity of the algorithm should be computed using the required number of
rounds and the required running time in order to avoid that two particles at distance at most 2
perform computations simultaneously.

3 Leader election

In this section we present a new leader election algorithm. This algorithm is very easy to implement
but requires that the particle graph has a specific structure. In this algorithm, the required memory
space is constant, the messages have constant size, the required computation power of the particle
has been optimized and the required number of rounds is less than 2n (n being the number of
particles).

A hole in a subgraph G′ of a graph G among the three grids is a subgraph H of G satisfying
three properties:

i) V (H) is finite, H is connected and |V (H)| ≥ 1;

ii) V (H) ∩ V (G′) = ∅;

iii) every vertex u ∈ V (H) satisfies NG(u) ⊆ V (H) ∪ V (G′).

Less formally, a subgraph G′ of one of the three grids contains a hole if there is a finite space only
containing vertices from V (G) \ V (G′) which are surrounded by vertices of G′. A hole containing
three vertices is illustrated in the left part of Figure 4. We call G′ hole-free, when G′ has no holes.

If the particle graph P on G is hole-free, then every particle p which satisfies |NG(p)∩V (P ))| <
∆(G) is at the geographical border of the shape of P . Moreover, we call the set of particles p
which satisfy |NG(p) ∩ V (P ))| < ∆(G) and such that the vertices NG(p) − V (P ) are not all in a
hole of P , the border of P . The right part of Figure 4 illustrates the border of P .

In addition, for a particle p occupying a vertex (i, j) of the square grid, the four vertices
(i + 1, j + 1), (i − 1, j + 1), (i + 1, j − 1) and (i − 1, j − 1) are the corners of p and the set of
corners is denoted by C(p). The extended neighborhood of a particle p, denoted by MG(p), is the
set NG(p) if G is the triangular grid or king grid or the set NG(p) ∪ C(p) if G is the square grid.
Note that we define the extended neighborhood differently for the square grid in order to be able
to present a generic algorithm (Algorithm 1) that works for all the three grids.
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Figure 4: A hole in P (on the left) and the border of P in the case P is hole-free (on the right;
square: particle on the border of P ).
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Figure 5: Two non S-contractible particles (at the center of the left and the middle drawing)
and an S-contractible particle (at the center of the right drawing) in the triangular grid (square:
particle in S; circle: particle not in S).

We give the following definition of S-contractible particle (see Figure 5) that will be used in
our leader election algorithm.

Definition 1. Let G be an infinite grid among S, T and K and let S ⊆ V (P ), for P the particle
graph on G. A particle p is said to be S-contractible if it satisfies the following properties:

I) G[MG(p) ∩ S] is connected;

II) |NG(p)∩S| < ∆(G), i.e., there exists a neighbor of p in G which is not occupied by a particle
from S.

A particle p is an articulation of a connected subgraph G′ of one of the three grids if G′−{s(p)}
is not connected. Derakhshandeh et al. [8] proposed a randomized leader election algorithm in the
geometric amoebot model in the case there is no particle which is an articulation. Our proposed
leader election algorithm (Algorithm 1) works even if V (P ) contains a particle p which is an
articulation. However, in contrast with the leader election algorithm from Derakhshandeh et al.
[8], Algorithm 1 does not work if P has holes. In the remaining part of this paper, Algorithm 1 is
called the S-contraction algorithm.

Recently, Daymude et al. [5] have improved the algorithm from Derakhshandeh et al. [8]
in order that it works when V (P ) contains an articulation. However, it remains challenging to
implement it.

Also, very recently, Di Luna et al. [13] have introduced a leader election algorithm called
consumption algorithm. The consumption and the S-contraction algorithms both consist in suc-
cessively removing the candidacy of the particles on the border of P . However, one can easily
notice that, in our algorithm, we possibly remove the candidacy of particles having four or five
neighbors (which is not considered in the consumption algorithm). Also, the consumption algo-
rithm does not work on square and king grids and the considered theoretical frameworks for the
two algorithms are different.

In the S-contraction algorithm (Algorithm 1), the particles can be in three different states: C

(candidate), N (not elected) and L (leader). We suppose that every particle begins in the state
C.

Let S be the particle in state C. Algorithm 1 consists in removing from S the particles which are
both on the border of G[S] and not articulations of G[S]. An example of the execution of Algorithm
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Figure 6: An example of the execution of S-contraction algorithm after one round (Figure 6.a),
two rounds (Figure 6.b), three rounds (Figure 6.c) and after four rounds (Figure 6.d; circle: non
S-contractible particle; square: S-contractible particle; triangle: particle in state N; pentagon:
particle in state L; S being the set of particles in state C).

1 is illustrated by Figure 6. Note that, depending on the order in which the local computations
occur, the result of the execution of the algorithm could be different. For example, between the
configuration of Figure 6.c and that of Figure 6.d, we suppose that the local computations occur
in this order: first a local computation occurs for the bottom left particle, second it occurs for
the upper left particle, third it occurs for the upper right particle and fourth it occurs for the last
particle (we only consider the particles which are in state C).

Algorithm 1 The S-contraction algorithm for a particle p and S the set of particles in state C.

Case 1: State C.
if the particle is S-contractible then

if the particle has no neighbor in S then

set the state to L.
else

set the state to N.
end if

else

stay in state C.
end if

Case 2: States L or N.
Perform no further actions.

Theorem 1. Let S be the set of particles in state C and P be the particle graph on G. If P is
hole-free, then at the end of the execution of the S-contraction algorithm, there will be exactly one
particle in the state L.

In Appendix F, the proof of Theorem 1 is given. Also, a bound on the complexity of the S-
contraction algorithm is given. In Appendix H, it is explained how to combine the S-contraction
algorithm with a general leader election algorithm.
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4 Assigning k-local identifiers to particles

In this section, we combine the results from Section 3 and Appendix I in order to correctly compute
a k-local identifier. In a first subsection, we describe a way to create a spanning tree of particles
and a way to change the ports numbering of the different particles. In a second subsection, we
describe how to compute k-local identifiers based on the coloring functions from Appendix I.

We suppose that Algorithms 2 and 3 are preceded by a leader election algorithm (which could
be Algorithm 1). Then it follows that there is a single particle in a specific state (the leader) and
all the remaining particles are in the same state (non elected).

4.1 Re-organizing the particles

By N+
G (u) we denote the set of port numbers which can communicate with particles occupying

vertices from NG(u). When there is a leader, we can easily compute a spanning tree using a
distributed algorithm (see Appendix G). Now suppose that for each particle p, we have two set of
ports parent(p) and child(p) which contains the port numbers of the particles in communication
with its parent and with its children, respectively, in the spanning tree. In this way, the required
memory in order to store where are the children and the parent of the particle in a spanning tree
is constant (since the maximum degree is bounded in the considered grids).

In our proposed Algorithm 2, the goal is to change the way the port are numbered in order that
every particle has its ports numbered by the same number going in the same cardinal direction in
the different grids. This algorithm does not work if we do not have a leader among the different
particles. The function rG used in Algorithm 2 is defined, depending the choice of G, as follows:
rS(i) = (i+ 2) (mod 4), rT(i) = (i+ 3) (mod 6) and rK(i) = (i+ 3) (mod 6).

Algorithm 2 The port renumbering algorithm for a particle p.

Case 1: State L.
for each port a from child(p) send a message ma, containing a, through port a.
Case 2: State N.
if the particle receives the message mb, containing b, through the port a then

change the port number a to rG(b) and changes the port numbers of the other ports following
the clockwise order;

update both parent(p) and child(p).
end if

The idea behind Algorithm 2 is to reproduce, in each particle, the way the ports are numbered
in the leader particle. To achieve this goal, each particle p receives a message from its parent
containing the port number of the parent connected to p and p renumbers its own ports in order
that its port numbers are coherent with the sent number. Figure 7.a and Figure 7.b illustrate the
port numbers of particles before and after the execution of Algorithm 2.

4.2 The k-local identifiers

Now, we aim to give to each particle a variable id, called its k-local identifier, such that every
two particles p1 and p2 with the same identifier satisfy dG(s(p1), s(p2)) > k. If we suppose that
the particles have not a memory of at least log2(n) bits, for n = |P |, then it is not possible to
record a unique variable for each particle. However, it is possible to have a k-local identifier in the
three considered grids only using at most log2((k + 1)2) bits where k is a parameter given by the
user. Our proposed Algorithm 3 presents an optimal way (in term of memory) to compute k-local
identifiers. We suppose that the port renumbering algorithm (Algorithm 2) has been done before
executing Algorithm 3.

Algorithm 3 consists in assigning a variable which corresponds to a color in a coloring of the
kth power on the grid. More precisely, the function fk

G consists in assigning a color depending
the Cartesian coordinate of the vertices. Since the colors are given following a pattern, the
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Figure 7: One spanning tree of particles, a possible numbering of the ports of the particles before
(Figure 7.a) and after the execution of Algorithm 2 (Figure 7.b) and the 4-identifier obtained
by executing Algorithm 3 (Figure 7.c) in the square grid (square: leader; thick line: edge of the
spanning tree; small number: port number of a particle; big number: 4-identifier of a particle).

Algorithm 3 The k-local identifier algorithm for a particle p.

Case 1: State L.
set i = 0, j = 0, id = 0;
send i and j through each port from child(p).
Case 2: State N.
if the particle receives the integers i′ and j′ through the port a then

set i = IkG(i
′, a), j = IkG(j

′, a), id = fk
G(i, j);

send i and j through each port from child(p).
end if

Cartesian coordinate can be stored relatively to the size of the patterns. In Algorithm 3, the
leader affects to itself the color 0 and following the direction where the messages are transmitted,
the particles reproduce the coloring patterns given in Appendix I. The functions fk

G and IkG, Jk
G,

used in Algorithm 3 are defined, depending on the choice of G, as follows: fk
S
(i, j) = (i + kj)

(mod mk), fk
K
(i, j) = i (mod k+1) + (k + 1)j (mod k+1) and fk

T
(i, j) = (i (mod 3(k+1)/2) + j(3(k +

1)/2) + ⌊2j/(k + 1)⌋(k + 1)/2)) (mod m′
k) if k is odd or fk

T
(i, j) = (i + (3k/2 + 1)j) (mod m′

k)
otherwise; IkG(i, a) = i if (a = 1; 3 ∧ G ∼= S) ∨ (a = 1; 4 ∧ G ∼= T) ∨ (a = 2; 6 ∧ G ∼= K),
Ik
S
(i, a) = i + 1 (mod ⌈(k + 1)2/2⌉) if a = 0, Ik

S
(i, a) = i − 1 (mod ⌈(k + 1)2/2⌉) if a = 2,

Ik
T
(i, a) = i + 1 (mod ⌈3(k + 1)2/4⌉) if a = 0; 5, Ik

T
(i, a) = i − 1 (mod ⌈3(k + 1)2/4⌉) if a = 2; 3,

Ik
K
(i, a) = i+1 (mod k+1) if a = 0; 1; 7 and Ik

K
(i, a) = i−1 (mod k+1) if a = 3; 4; 5; Jk

G(j, a) = i
if (a = 0; 2∧G ∼= S)∨ (a = 0; 6∧G ∼= T)∨ (a = 0; 4∧G ∼= K), Jk

S
(j, a) = j+1 (mod ⌈(k+1)2/2⌉)

if a = 1, Jk
S
(j, a) = i − 1 (mod ⌈(k + 1)2/2⌉) if a = 3, Jk

T
(j, a) = i + 1 (mod ⌈3(k + 1)2/4⌉) if

a = 1; 2, Jk
T
(j, a) = i− 1 (mod ⌈3(k+1)2/4⌉) if a = 4; 5, Jk

K
(j, a) = i+1 (mod k+1) if a = 1; 2; 3

and Jk
K
(j, a) = i − 1 (mod k + 1) if a = 5; 6; 7. Note that the functions IkG and Jk

G are used to
determine the Cartesian coordinate of a particle using the Cartesian coordinate of a neighbor and
the port number of this neighbor.

Since the values of fk
G(i, j) is bounded by 3(k + 1)2/4, if G is isomorphic to one of the three

grids, the size of the messages will not exceed log2(3(k + 1)2/4). As for Algorithm 2, the number
of sent messages is |V (P )| − 1. Figure 7.c illustrates the obtained 4-identifiers after the execution
of Algorithm 3.

Since the particles can move during the execution of an algorithm, the k-local identifiers may
become not valid anymore ( i.e., there may be two particles p1 and p2 with the same k-local
identifier and with dG(s(p1), s(p2)) ≤ k) if the structure of the particle graph P on G changes. It
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is possible to keep a valid k-local identifier in case a particle moves in a direction of a port a by
setting id = fk

G(I
k
G(i, rG(a)), J

k
G(j, rG(a))) as the new k-local identifier. It corresponds to update

the variable id which corresponds to a color in a coloring of the kth power on the grid in function
of the new position of the particle. Also, in the case a particle do ℓ movements, by storing the
successive directions of movement of the particle during these ℓ movements, it is also possible to
update the value of the k-local identifier in order that it remains valid.

Note that for both Algorithms 2 and 3 finish after at most h rounds, h being the height of the
spanning tree. Also the number of sent messages in both Algorithms 2 and 3 is |V (G)| − 1 (the
number of edges in a spanning tree).

5 Conclusion

In this paper, we have presented a new leader election algorithm based on local computation.
We have also presented an algorithm which affects a different variable for every two particles p1
and p2 at distance at most k. All the presented algorithms only require a O(1)-space memory.
This complexity makes it possible to use our algorithms for programmable matter. Moreover, in
case of movements of particles, there is no need of communication in order to update the k-local
identifiers.

As future work, it would be interesting to determine a more general deterministic leader election
algorithm in our algorithmic framework that can take into account fault tolerance. Also, it would
be interesting to extend the presented results to 3D grids. Another interesting question could be
to use our results to clustering the set of particles in several sets which induce subgraphs of small
diameter.
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F Proof of Theorem 1 and bound on the complexity of the

S-contraction algorithm

The three lemmas presented in this appendix are used in order to prove Theorem 1.
In the following lemma, we describe how to determine, in the context of programmable matter,

if a particles is S-contractible or not.
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Lemma 1. Let G be an infinite grid among S, T and K and let S ⊆ V (P ), for P the particle graph
on G and S the set of vertices occupied by all the particles in the same fixed state. One round is
sufficient in order that every particle determine if it is S-contractible or not if G is isomorphic to
S. Otherwise, if G is isomorphic to T or K, no round is necessary.

Proof. Let N+(p) be the set of port labels on which p can communicate with particles from its
neighborhood. In order to verify that MG(p) ∩ S is connected in the triangular or king grids, it
suffices to verify that N+

G (p) ∩ S forms an interval of consecutive integers (by considering that 0
and ∆(G)−1 are consecutive). For example, {0, 4, 5} contains successive integers in the triangular
grid but that is not the case for {0, 2, 5}. Such verification in the triangular and king grids can be
done during any local computation. Figure 5 illustrates three possible cases that could happen for
a particle in the triangular grid. On the left part of Figure 5, the particle does not satisfy Property
I) but satisfies Property II). On the middle part of Figure 5, the particle satisfies Property I) and
does not satisfy Property II). Finally, on the right part of Figure 5, the particle satisfies both
Properties I) and II).

In the square grid, in order to test if a particle p is such that MG(p) ∩ S is connected, it
requires to receive N+

G (p′)∩S, from the particle p′ in the neighborhood of p and afterward to test
if N+

G (p) only contains consecutive integers (by considering that 0 and 3 are consecutive) and then
to verify, for any two successive particles p′ and p′′ from the neighborhood, that the vertex which
corresponds to the corner adjacent to both p′ and p′′ is occupied by a particle.

If G is among T and K, then no round is required to know if a particle is in S or not (since
a particle know the state of its neighbors). If G is isomorphic to S, then, in one round, which
consists in sending the values of N+(p) ∩ S to the adjacent particles, every particle knows if it is
S-contractible or not.

The following lemma is be useful in order to prove that our leader election algorithm works
correctly.

Lemma 2. Let G be an infinite grid among S, T and K and let S ⊆ V (P ), for P the particle
graph on G. Let p be an S-contractible particle. If S is connected and hole-free, then S − {s(p)}
is connected and hole-free.

Proof. First, note that in all three grids, the fact that |NG(p) ∩ S| < |NG(p)| implies that there
is a vertex v in NG(p) \ S. By contradiction, suppose we create a hole in G[S] by removing the
vertex s(p) from S. This implies, since G[MG(p) ∩ S] is connected, that v was already in a hole
from G[S]. Second, since G[MG(p)∩ S] is connected, we are sure that the subgraph G[S \ {s(p)}]
is connected.

To ensure that our leader election algorithm works correctly, it remains to prove that there
always exists an S-contractible particle. That is what we do in the following Lemma.

Lemma 3. Let S ⊆ V (P ), for P the particle graph on G. If G[S] is hole-free, then there always
exists an S-contractible particle in S.

Proof. Note that there exists a particle on the border of G[S] since S is finite. Let A be the set of
particles on the border of G[S]. For any particle p, the fact that there are at least two connected
components B1 and B2 in G[MG(p)∩S] implies that there is no path in G[S \{s(p)}] between any
vertex of B1 and a vertex of B2, since it would imply the existence of a hole in G[S] containing a
vertex from MG(p) \ S. Therefore, if p ∈ A and if p is not an S-contractible particle, then p is an
articulation of G[S].

Now suppose, by contradiction, that there is no S-contractible particle in S. By the previous
remark, the graph G[A] is connected and all particles of A are articulations of G[S]. However, a
finite graph containing a cycle contains vertices which are not articulation of G[S]. Thus, G[A]
contains no cycle (G[A] is a forest). However, by definition, the leaves (the vertices of degree 1)
are S-contractible. Thus, we obtain a contradiction with the fact that there is no S-contractible
particle in S.
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In the case P is hole-free, note that by Lemma 2 and Lemma 3 there is always a particle which
is both on the border of G[S] and not an articulation of G[S].

Proof of Theorem 1. Note that before the execution of the algorithm, the set S is the set V (P ).
Since P is hole-free and connected and by Lemma 2, S remains connected and hole-free during the
execution of the algorithm. By Lemma 3, there is always a particle in S which is S-contractible
(every particle on the border which is not an articulation is S-contractible). Thus, for every round,
the number of particles in state C strictly decreases. Since |V (P )| is finite, we are sure that at
some point, S will only contain one vertex. If at some point, S contains one vertex, there will be
at least one elected leader.

Finally, note that the fact that there are two elected leaders contradicts the fact that S remains
connected during the execution of the algorithm.

Let G′ be a subgraph of G such that G′ is hole-free, the radius of G′, denoted by r(G′), is
given by r(G′) = minu∈V (G′) {maxv∈A(dG′(u, v))}, for A the set of the particles on the border of
G′. Moreover, let h(T ) be the height of a tree T , i.e., h(T ) = minu∈V (T ) {maxv∈V (T ), |NT (v)|=1

(dT (u, v))} and let mtree(G′) be the maximum height among all induced subgraphs of G′ which
are trees, i.e., among the set {G′[B]| B ⊆ V (G′), G′[B] is a tree }.

In the following Proposition, we give a bound on the required number of rounds for the termi-
nation of Algorithm 1.

Proposition 1. Let S be the set of particles in state C and P be the particle graph on G. Moreover,
let bG = r(P ) +mtree(P ) + 1 if G is isomorphic to T or K or bG = 2(r(P ) +mtree(P )) + 2 if G
is isomorphic to S. If P is hole-free, then after bG(P ) rounds of the S-contraction algorithm on
P , one particle will be the leader.

Proof. First, suppose G is isomorphic to T or K. Let St be the set of particles in state C after
the first t rounds. Note that after r(P ) + 1 rounds we are sure that every remaining particle u
satisfies |NG(u) ∩ Sr(S)+1| < NG(u). This is due to the fact that each particle u on the border
of Si, for i ≥ 0, is not in Si+1 if |NG(u) ∩ Sr(S)+1| < NG(u). Thus, by Lemma 2, G[Sr(P )+1] is
either a tree or empty. By definition, we have h(G[Sr(P )+1]) ≤ mtree(P ). Note that in the case
G[St] is not a trivial tree (a tree containing only one vertex), we have h(G[St+1]) = h(G[St])− 1,
for t ≥ r(P ) + 1. Therefore, we obtain that St is empty if t ≥ r(P ) +mtree(P ) + 1.

Second, suppose G is isomorphic to S. Note that, by Lemma 1, one round is sufficient in order
that every particle determines if it is S-contractible. Consequently, it is easy to observe that the
required number of rounds in order that the S-contraction algorithm finishes for S is bounded by
two times the required number of rounds in order that the S-contraction algorithm finishes for T

or K.

G An example of algorithm in order to construct a spanning

tree

Our proposed algorithm (Algorithm 4) for constructing a spanning tree consists in setting the
particle in state L as the root and, afterward, constructing a spanning tree using a classical
distributed spanning tree algorithm.

H Combining the S-contraction algorithm with a general

leader election algorithm

Daymude et al. [5] introduced a leader election algorithm that works on every configuration of
P . In this appendix we present a way to reduce the required number of rounds in order that this
algorithm finishes its execution (by using the S-contraction algorithm). In the remaining part
of this appendix, the leader election algorithm from [5] will be called the general leader election
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Algorithm 4 A spanning-tree algorithm for a particle p.

Case 1: State L (leader).
set child(p) = N+

G (p);
send a message m (which only contains the bit 0) through each port from child(p).
Case 2: State N (not elected).
if the particle receives the message m through the port a then

if the particle has never received the message m before then

set parent(p) = a;
set child(p) = N+

G (p) \ {a1, . . . , aℓ}, where a1, . . ., aℓ are ports on which p has received
the message m;

send the message m through each port from child(p).
end if

end if

Figure 8: The way how the messages are re-transmitted in the algorithm of Daymude et al. [5]
(square: articulation; dashed arrow: message transmitted along the border; simple arrow: message
transmitted along the hole).

algorithm (to the best of our knowledge, it is the only leader election algorithm for programmable
matter working on every configuration).

In order to simplify the presentation of the results, we only discuss the results for the triangular
grid. However, by modifying the algorithms it is possible to make it work for the square and king
grids also. We begin this appendix by describing how the general leader election algorithm works.
This description will help the reader to convince itself that, in a lot of cases, combining the
S-contraction algorithm with a general leader election algorithm could be a good idea.

For particle p and a port a of p connected to another particle, we denote by n(a) the port
number of the first port of p connected to a particle after a in the clockwise order. The general
leader election algorithm uses the fact that it is possible to send a message around a boundary.
Sending a message around a boundary consists in sending and re-transmitting the message in
the following way: for a particle p, if a message is received from the port a, then the particle
re-transmits the message to the particle connected to p by the port n(a) of p. Figure 8 represents
how the messages are transmitted in this case.

For each hole H of the particle graph P on G, we denote by b(H), the set of particles which
are adjacent with a vertex of H . Also, when a particle is adjacent to vertices of different holes or
when a particle belongs to the border of P , it is possible to decompose particles in agents, each
agent corresponding to a different hole or to the border. Thus, an agent will be either adjacent to
vertices of at most one hole or belong to the border but never both.

The general leader election algorithm can be summarized as the succession of four phases. A
first phase consists in removing the candidacy of each particle having six neighbors. A second phase
consists, for each hole H of P , to remove the candidacy of some agents of b(H) using a randomized
procedure. Simultaneously, the same process is done for agents in the border of P . A third phase
consists in verifying if there is only one candidate in b(H), for each hole H of P and only one
candidate in the border of P . They calculate the relative positions of the candidates in order to
do such verification. Finally, in the last phase, they verify if the remaining candidates agents are
in b(H) or in border of P . The leader will be the candidate particle of the border of P . We can
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verify if an agent is in b(H) by sending a message around the boundary and verifying when the
message comes back to the initial particle if this message has been re-transmitted in the clockwise
direction or not. As Figure 8 illustrates, the messages re-transmitted through the boundary of a
hole are re-transmitted in the counterclockwise direction and the messages re-transmitted through
the border of P are re-transmitted in the clockwise direction. In all these phases, the messages
are re-transmitted around a boundary.

The required number of rounds in order that the general leader election algorithm finishes its
execution is O(ℓ), where ℓ is the number of particles in the border of P .

We do the following remark about the S-contraction algorithm that comes from the fact that
for any S-contractible particle p of S, if G[S] is connected, then G[S \ {s(p)}] is also connected.

Remark 1. If the particle graph P has a hole then, after the execution of the S-contraction
algorithm on the particle graph P on G there will remain particles in state C. Also, the graph
induced by the particles in state C is connected.

In particular when P has one hole, the remaining particles in state C will form a ring in the
triangular grid. Thus, it is possible to run the S-contraction algorithm and, afterward, execute
the general leader election algorithm on the remaining particle in state C. Let Sc be the set of
particles in state C after the S-contraction algorithm on the particle graph P on G. Depending
on the structure of P , it could happen that the number of particles in the border T [Sc] is smaller
than in the border of P and that it speeds the execution of the general leader election algorithm.
For example, that is always the case when P has at most one hole.

I Coloring the k
th power of graph

The kth power of a graph G is the graph on the same vertex set than G and with edges connecting
every two vertices u and v satisfying dG(u, v) ≤ k. Note that there is a correlation between this
definition and the kth power of the adjacency matrix of G (the adjacency matrix of the kth power
of G is easily obtained from this matrix). Our goal in this appendix is to determine an optimal
coloring of the kth power of the square, triangular and king grids. We use these colorings in
order to propose a distributed algorithm (supposing we have a leader) in order to assign k-local
identifiers to the particles (see Section 4). A coloring of the kth power of a grid corresponds to
assign a value to each vertex of the graph such that every two vertices with the same assigned
value are at distance at least k + 1. An example of coloring of the kth power of the square grid
is represented by Figures 9 and 10. In Figure 9, it is easy to notice that every two vertices with
color 0 (or any other color) are at distance at least 4.

More formally, a k-coloring of a graph G is a map c from V (G) to {0, 1, . . . , k − 1} which
satisfies c(u) 6= c(v) for every uv ∈ E(G). The chromatic number χ(G) of G, is the smallest
integer k such that there exists a k-coloring of G. The kth power Gk of a graph G is the graph
obtained from G by adding an edge between every two vertices satisfying dG(u, v) ≤ k. More
details about the coloring of the kth power of graphs can be found in the survey from Kramer and
Kramer [17]. The results presented in this appendix are inspired by the previous works [12, 16, 22]
about the coloring of the kth power of the grids.

Appendix I.A Coloring the kth power of square grids

We give the following result from Fertin et al. [12].

Theorem 2 ([12]). For any k ≥ 1, χ(Sk) = ⌈(k + 1)2/2⌉.

Let mk = ⌈(k + 1)2/2⌉. In their paper, Fertin et al. define an optimal coloring c of the
kth power of the square grid as follows: c((i, j)) = (i + kj) (mod mk). In Figures 9 and 10, we
represent patterns for coloring the 3th and 4th powers of the square grid. These patterns have
been obtained using the coloring from [12]. Note that since there is a pattern, a vertex (i, j)
can determine its color only knowing i (mod mk) and j (mod mk). We recall the definition of
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0 1 2 3 4 5 6 7

3 4 5 6 7 0 1 2

6 7 0 1 2 3 4 5

1 2 3 4 5 6 7 0

4 5 6 7 0 1 2 3

7 0 1 2 3 4 5 6

2 3 4 5 6 7 0 1

5 6 7 0 1 2 3 4

Figure 9: A pattern for coloring the 3th power of the square grid.

the following function fk
S
(i, j) = (i + kj) (mod mk). Note that fk

S
(i, j) = fk

S
(i′, j′), in the case

i ≡ i′ (mod mk) and j ≡ j′ (mod mk) This function is used in order to assign k-local identifiers
to particles.

Appendix I.B Coloring the kth power of triangular grids

The chromatic number of the kth power of the triangular grid has been determined by Sev-
cikova [22].

Theorem 3 ([22]). For any k ≥ 1, χ(Tk) = ⌈3(k + 1)2/4⌉.

Let m′
k = ⌈3(k + 1)2/4⌉. We recall the definition of the following function:

fk
T
(i, j) =







(i (mod 3(k+1)/2) + j(3(k + 1)/2)+
⌊2j/(k + 1)⌋(k + 1)/2)) (mod m′

k) if k is odd;
(i+ (3k/2 + 1)j) (mod m′

k) otherwise.

Note that fk
T
(i, j) = fk

T
(i′, j′), in the case i ≡ i′ (mod m′

k) and j ≡ j′ (mod m′
k). This function

is used in order to assign k-local identifiers to particles.

Appendix I.C Coloring the kth power of king grid

To our knowledge, the chromatic number of the king grid has not been determined yet. However,
in contrast with the triangular grid, the chromatic number of the kth power of the king grid is
easy to determine. In this subsection, we determine the exact value of the chromatic number of
the kth power of the king grid.

Theorem 4. We have χ(Kk) = (k + 1)2.

Proof. Let Kk be the subgraph of K induced by the vertices {(i, j) ∈ V (K)| 0 ≤ i ≤ k, 0 ≤ j ≤ k}.
Note that diam(Kk) = k and that |V (Kk)| = (k + 1)2. Thus, since each vertex of Kk must be
colored differently in a coloring of the kth power of the king grid, we obtain that χ(Kk) ≥ (k+1)2.
We define the coloring function c((i, j)) = i (mod k+1) + (k + 1)j (mod k+1). Note that we have
dK(u, v) ≥ k + 1, for every two vertices u and v with the same color in K. Therefore, we obtain
that χ(Kk) = (k + 1)2.

Note that since there is a pattern, a vertex (i, j) can determine its color only knowing i
(mod (k + 1)) and j (mod (k + 1)). We recall the definition of the following function fk

K
(i, j) =

i (mod k+1) +(k+1)j (mod k+1). Note that fk
K
(i, j) = fk

K
(i′, j′), in the case i ≡ i′ (mod k+1) and

j ≡ j′ (mod k + 1). This function is used in order to assign k-local identifiers to particles.
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0 1 2 3 4 5 6 7 8 9 10 11 12

5 6 7 8 9 10 11 12 0 1 2 3 4

10 11 12 0 1 2 3 4 5 6 7 8 9

2 3 4 5 6 7 8 9 10 11 12 0 1

7 8 9 10 11 12 0 1 2 3 4 5 6

12 0 1 2 3 4 5 6 7 8 9 10 11

4 5 6 7 8 9 10 11 12 0 1 2 3

9 10 11 12 0 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9 10 11 12 0

6 7 8 9 10 11 12 0 1 2 3 4 5

11 12 0 1 2 3 4 5 6 7 8 9 10

3 4 5 6 7 8 9 10 11 12 0 1 2

8 9 10 11 12 0 1 2 3 4 5 6 7

Figure 10: A pattern for coloring the 4th power of the square grid.
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