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ABSTRACT 
This work is devoted to the numerical simulation of liquid-
gas flows. The liquid phase is considered as 
incompressible, while the gas phase is treated as 
compressible in the low Mach number approach. We 
present a model and a numerical method aimed at the 
computation of such two-phase flows. The numerical 
model uses a lagrangian front-tracking method to deal 
with the interface. To validate our model, we present 
preliminary results in the 1D case of a heated enclosure, 
inside which a liquid zone is inserted between two 
gaseous zones.  
 
INTRODUCTION 
This work is devoted to the numerical simulation of liquid-
gas flows with realistic physical properties and high 
density ratios between the phases. For confined flows 
(as is often the case in nuclear engineering or 
microfluidic applications), the variations of the 
thermodynamic pressure in the gaseous phase play an 
important role and must be taken into account. This 
means that the gaseous phase must be treated as a 
compressible fluid. However, in most of the applications 
the velocities in the gas are very small, and a low Mach 
number approach is well adapted for such flows. The 
liquid being considered as incompressible, an adequate 
model must be able to take into account both a truly 
incompressible flow and a low Mach number flow, 
separated by a dynamic interface across which the 
physical properties of the fluid are discontinuous. 
 We present such a model together with a numerical 
method aimed at the effective and efficient computation 
of such two-phase flows. The model is based on the 
solution of the Navier-Stokes equations, and it is 
developed by using a one-field approach, where the 
liquid or the gas is indicated by a Heaviside function. The 
low Mach number model in the gas involves two 
pressures, the usual dynamic pressure and a 
thermodynamic pressure which is defined only in the 
gaseous regions and is obtained using integral relations. 
The numerical model uses a lagrangian front-tracking 
method to deal with the interface. This method has 
shown to be effective for complex multidimensional 
situations including interface merging/breakup and phase 
change (Tryggvason et al. (2001) or Shin et al. (2002)). 
 To validate our model, we present an application in a 
one-dimensional case where the effects of the 
thermodynamic pressure are significant. Comparison 
with a reference solution shows that the front tracking 
model gives accurate solutions, and is adequate for 
treating multidimensional application involving 
compressibility effects. 
 
 
 

 
PHYSICAL MODEL 
We consider a two-phase liquid-gas flow, the liquid 
phase being incompressible and the gaseous phase 
being compressible. The Mach number in the 
compressible phase is supposed to be always small. The 
flow can then be represented using a low Mach model as 
proposed by Paolucci (1986). In this model, the pressure 
is decomposed in two components, a thermodynamic 
pressure which is uniform in space, and the usual 
hydrodynamic pressure which is involved in 
incompressible flows. Let us introduce a Heaviside 
function H(x,t), which plays the role of the characteristic 
function of the gaseous phase (H is equal to 1 in the gas, 
and 0 in the liquid phase). The function H is simply 
advected with the fluid velocity, and follows a transport 
equation : 
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The two-phase single-field model can be written, 
expressing the conservation of mass, momentum and 
energy: 
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where P(t) is the thermodynamic pressure, π is the 
hydrodynamic pressure and τ is the viscous tensor. The 
effect of gravity and surface tension is not included here. 
The gas is assumed to follow a perfect gas law: 
 

gP r Tρ=  (2) 

 
with r = cp - cv. The liquid being considered as 
incompressible has a constant density ρl. For our two-
phase model, the generalized equation of state then 
writes: 

(1 ) (1 )g l l
PH H H H
rT

ρ ρ ρ= + − = + − ρ  (3) 

 
The thermodynamic pressure must be calculated by 
using integral relations that will be derived in the 
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following. In equations (1), the coefficients cp and k are 
discontinuous across the interface, and are obtained in 
the same way as in (3) from their values in the gas and 
in the liquid. 
Using equation (3), the temperature equation in (1) can 
also be written in the following form, using the grouping 
(1/P)(dP/dt) rather than dP/dt : 
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Let us now derive the integral relations for P(t). To this 
aim, we insert (3) in the mass equation in (1) obtaining: 
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Let us suppose that the gaseous phase in enclosed by 
walls or the liquid phase (case of bubbles for example), 
and let us denote by Ωg(t) its spatial extension, Σg(t) the 
bounding surface. We then integrate (5) over Ωg(t) to 
obtain: 
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In this way we calculate (1/P)(dP/dt) to obtain the 
source term in (4). Once (1/P)(dP/dt) is known, the 
pressure P(t) can  be obtained directly from a time 
integration, i.e.: 
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EFFECT OF THE THERMODYNAMIC PRESSURE ON 
THE DYNAMICS OF THE FLOW 
The model described above does not take into account 
the effect of thermodynamic pressure that can be 
encountered for example if several bubbles are 
enclosed in a liquid. In this case, each bubble has its 
own pressure, and the net effect of these pressure 
forces result in an acceleration of the liquid. Let us 
illustrate this on a simple 1D model case: a gaseous 
zone enclosed inside two liquid moving zones. The 
incompressible motion of the liquid in 1D is a uniform 
velocity, named V1(t) and V2(t) respectively. If we 
assume that the gas density ρ is uniform in space 
(isothermal case), the formulation of the problem in the 
gas reads (neglecting viscous effects): 
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where the notation ρ&  denotes the time derivative of ρ. 
The density can be calculated directly considering the 
conservation of total mass M0 in the gaseous enclosure 
of instantaneous length l(t), that is ρ(t)=M0 / l(t). An origin 
being fixed, let us denote by l1(t) and l2(t)  the positions of 
the left and right liquid-gas interfaces respectively. One 
can easily show that the local velocity in the gas is given 
by: 
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Replacing this expression in the momentum equation, 
one obtains the value of the pressure gradient as: 
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On the interfaces, this gives: 
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The velocities being uniform inside the liquid zones, this 
means that the hydrodynamic pressure gradient must be 
uniform in the liquid in order to incorporate the 
thermodynamic pressures exerted by the gaseous zones 
enclosing the liquid. Thus we must have: 
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in each liquid zone of length L, ΔP being the 
thermodynamic pressure difference exerted on the liquid. 
This will be taken into account in the numerical model 
through a source term added in the momentum 
equations, as will be developed below. 
 
NUMERICAL SOLUTION 
The model described above must be coupled to a 
specific method for tracking the liquid-gas interface. 
Among the existing methods, we have chosen here to 
use the lagrangian front tracking method developed in 
Tryggvason (2001) and subsequent papers. This method 
uses a lagrangian discretization and movement of the 
interface. A Heaviside function, defined on the Eulerian 
grid, is built from the lagrangian definition of the interface. 
This H function is smoothed over 3 to 4 cells for 
numerical stability reasons. This leads to the existence of 
a "mixing" zone between the two fluids, where the model 
has no physical meaning. 
 The spatial discretization is based on centered finite 
differences for both the convection and diffusion terms. A 
staggered mesh is used, where hydrodynamic pressure 
and temperature are located at the center of the cells, 
while the components of the velocity are located on the 
faces. We have used here a first order explicit temporal 
discretization, but the extension to semi-implicit second 
order should not be a problem. A classical prediction-
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projection algorithm is used to compute the velocities. In 
order to take into account the effect of the 
thermodynamic pressure, a source term is added in the 
prediction step of the velocity that allows the 
hydrodynamic pressure to reproduce the behavior 
established in the previous section. The predicted 
velocity  is calculated from: *vr
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The added source term is the last term in (13), and is the 
multidimensional generalization of the right hand side of 
equation (12). It is null in the gas, where H=1, and it is 
constant in liquid zones. The function P is constructed 
such as to be defined everywhere in the spatial domain. 
It extends the thermodynamic pressure defined in the 
gaseous zones in the liquid zones where it is not defined. 
To construct it we impose the following conditions: 
- it should be equal to the thermodynamic pressures in 
the gaseous zones, 
- it should be harmonic in the liquid zones, in order to 
leave the velocity field in the liquid divergence free, 
- it should verify a Neumann boundary condition on the 
walls.  
P  can thus be interpreted as the potential in the liquid of 
the forces due to the thermodynamic pressures in the 
gaseous phases. Let us suppose that there exists N 
closed gaseous zones in the domain, each marked by a 
characteristic function Hj. The global characteristic 
function H is equal to the sum of the N functions Hj. We 
can express the above conditions through the following 
equation that must be verified by P: 
 

j

N

j
j

N

j
j PHHH ∑∑

==

=ΔΠ⋅−+⋅Π
11

)1(   

 
supplemented with Neumann boundary conditions on the 
walls if the domain is closed. This implies that we have to 
solve a Helmholtz equation to calculate P. The 
hydrodynamic pressure is then calculated by solving the 
following Poisson equation: 
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in which stands for the desired divergence of the 
projected velocity, which is .computed using the mass 
conservation equation (5), after the temperature and the 
integral in (6) have been calculated. Once the 
hydrodynamic pressure is obtained, the velocity is 
calculated from: 

1nv +∇ ⋅
r

 

Π∇−−∇−=+

l

n Httvv
ρ

δπ
ρ

δ 1)1(1*1 rr
 (15) 

 
The last term is subtracted from  because the 
thermodynamic pressure effect is already taken into 

account in the hydrodynamic pressure field, and 
otherwise would be taken into account twice. 

*vr

 
 To summarize, the complete algorithm reads as 
follows: 
- Initialization 
- Begin the time loop 
- Solve Eq. (4) for Tn+1. 
- Calculate Hn+1 using the front-tracking method 

- Calculate ( ) 1n+
and 1n(1 )( )P dP dt P + in each 

gaseous doma  using nvin
r

, Hn+1and Tn+1  in (6) and (7). 
- Calculate ρn+1 using (3) and update the values k, cp. 
- Calculate P  and the source term in the momentum 
equations. 
- Calculate 1nv +∇ ⋅

r
 for the Poisson equation using the 

mass equation (5). 
- Calculate the predicted velocities  from (13). *vr

- Solve (14) for the hydrodynamic pressure π (multigrid). 
- Project the velocity by (15). 
- End of time loop. 
 
 For closed domains, an important point to emphasize 
is the compatibility relation that must be verified when 
processing the integration of (6) to calculate 

( 1(1 )( ) nP dP dt ) +
. In this case, if we integrate (6) over 

the whole domain, the surface term must be zero. 
However, in the front-tracking method, we have pointed 
out the existence of a mixing zone, typically a few cells 
thick, inside which the velocity is only defined as an 
interpolation between the liquid velocity, which is 
divergence free, and the gas velocity which is not 
divergence free. Thus there is no chance that the global 
balance of the velocity on the interfaces be zero if the 
integration for each gaseous volume ends inside this 
mixing zone. In fact the integration must cross it and end 
in the liquid, or equivalently take into account all values 
of H which are not zero. This is a crucial point to get a 
correct balance of the thermodynamic pressure effects 
on the liquid zones. 
 
REFERENCE ALE 1D NUMERICAL METHOD 
In order to get a reference solution, we also have 
developed, in the 1D case, a code based on a Arbitrary 
Lagrangian Eulerian (ALE) method (moving mesh). In 
this way, the interfaces between liquid and gas are real 
discontinuities, and there are no errors that could be 
ascribed to the front tracking method and the existence 
of a mixing zone. Using an accurate discretization, we 
can consider the results given by this code as reference 
results. Let us emphasize that the ALE method is limited 
to small distortions situations in the multidimensional 
case, and is not adequate for treating complex 
multiphase flows, as opposed to the front-tracking 
method. 
We here briefly recall the ALE method. The domains 
moving with time, linear transformations are used to map 
the physical domains to a reference mathematical 
domain. The spatial discretization uses a high order 
spectral element for each sub-domain, with order p for 
the temperature, density, velocity and order p-2 for the 
hydrodynamic pressure. The mapping being time 
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dependent, it yields additional correction terms in the 
governing equations to account for the mesh velocity. 
The time integration of the flow involves diverse time 
discretizations and numerical methods for the inversion 
of the resulting discrete operators. The complete 
numerical methodology is detailed elsewhere (see Duluc 
et al. (2008)), and we simply mention here that an 
iterative procedure is used at each time step in order to 
get converged values of the thermodynamic pressure 
and the temperature, velocity and density fields.  
 
NUMERICAL RESULTS FOR A 1D PROBLEM 
We consider a one-dimensional fluid system consisting 
of two layers of gas (air) enclosing a layer of liquid 
(water). The system is closed by two walls. The total 
length of the system is 100 µm, the length of the liquid 
layer is 10 µm, the latter being initially situated at the 
center of the system. The initial thermodynamic 
conditions are P0=101325 Pa, T0=293.15K. At initial time, 
the left wall is heated to Tw=373.15K. The right wall is 
insulated. After a transient evolution, a steady state 
establishes where the initial positions of the liquid-gas 
interfaces are recovered, due to mass conservation. In 
the gas, the density at steady state is unchanged, Tf = Tw 
everywhere, and Pf=P0.Tf / T0=128976.37 Pa following 
the perfect gas equation of state. 
 The domain is discretized using 100 grid points. The 
time step is equal to 10-8s, due to stability limits of the 
explicit time discretization. 
We represent in Fig.1 trajectories of the two liquid-gas 
interfaces. The first remark that can be done is that those 
trajectories are parallel (the liquid has a solid body 
movement), and that the initial positions are well 
recovered. This is a very important and demanding case 
to test for mass conservation for the method. A method 
we developed previously based on a single pressure 
approach (Daru et al. (2006)) revealed very serious 
problems with this criterion. 
 A logarithmic representation of the interface trajectory 
(Fig. 1b) reveals that in the first moments after the 
heating of the left wall, an oscillatory movement of the 
liquid zone is observed. This effect which is entirely due 
to compressibility of the gas was analyzed in details by 
Duluc et al. (2008). The corresponding thermodynamic 
pressure history is shown in natural (Fig. 2a) and 
logarithmic (Fig. 2b) scales. As the pressures in the two 
gaseous domains are not equal, the liquid is accelerated. 
In Fig. 3 is shown the fluid velocity in the whole domain, 
for two successive times. One can remark that the 
velocity is constant in the liquid, showing that the liquid 
behaves as a solid in this 1D case, and that 
compressibility effects produce a non-uniform velocity in 
the gas. In the first microseconds, large velocities can be 
attained. The hydrodynamic pressure at t=1 µs is shown 
in Fig. 4. The temperature fields for several successive 
times is shown in Fig. 5 and reveals that after an initial 
transient where a piston effect can be observed in the left 
gaseous zone, a purely conductive regime takes place in 
the left gaseous zone while the temperature is nearly 
uniform in the right gaseous zone due to the adiabatic 
wall condition. The relative total mass variation in the 
cavity never exceeds 0.5% throughout the unsteady 
evolution, demonstrating good mass conservation 
properties of the algorithm. 

 Finally, in Figs. 6 and 7 we compare the results given 
by the front-tracking algorithm and the ALE approach, 
the latter being considered as the reference. It can be 
seen on the trajectories and the pressures history, that 
the results are very close (Figs.  6 and 7), although the 
front-tracking algorithm is only first order in time. This 
validates the low Mach compressible/incompressible 
approach in the front-tracking framework. 
 
CONCLUSION 
We have constructed a model aimed at the numerical 
simulation of liquid-gas flows, where compressibility 
effects in the gas are taken into account using a low 
Mach approach. The interface is treated using a front-
tracking approach, which has shown to be effective in 
complex multidimensional situations. The model has 
been validated in the one-dimensional case by 
comparison with reference results obtained using an ALE 
approach. Work is currently in progress to develop 
multidimensional applications and to extend the model to 
liquid-vapor phase change problems. 
 
NOMENCLATURE 
cp specific heat at constant pressure J/kgK  
cv specific heat at constant volumetric J/kgK  
k thermal conductivity W/mK 
H  Heaviside function 
P  thermodynamic pressure Pa 
t  time s 
T temperature K 
vr  velocity m/s 
γ specific heat ratio 
π hydrodynamic pressure Pa 
ρ density kg/m3 
τ viscous tensor Pa 
 
Subscripts 
g related to the gaseous phase 
l  related to the liquid phase 
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Fig. 1a Trajectories of interfaces in natural time 
scale 

 

 

Fig. 1b Trajectories of interfaces in log time 
scale 

Fig. 2a Thermodynamic pressure in the 
gaseous domains (natural time scale) 

 

 

Fig. 2b Thermodynamic pressure in the 
gaseous domains (log time scale) 

 

Fig. 3a Velocity field at time t=1 µs  
 

 

 Fig. 3b Velocity field at time t=1 ms 
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Fig. 4 Hydrodynamic pressure at time t=1 µs 
 

 

 
Fig. 5 Temperature field at time t=1 µs,          

t=4, 5, 6, 7, 8 ,9 ms  
 

Fig. 6 Comparison of front-tracking (FT) and 
ALE results: left interface trajectory 

 

 

 
Fig. 7 Comparison of front-tracking (FT) and 

ALE results: time evolution of the 
thermodynamic pressure 
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