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EXISTENCE AND NONEXISTENCE OF POSITIVE SOLUTIONS

TO A FRACTIONAL PARABOLIC PROBLEM WITH SINGULAR

WEIGHT AT THE BOUNDARY

BOUMEDIENE ABDELLAOUI∗, KHEIREDDINE BIROUD, EL-HAJ LAAMRI

Abstract. In this work, we consider a nonlocal semilinear parabolic problem
related to a fractional Hardy inequality with singular weight at the boundary.

More precisely, we consider the problem

(P )


ut + (−∆)su = λ

up

d2s
in ΩT = Ω× (0, T ),

u(x, 0) = u0(x) in Ω,

u = 0 in (IRN \ Ω)× (0, T ),

where 0 < s < 1, Ω ⊂ IRN is a bounded regular domain, d(x) = d(x, ∂Ω),

p > 0 and λ > 0 is a positive constant. The initial data u0 	 0 is a nonnegative

function in a suitable Lebesgue space that we make precise later.
The main goal of this work is to analyze the interaction between the parameters

s, p and λ in order to show the existence or the nonexistence of solution
to problem (P ) in a suitable sense. We will show that our results have a

significative difference with respect to the local case s = 1.

1. Introduction and main results

Recently, much attention has been devoted to the fractional Laplacian (−∆)s,
which for 0 < s < 1 is defined on smooth functions as follows

(1.1) (−∆)su(x) := aN,s P.V.

∫
RN

u(x)− u(y)

|x− y|N+2s
dy,

where P.V stands for the Cauchy principal value and aN,s is a dimensional constant
given by (see e.g [21, section 2]),

aN,s :=
s22sΓ(N+2s

2 )

π
N
2 Γ(1− s)

where Γ denotes the Gamma function. The choice of the constant aN,s is motivated,
among others, by the following proposition (see [21, Proposition 4.4]) :

Proposition 1.1. For all φ ∈ C∞0 (RN ), the following statements hold :

(1.2) lim
s→0+

(−∆)sφ = φ and lim
s→1−

(−∆)sφ = −∆φ

where ∆ is the classical Laplacian.
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Of course, there are other ways to define the fractional Laplacian. For this, we refer
the interested reader to [21, 10, 16] and the references therein.
Note that the fractional Laplacian is a nonlocal operator and that this raises several
technical difficulties. However, great attention has recently been focused on the
study of nonlocal operators because they play a crucial role in describing several
phenomena, as, for instance, the thin obstacle problem, anomalous diffusion, quasi-
geostrophic flows, ...

In spirit of this nonlocal setting, the aim of this paper is the study of the following
nonlocal parabolic problem :

(1.3)


ut + (−∆)su = λ

up

d2s
in ΩT = Ω× (0, T ),

u(x, 0) = u0(x) in Ω,

u = 0 in (IRN \ Ω)× (0, T ),

where Ω is a bounded regular domain of IRN , d(x) = dist (x, ∂Ω), p > 0, λ > 0,
u0 	 0 is a nonnegative measurable function, 0 < s < 1 and (−∆)s is the fractional
Laplacian .

More precisely, our goal here is to get natural conditions on the parameters s, p, λ
and initial data in order to prove the existence of positive solutions to the problem
(1.3). By solution, we mean energy solution or weak solution (for more specifics,
see Definition 2.4 and Definition 2.5).

In order to give precise statements of the results obtained, let us introduce first
the following Hardy’s inequality (for a proof, see [22] and [23, Theorem 5]) under
the form that we will use.

Theorem 1.2. Assume that s ∈ (0, 1), N ≥ 2s and let Ω be a bounded regular
domain (C1,1 regularity is sufficient). Then, there exists a positive constant Λs(Ω)
such that for all φ ∈ C∞0 (Ω)

(1.4) Λs(Ω)

∫
Ω

φ2(x)

d2s(x)
dx ≤ aN,s

2

∫∫
DΩ

|φ(x)− φ(y)|2

|x− y|N+2s
dxdy,

where DΩ := IRN × IRN \
(
ΩC × ΩC

)
.

If s ∈ [ 1
2 , 1) and Ω is a convex domain, then the constant Λs(Ω) is independent of

Ω and it is given by

(1.5) Λs(Ω) = Λ∗s :=
Γ2(s+ 1

2 )

π
.

Remark 1.3.
• In all cases, we always have Λs(Ω) ≤ Λ∗s, see [23, Theorem 5].
• Let us point out that Λs(Ω) is achieved if and only if Λs(Ω) < Λ∗s. We refer to
[14] for more details.

Before going further, let us mention some previous works concerning the local
case, i.e. s = 1 in order to compare it with the nonlocal case.
First, Problem (1.3) has been recently treated in [4] (see also [3] for the elliptic
case). In their work, the authors have proved a strong nonexistence result if p < 1.
However, for p > 1 and for adequate assumptions on u0, they proved the existence
of a positive solution using suitable sub and supersolution and iteration arguments.
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If p = 1 and Ω is a bounded convex domain, then the authors proved in [15] a strong
nonexistence result for λ > Λ∗1. As a consequence, a complete and instantaneous
blow-up result was proved for approximating problems.

Second, in the case where the weight d−2 is replaced by |x|−2 with 0 ∈ Ω, the best

constant in the Hardy’s inequality is Λ∗∗ =
(
N−2

2

)2
, see for instance [24] and the

references therein. Moreover, if p = 1, the authors proved in [8] that the existence
of solutions holds if and only if λ ≤ Λ∗∗. For p > 1, a strong nonexistence result
was obtained in [11].

In the nonlocal case (i.e s < 1), a different phenomenon appears in booth cases
p < 1 and p = 1.

The main results of this paper can be summarized in the following points.
• If p < 1, we will show that Problem (1.3) has a nonnegative solution, in a suitable
sense, for all u0 ∈ L1(Ω). This makes a significative difference in comparing with
the local case s = 1, where a strong nonexistence result is proved in [4].
Here we will prove the following result.

Theorem 1.4. Assume 0 < s < 1 and 0 < p < 1. Then, for all 0 ≤ u0 ∈ L1(Ω),
Problem (1.3) has a positive distributional solution.
Moreover, if s > 1

2 and 0 < p < 2s − 1, then u is a weak solution in the sense of
Definition 2.5 given below.

• In the linear case p = 1, we will show that the range of the parameter s, together
with the validity of the Hardy’s inequality with optimal constant stated in Theorem
1.2 and Remark 1.3, will be decisive for existence and nonexistence of positive
solutions for λ large. The main result in this case is the following.

Theorem 1.5. Assume that s ∈ (0, 1
2 ). Then, for all λ > 0, Problem (1.3) has

a positive weak solution. If s ∈ [ 1
2 , 1) and Λs(Ω) = Λ∗s (that includes the case of

convex domain), then the existence of a nonnegative solution holds if and only if
0 < λ ≤ Λ∗s.

• Finally, in the superlinear case p > 1, we are able to show the existence of a
nonnegative solution for a suitable u0 ∈ L∞(Ω). More precisely, we will prove the
next theorem.

Theorem 1.6. Assume that s ∈ (0, 1) and p > 1. Then, there exists u0 ∈ L∞(Ω)
such that Problem (1.3) has a positive bounded solution.

As far as we know, all the results presented here are new.

For the sake of completeness and for the reader’s convenience, we have tried to
write this paper in almost self contained form. Moreover, we give precise references
for all points that are not detailed in this work.

To end this section, our paper is organized as follows. In Section 2, we give some
auxiliary results related to fractional Sobolev spaces and some functional inequal-
ities. We also define the two notions of solution that we will use systematically
along the paper : energy solutions and weak solutions.
The case 0 < p < 1 is treated in Section 3. Using monotone arguments and suitable
test functions, we are able to prove the existence and uniqueness of a global weak
solution that is in a suitable Sobolev space. This seems to be surprising since in
the local case a strong nonexistence result holds with complete blow-up for the
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sequence of solutions to the approximating problems.
In section 4, we treat the linear case p = 1. According to the value of s, we will
show the existence and the nonexistence of solution for λ large. In particular, if
s ∈ (0, 1

2 ), we are able to prove the existence and the uniqueness of a positive weak

solution for all λ > 0. However, if s ∈ [ 1
2 , 1) and Λ∗s(Ω) = Λ∗s (that holds for exam-

ple if Ω is convex), then the existence of solution holds if and only if λ ≤ Λ∗s.
The superlinear case p > 1 is treated in Section 5. Under suitable assumptions on
the initial data and using monotone arguments, we are able to get the existence of
a bounded positive solution.
Finally, in the last section we give some extension to the case of the spectral frac-
tional Laplacian.

2. The functional setting and tools

2.1. Functional framework. As already announced in the introduction, we are
working in a bounded domain Ω with homogeneous Dirichlet boundary conditions
u = 0 in IR \ Ω and not simply u = 0 in ∂Ω. This makes the classical fractional
Sobolev space approach not sufficient for studying our problem. Then, we need to
set a natural functional framework that is inspired by (but not equivalent to) the
fractional Sobolev spaces which will allow us to deal with the Dirichlet boundary
condition.

Of course, this subsection can be skipped by readers already familiar with them.

Let Ω ⊂ IRN and s ∈ (0, 1). In the sequel, we denote DΩ = R2N\(ΩC × ΩC).
In the following, we denote by Hs(Ω) the classical fractional Sobolev space defined
as

Hs(Ω) =:
{
u ∈ L2(Ω) ;

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|N+2s
dxdy < +∞

}
,

endowed with the norm

(2.1) ‖u‖Hs(Ω) = ||u||L2(Ω) +
(aN,s

2

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|N+2s
dxdy

) 1
2

.

Now, we introduce the space Hs0(Ω) as the completion of C∞0 (Ω) with respect to

the norm of Hs(IRN ). Notice that if u ∈ Hs0(Ω), we have u = 0 a.e. in IRN \ Ω. It
is clear that for u ∈ Hs0(Ω), we have∫

IRN

∫
IRN

|u(x)− u(y)|2

|x− y|N+2s
dxdy =

∫∫
DΩ

|u(x)− u(y)|2

|x− y|N+2s
dxdy.

If Ω is a bounded domain, then using Poincaré’s inequality, we can endowed Hs0(Ω)
with the equivalent norm

||u||2Hs0(Ω) =
aN,s

2

∫∫
DΩ

|u(x)− u(y)|2

|x− y|N+2s
dxdy,

The pair (Hs0(Ω), ||.||Hs0(Ω)) is a Hilbert space (see for instance [31, Lemma 7] or

[10, Lemma 1.29]). The dual space of Hs0(Ω) will be denoted by H−s(Ω). For more
properties of the previous spaces, we refer to [21], [6] and [10, subsection 1.5].
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2.2. Some useful functional inequalities. In this subsection, we collect and
present some functional inequalities under the form in which they will be exploited.

• The following Sobolev’s inequality is proved in [21] (see also [30] for a simple
proof).

Theorem 2.1. Assume that 0 < s < 1 with 2s < N . There exists a positive
constant S = S(N, s) such that for all u ∈ Hs0(Ω), we have

S
(∫

Ω

|u(x)|2
∗
s dx

) 2
2∗s ≤ aN,s

2

∫∫
DΩ

|u(x)− u(y)|2

|x− y|N+2s
dx dy

where 2∗s :=
2N

N − 2s
is the so-called critical Sobolev exponent.

• In order to treat the case λ = Λ∗s :=
Γ2(s+ 1

2 )

π
, we need the following improved

Hardy-Sobolev inequality obtained in [23]. For this purpose, let us first state the
definition of inner radius of a domain Ω :
the inner radius of a domain Ω is defined as Rin := sup

x∈Ω
d(x). We say that the

domain Ω has a finite inner radius whenever Rin <∞.

Theorem 2.2. (Improved Hardy-Sobolev inequality) Assume that 1
2 ≤ s < 1 and

Ω ⊂ IRN (N ≥ 2) is a uniformly Lipschitz and convex domain with finite inner
radius. Then, there exists a positive constant C ≡ C(Ω, s) such that

(2.2) C
(∫

Ω

|u(x)|2
∗
s dx

) 2
2∗s ≤ aN,s

2

∫∫
DΩ

|u(x)− u(y)|2

|x− y|N+2s
dx dy − Λ∗s

∫
Ω

u2

d2s
dx

where 2∗s = 2N
N−2s .

• The Kato type inequality below will be useful in this paper.

Theorem 2.3. Let Φ ∈ C2(IR) be a convex function. Assume that u and Φ(u) are
such that (−∆)su and (−∆)sΦ(u) exist. Then

(2.3) (−∆)sΦ(u) ≤ Φ′(u)(−∆)s(u).

2.3. Notion of solutions. Now, let us begin by making precise the sense that
solutions are defined.

Definition 2.4. Let (g, u0) ∈ L2(ΩT )×L2(Ω). We say that u is an energy solution
to the problem

(2.4)


ut + (−∆)su = g(x, t) in ΩT = Ω× (0, T ),

u(x, t) = 0 in (IRN \ Ω)× (0, T )
u(x, 0) = u0(x) in Ω,

if u ∈ L2((0, T ),Hs0(Ω)) ∩ C([0, T ], L2(Ω)) with ut ∈ L2((0, T ), L2(Ω)) and for all
w ∈ L2((0, T ),Hs0(Ω)), we have
(2.5)∫ T

0

∫
Ω

utw dxdt+

∫ T

0

∫∫
DΩ

(u(x)− u(y))(w(x)− w(y))

|x− y|N+2s
dx dy dt =

∫ T

0

∫
Ω

gw dx dt,

for all w ∈ L2((0, T ),Hs0(Ω)).
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Since we will consider problems with general datum in L1, we have to specify
the meaning of weak solutions. We first need to define the space of test functions

P (ΩT ) := {φ : RN × [0, T ]→ R, s.t. − φt + (−∆)sφ = ϕ, ϕ ∈ L∞(ΩT )

φ(x, t) = 0 in (IRN \ Ω)× (0, T ], φ(x, T ) = 0 in Ω}.
Notice that if φ ∈ P (ΩT ), then φ ∈ L∞(ΩT ) (see for instance [26]).
Then we have the subsequent definition.

Definition 2.5. Let (g, u0) ∈ L1(ΩT ) × L1(Ω). We say that u ∈ C([0, T ], L1(Ω))
is a weak solution to

(2.6)


ut + (−∆)su = g(x, t) in ΩT

u(x, t) = 0 in (IRN \ Ω)× (0, T ),
u(x, 0) = u0(x) in Ω,

if for all φ ∈ P (ΩT ), we have∫
ΩT

u(−φt + (−∆)sφ) dx dt =

∫
ΩT

uϕdx dt =

∫
ΩT

gφ dx dt+

∫
Ω

u0φ(x, 0) dx.

The following existence and regularity result is obtained in [26].

Theorem 2.6 ( See [26, Theorem 28]). Assume that (g, u0) ∈ L1(ΩT ) × L1(Ω).
Then, Problem (2.6) has a unique weak solution u, that is obtained as a limit of
approximations, such that ∀k ≥ 0, Tk(u) ∈ L2((0, T ),Hs0(Ω)), u ∈ Lq(ΩT ) for all
q ∈ [1, N+2s

N ) and |(−∆)
s
2u| ∈ Lr(ΩT ) for all r ∈ [1, N+2s

N+s ).

Here, Tk(σ) := max{−k,min{k, σ}} for k > 0,
Taking into consideration the singular weight d−2s at the boundary of Ω and in
order to prove a priori estimates for approximate problems, we will use this existence
result obtained in [1].

Theorem 2.7 (See [1, Proposition 1.10]). theorem 2.7 Assume that s ∈ (0, 1) and
β ∈ (0, 2s). Then, the following problem

(2.7)

 (−∆)sξ =
1

dβ(x)
in Ω,

φ = 0 in IRN\Ω,
has a unique bounded distributional solution such that

(i) if β < s, then ξ w ds,
(ii) if β = s, then ξ w ds log( D

d(x) ) where D >> diam(Ω),

(iii) if β ∈ (s, 2s), then ξ w d2s−β.

Note that, if f and g are nonnegative functions, then by f w g, we mean that
there exist two positive constants C1 and C2 such that C1f ≤ g ≤ C2f .

Finally, we conclude this section with the next Picone’s inequality that the proof
can be found in [26] and [5].

Proposition 2.8. Consider u ∈ Hs0(Ω) such that u > 0 in Ω. Then, for all
φ ∈ C∞0 (Ω), we have

(2.8)

∫
Ω

(−∆)su

u
φ2 dx ≤ aN,s

2

∫∫
DΩ

|φ(x)− φ(y)|2

|x− y|N+2s
dx dy.
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3. The sublinear case p < 1 : Existence results.

In this section, we are interested in the sub-linear case, namely 0 < p < 1.
Contrary to the local case studied in [4], we are able here to show the existence of
a solution, at least, in a weak sense.

In order to make easier the calculations and using the homogeneity, we can
assume that λ = 1.

The main existence result of this section is the following.

Theorem 3.1. Assume that 0 < s < 1 and 0 < p < 1. Then, for all 0 � u0 ∈
L1(Ω), Problem (1.3) has a positive distributional solution. Moreover, if s > 1

2 and
0 < p < 2s − 1, we get the existence of a weak solution in the sense of Definition
2.5.

Proof. : We proceed by iterations. Let n ≥ 1 and define un to be the unique
positive solution to

(3.1)


unt + (−∆)sun =

upn−1

(d(x) + 1
n )2s

in ΩT

un(x, t) = 0 in (IRN \ Ω)× (0, T ),
un(x, 0) = u0n(x) in Ω,

where u0n := min(n, u0) and u00 := 0. The existence and the uniqueness of un
follow using classical arguments for monotone operators. Moreover un ≥ 0. Now,
taking into consideration that u0n ↑ u0 as n→∞, then by the comparison principle
it holds that un ≤ un+1 for all n.
Let ξ be the solution to Problem (2.7) with β ∈ (s,min{2s, 1}), then β < 1. By
Theorem 2.7, it follows that ξ w d2s−β .
Using ξ as a test function in (3.1) and taking into consideration the estimate on ξ
given in Theorem 2.7, it holds

d

dt

∫
Ω

un ξ dx+

∫
Ω

un
dβ

dx =

∫
Ω

upn−1ξ

(d(x) + 1
n )2s

dx ≤ C
∫
Ω

upn
dβ

dx.

Since p < 1, by Young’s inequality, we obtain

(3.2)
d

dt

∫
Ω

unξ dx+ (1− ε)
∫

Ω

un
dβ

dx ≤ C(ε)

∫
Ω

1

dβ
dx.

Since β < 1, then

∫
Ω

1

dβ
dx < ∞. Choosing ε small enough and integrating (3.2)

in time, we get

sup
t∈[0,T ]

∫
Ω

un(x, t) ξ dx+ (1− ε)
∫ T

0

∫
Ω

un
dβ

dx dt ≤ TCC(ε) +

∫
Ω

u0ξ dx <∞.

Thus, there exists a measurable function u ∈ L1(ΩT ) ∩ L∞((0, T ), L1
loc(Ω)) such

that un ↑ u strongly in L1(ΩT ) and in L∞((0, T ), L1
loc(Ω)) as n→∞. Moreover

upn
(d(x) + 1

n )2s
↑ u

p

d2s
strongly in L1

loc(ΩT ).

Hence u is, at least, a distributional solution to problem (1.3) with
u

dβ
∈ L1(ΩT ).
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Let us assume now that s > 1
2 and that p < 2s − 1. Taking into consideration

that u ∈ L1(ΩT ) and using Hölder’s inequality, we can show that
up

d2s
∈ L1(ΩT ).

Finally, by Theorem 2.6, we easily obtain the desired result. �

Remark 3.2.
• In the local case (i.e s = 1), the authors proved in [4] a strong nonexistence
result to problem (1.3) for all p < 1. As a consequence, they get a complete and
instantaneous blow-up for the approximating problems. Hence, our existence result
in Theorem 3.1 shows a significative difference between the local and the nonlocal
cases.
• In the linear case, as it was established in [19] a closely phenomenon occurs. More
precisely, the authors proved that all functions are locally s−harmonic up to a small
error. This produces more solutions in the fractional case than the local case (that
disappear when letting s→ 1).

4. The linear case : Existence and nonexistence results.

In this section, we consider the linear problem

(4.1)


ut + (−∆)su = λ

u

d2s
in ΩT ,

u = 0 in (IRN \ Ω)× (0, T ),
u(x, 0) = u0(x) in Ω,

where λ > 0 and u0 is a measurable positive function satisfying some assumptions
that we will specify later.
We will show that the rang of the parameter s will be the key point in order to
show the existence or the nonexistence of solution for large value of λ.

4.1. The case s ∈ (0, 1
2 ) : existence result. The main existence result of this

subsection is the following.

Theorem 4.1. Assume that Ω is a bounded regular domain of IRN with N > 2s,
s ∈ (0, 1

2 ) and 0 � u0 ∈ L1(Ω). Then, for all λ > 0, Problem (4.1) has a weak

solution u ∈ C((0, T ), L1(Ω)) such that

1) ∀k ≥ 0, Tk(u) ∈ L2((0, T ),Hs0(Ω)) ;
2) u ∈ Lq(ΩT ) for all q ∈ [1, N+2s

N ) ;

3) |(−∆)
s
2u| ∈ Lr(ΩT ) for all r ∈ [1, N+2s

N+s ).

Remark 4.2.
• The above existence result holds for all bounded domains and in particular for
convex domains.
• The existence result in Theorem 4.1 (at least for convex domains) is another case
where local and nonlocal problems have significant difference. In fact, if s = 1 and
if Ω is a convex domain, existence holds only if λ ≤ Λ∗1.

Before starting the proof of Theorem 4.1, we shall recall the following existence
result obtained in [5, Theorem 3.1] which will have a key role in our demonstration.
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Theorem 4.3. Assume that 0 < s < 1
2 and fix α > 0 be such that 2s + 2α < 1.

Then, the problem

(4.2)


(−∆)sw =

1

d2s+α
in Ω,

w > 0 in Ω,

w = 0 in IRN \ Ω,

has a unique weak solution w obtained as a limit of approximate problems with
w ∈ Hs0(Ω). Moreover

(4.3) w(x) ≥ Cds(x) in Ω.

Proof. Let 0 < s < 1
2 and choosing 0 < α < 1−2s

2 , then d−2(s+α) ∈ L1(Ω). There-
fore defining wn as the unique solution to the problem

(4.4)


(−∆)swn =

1

d2s+α + 1
n

in Ω,

wn > 0 in Ω,

wn = 0 in IRN \ Ω,

Thanks to Theorem 2.6, wn ↑ w strongly in L1(Ω) where w is the unique weak
solution to Problem (4.3). Now, using wn as a test function in (4.4) and applying
Hölder’s inequality, we get

aN,s
2

∫∫
DΩ

|wn(x)− wn(y)|2

|x− y|N+2s
dx dy ≤ C(Ω)

(∫
Ω

w2
n(x)

d2s(x)
dx

) 1
2

.

Hence by the Hardy-Sobolev inequality (1.4), we conclude that

aN,s
2

∫∫
DΩ

|wn(x)− wn(y)|2

|x− y|N+2s
dx dy ≤ C(Ω) for all n.

Thus w ∈ Hs0(Ω) and the result follows. �

Now we are ready to show Theorem 4.1.
Proof of Theorem 4.1.
We proceed by approximation. Let n ∈ IN∗ and un ∈ L2((0, T ),Hs0(Ω)) ∩ L∞(ΩT )
be the positive solution to the approximate problem

(4.5)


unt + (−∆)sun = λ

un−1

(d(x) + 1
n )2s

in ΩT

un(x, t) = 0 in (IRN \ Ω)× (0, T ),
un(x, 0) = u0n(x) in Ω,

where u0n := Tn(u0) and u00 := 0.
In what follows, we denote by C any positive constant that can change from one

line to the other and it is independent of n.
Fix α ∈ (0, 1−2s

2 ) and consider w ∈ Hs0(Ω) the unique weak solution to Problem
(4.2) given in Theorem 4.3.

We claim that,

(4.6) ∀ε > 0,∀λ > 0, ∃C = C(λ, ε) > 0 such that λ < C d2s(x) +
ε

dα(x)
∀x ∈ Ω.
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It is clear that (4.6) holds trivially in a neighborhood of the boundary. Now, far
from the boundary we use the fact that for every compact set K ⊂⊂ Ω, d2s > C(K).
Thus, by choosing C large in (4.6), the claim follows.

Taking w (the solution to Problem (4.2)) as test function in (4.5), we get

d

dt

∫
Ω

unw dx+

∫
Ω

w(−∆)sun dx ≤ λ
∫

Ω

unw

d2s
dx.

Thus

(4.7)
d

dt

∫
Ω

unw dx+

∫
Ω

un
d2s+α

dx ≤ λ
∫

Ω

unw

d2s
dx.

For k > 0, we consider the set Ak := {x ∈ Ω ; w(x) ≥ k}. Then, we get the

existence of k̂ > 0 such that Ak ⊂ Bk̂ := {x ∈ Ω ; d(x) ≥ k̂}.
Hence, by using (4.6) we have

λ

∫
Ω

unw

d2s
dx = λ

∫
Ak

unw

d2s
dx+ λ

∫
Ω\Ak

unw

d2s
dx

≤ λ

∫
Bk̂

unw

d2s
dx+ ε

∫
Ω\Ak

unw

d2s+α
dx+ C(ε)

∫
Ω\Ak

unw dx

≤ (λ+ k̂−2s + C(ε))

∫
Ω

unw dx+ εk

∫
Ω\Ak

un
d2s+α

dx.

Going back to (4.7) and choosing ε such that εk << 1, we obtain

(4.8)
d

dt

∫
Ω

unw dx+ (1− εk̂)

∫
Ω

un
d2s+α

dx < C

∫
Ω

unw dx.

Thus
d

dt

∫
Ω

unw dx ≤ C
∫

Ω

unw dx.

By Gronwall’s Lemma and integrating in time, it holds that

sup
t∈[0,T ]

∫
Ω

un(x, t)w dx+ (1− ε)
∫ T

0

∫
Ω

un
d2s+α

dx dt ≤ C(T )

∫
Ω

u0w dx.

Thus

sup
t∈[0,T ]

∫
Ω

un(x, t)w dx ≤ C(T ) and

∫ T

0

∫
Ω

un
d2s

dx dt ≤ C(T ).

Taking into consideration that the sequence {un}n is increasing in n, we get the
existence of a measurable function u such that

(1) un → u strongly in L1
loc(ΩT ),

(2)
un
d2s
→ u

d2s
strongly in L1(ΩT ).

Moreover, thanks to the above estimates, we can show that u ∈ C([0, T ], L1(Ω)).
Thus, u is a weak solution to problem (4.1) in the sense of Definition 2.5.
Since u is obtained as a limit of approximate problems with monotone behavior,
then by a simple comparison principle, it follows that u is the minimal solution to
Problem (4.1).
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To prove the uniqueness of the solution of Problem (4.1), we argue by contradiction.
Assume that v is another weak solution to Problem (4.1). It is clear that v ≥ u.

Define U = v − u, then
U
d2s
∈ L1(ΩT ) and U satisfies

(4.9)


Ut + (−∆)sU = λ

U
d2s

in ΩT ,

U = 0 in (IRN \ Ω)× (0, T ),
U(x, 0) = 0 in Ω.

Taking w (the solution to Problem (4.2)) as a test function in (4.9), then thanks to
(4.6), we obtain

d

dt

∫
Ω

U w dx+ (1− ε)
∫

Ω

U
d2s

dx < C

∫
Ω

Uw dx,

where ε << 1. Moreover U , w ≥ 0 in ΩT , then

d

dt

∫
Ω

U w dx ≤ C
∫

Ω

U w dx.

Using Gronwall’s lemma, we reach that U(t, x)w(x) = 0 a.e. in Ω for all t > 0.
Thus U(t, x) ≡ 0 for all t ≥ 0 and the uniqueness follows. �

In the case where the data u0 has more regularity, we can improve the regularity
of the solution u. More precisely, we have :

Theorem 4.4. Assume that Ω is a bounded regular domain with N > 2s, s ∈
(0, 1

2 ) and λ > 0. Assume that 0 � u0 ∈ Lσ(Ω, w dx) with σ > 1 where w is the
solution to Problem (4.2). Then, the unique solution u to Problem (4.1) satisfies
u ∈ L∞((0, T ), Lσ(Ω, w dx)).

Proof. As in the proof of Theorem 4.1, let us consider un the unique solution to
the approximate Problem (4.5). Since σ > 1, then we use the Kato type inequality
(??) to obtain

(4.10) uσnt + (−∆)suσn ≤ σuσ−1
n unt + σuσ−1

n (−∆)sun.

By using uσ−1
n w as a test function in (4.5) and taking into consideration estimates

(4.6) and (4.10), we get

1

σ

d

dt

∫
Ω

uσnw dx+
1

σ

∫
Ω

uσn
d2s+α

dx ≤ d

dt

∫
Ω

uσ−1
n untw dx+

∫
Ω

wuσ−1
n (−∆)sun dx

≤ λ
∫
Ω

uσnw

d2s

≤ C
∫

Ω

uσnw dx+ ε

∫
Ω

uσn
d2s+α

dx.

Therefore

1

σ

d

dt

∫
Ω

uσnw dx+

(
1

σ
− ε
)∫

Ω

uσn
d2s+α

dx ≤ C
∫

Ω

uσnw dx.
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Hence, by choosing ε <<
1

σ
, we reach that

d

dt

∫
Ω

uσnw dx ≤ C
∫

Ω

uσnw dx.

Gronwall’s inequality allows us to conclude that∫
Ω

uσn(x, t)w dx ≤

∫
Ω

uσ0w dx

 eCt, ∀t ≥ 0.

Using the monotone convergence Theorem, we get the existence of a solution u such
that u ∈ Lσ(ΩT , w dx dt) and∫ T

0

∫
Ω

uσ

d2s+α
dx dt ≤ C(T ).

�

In the case where λ ≤ Λs(Ω), then according to the attainability of Λs(Ω), we are
able to improve the regularity of the solution. More precisely, we have :

Theorem 4.5. Let Ω ⊂ IRN be a bounded regular domain with N ≥ 2s and s ∈
( 1

2 , 1). Assume that 0 ≤ u0 ∈ L2(Ω).

1) If Λs(Ω) is attained, then for all λ ≤ Λ∗s(Ω), Problem (4.1) has a unique positive
u such that u ∈ L2(0, T,Hs0(Ω)) if λ < Λs(Ω) and u ∈ L2(ΩT ) if λ = Λs(Ω).

2) If Λs(Ω) = Λ∗s :=
Γ2(s+ 1

2 )

π
(recall that in this case, Λs(Ω) is not attained),

then :

• if λ < Λ∗s, then Problem (4.1) has a unique positive finite energy solution
u ∈ L2((0, T ),Hs0(Ω)) ;
• if λ = Λ∗s, then problem (4.1) has a distributional solution u ∈ L2(ΩT ).

Proof. We proceed by approximation. Let n ∈ IN∗ and define un to be the unique
nonnegative solution to the following approximate problem,

(4.11)


unt + (−∆)sun = λ

un−1

(d(x) + 1
n )2s

in ΩT ,

un(x, t) = 0 in (IRN \ Ω)× (0, T ),
un(x, 0) = u0n(x) in Ω,

where u0n := Tn(u0) and u00 := 0. The existence of un follows using classical
arguments for monotone operators. It is clear that {un}n is monotone in n.
We have to distinguish two cases :
First case Λs(Ω) < Λ∗s. In this case, Λs(Ω) is attainted. Using un as a test
function in (4.11) and by Hardy’s inequality, we get,

1

2

∫
Ω

u2
n(x, T ) dx +

aN,s
2

(
1− λ

Λs(Ω)

)∫ T

0

∫∫
DΩ

|un(x, t)− un(y, t)|2

|x− y|N+2s
dx dy dt

≤ 1

2

∫
Ω

u2
0 dx.



FRACTIONAL PARABOLIC PROBLEM 13

• If λ < Λs(Ω), we deduce the existence of a measurable function u ∈ L2((0, T ),Hs0(Ω))

such that un ⇀ u weakly in L2((0, T ),Hs0(Ω)), un → u a.e in ΩT , and
u2
n

d2s
→

u2

d2s
strongly in L1(ΩT ). It is not difficult to show that un → u strongly in

L2((0, T ),Hs0(Ω)). Thus u is an energy solution to Problem (4.1).
• If λ = Λs(Ω), we have

max
t∈[0,T ]

∫
Ω

u2
n(x, t) dx ≤ C.

Then we conclude that the sequence {un}n is bounded in L2(ΩT ) and by mono-
tonicity of un we get un → u in L2(ΩT ) and u is a distributional solution to (4.1).
Second case Λs(Ω) = Λ∗s.
If λ < Λ∗s, then as in the first case, the existence of an energy solution follows
directly by using the same a priori estimates.
Now, let us deal with the case λ = Λ∗s. As above, using un as test function in
(4.11), we get

1

2

∫
Ω

u2
n(x, t) dx +

aN,s
2

∫ t

0

∫ ∫
DΩ

|un(x, σ)− un(y, σ)|2

|x− y|N+2s
dx dy dσ

≤ Cs

∫ t

0

∫
Ω

u2
n

d2s
dx dσ +

1

2

∫
Ω

u2
0 dx.

Now using the improved Hardy-Sobolev inequality (2.2) (see Theorem 2.2), it holds
that

1

2

∫
Ω

u2
n(x, t) dx+ k(N, s)

∫ t

0

(∫
Ω

u
2∗s
n (x, σ) dxdσ

) 2
2∗s
≤ 1

2

∫
Ω

u2
0 dx.

By Sobolev’s inequality, we get

1

2

∫
Ω

u2
n(x, t) dx+ C

∫ t

0

∫
Ω

u2
n(x, σ) dxdσ ≤ 1

2

∫
Ω

u2
0 dx.

Hence

sup
t∈[0,T ]

∫
Ω

u2
n(x, t) dx ≤

∫
Ω

u2
0 dx.

Therefore, we conclude that the sequence {un}n is bounded in L2(ΩT ). As above
by monotonicity of un we get un → u in L2(ΩT ) and u is a distributional solution
of (4.1). �

Related to the asymptotic behavior of the above solution, we have the following
proposition.

Proposition 4.6. Assume that λ ∈ (0,Λs(Ω)) if Λs(Ω) < Λ∗s or λ ∈ (0,Λ∗s] if
Λs(Ω) = Λ∗s. If u is the solution to problem (4.1) obtained above, then

u(x, t)→ 0 in L2(Ω) as t→ +∞.

Proof. The first case follows easily by using Gronwall’s lemma.
Suppose that λ = Λ∗s, then

1

2

d

dt

∫
Ω

u2 dx ≤ −aN,s
2

∫ ∫
DΩ

|u(x, t)− u(y, t)|2

|x− y|N+2s
dx dy + Λ∗s

∫
Ω

u2

d2s
dx.
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Thus, by improved Hardy-Sobolev inequality (2.2), we obtain,

1

2

d

dt

∫
Ω

u2 dx ≤ −C
(∫

Ω

u2∗s dx

) 2
2∗s
.

Thus, Hölder’s inequality allows us to get

1

2

d

dt

∫
Ω

u2 dx ≤ −C0

∫
Ω

u2 dx.

Thanks to Gronwall’s lemma, we obtain

||u(t)||L2(Ω) ≤ e−C0t||u0||L2(Ω).

This ends up the proof. �

4.2. The case s ∈ [ 1
2 , 1) : Nonexistence result. Let us recall that, in this case

and if Ω is a regular convex domain, then Hardy-Sobolev inequality in Theorem 1.2
holds with the optimal constant Λs(Ω) = Λ∗s.
As in [15], if Ω is a convex domain, we are able to show the next nonexistence
result.

Theorem 4.7. Assume that 1
2 ≤ s < 1, N ≥ 2, Ω ⊂ IRN is a bounded regular

domain such Λs(Ω) = Λ∗s (that includes the case of convex domains). If λ > Λ∗s,
then Problem (4.1) does not have any weak positive solution.

In order to prove Theorem 4.7, we need to introduce two useful propositions.
The first one is the next version of the maximum principle.

Proposition 4.8. Assume that v0 ∈ L1(Ω) and consider v the unique solution to
the problem

(4.12)


vt + (−∆)sv = 0 in ΩT ,

v(x, t) = 0 in (IRN \ Ω)× (0, T ),
v(x, 0) = v0(x) in Ω.

Then, for all t > 0, there exist two positive constants C1(t) and C2(t) such that for
all x ∈ Ω

(4.13) C1(t)ds(x) ≤ v(x, t) ≤ C2(t)ds(x).

Proof. The proof follows closely the argument used in [28] for the local case. How-
ever, for the reader’s convenience, we include here some details.

Define % to be the unique solution to the problem

(4.14)

{
(−∆)s% = 1 in Ω,

% = 0 in IRN \ Ω.

Then by [18], we have c1d
s(x) ≤ %(x) ≤ c2ds(x) with c1, c2 > 0. From [9], we reach

that, if t > 0, then v(x, t) ≥ C(t)% . Hence, the left hand side inequality in (4.13)
follows.

Let us now prove the right hand side inequality in (4.13). For this, we will use the
regularizing effect of the fractional heat semi-group.
Fix t > 0, then

|v(x, t)| ≤ C

t
N
2s

||v0||L1(Ω).
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Consider V to be the unique solution to this problem

(4.15)


Vt + (−∆)sV = 0 in ΩT ,

V(x, t) = 0 in (IRN \ Ω)× (0, T ),
V(x, 0) = 1 in Ω.

By using Hopf’s lemma (see [20]), it follows that for all t > 0∥∥∥∥V(·, t)
ds

∥∥∥∥
L∞(Ω)

≤ C(t).

Denoting by S the corresponding semi-group, then for simplicity of typing we set
V(·, t) = S(t)v0(·).
Thanks to the semi-group properties, if v solves (4.12), then

||d−sv(·, t)||L∞(Ω) =

∥∥∥∥d−sS(
t

3
)

[
S(

2t

3
)v0(·, )

]∥∥∥∥
L∞(Ω)

≤ C(t)||S(
2t

3
)v0(·)||L∞(Ω),

and ∥∥∥∥S(
2t

3
)v0(·)

∥∥∥∥
L∞(Ω)

≤ C2(t)||S(
t

3
)v0(·)||L1(Ω).

Now, taking into consideration that∥∥∥∥S(
t

3
)v0(·, )

∥∥∥∥
L1(Ω)

=

∫
Ω

v0(x) ds(x)
S( t3 )χΩ

ds(x)
dx

≤ C(Ω)

∫
Ω

v0(x) ds(x)
V(x, t3 )

ds(x)
dx ≤ C(t)||ds u0||L1(Ω),

and combining with the above estimates, it follows that

d−sv(·, t) ≤ C̄(t)||ds v0||L1(Ω).

Hence we conclude. �

We need also the next result that extends the one obtained in [12] in the local
case.

Proposition 4.9. Let Ω be a bounded regular domain such that Λs(Ω) = Λ∗s. Define

Λ̂ = inf
φ∈C∞0 (Ω),φ 6=0

aN,s
2

∫∫
DΩ

|φ(x)− φ(y)|2

|x− y|N+2s
dxdy − C

∫
Ω

φ2

d2s
dx

∫
Ω

φ2 dx

,

where C > Λ∗s, then Λ̂ = −∞.

Proof. We argue by contradiction. Assume that |Λ̂| < ∞, then for all φ ∈ C∞0 (Ω),
we have

aN,s
2

∫∫
DΩ

|φ(x)− φ(y)|2

|x− y|N+2s
dxdy − C

∫
Ω

φ2

d2s
dx ≥ Λ̂

∫
Ω

φ2 dx.
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Thus
(4.16)

J(Λ̂) := inf
φ∈C∞0 (Ω),φ 6=0

aN,s
2

∫∫
DΩ

|φ(x)− φ(y)|2

|x− y|N+2s
dxdy + |Λ̂|

∫
Ω

φ2 dx

∫
Ω

φ2

d2s
dx

≥ C > Λ∗s.

For β > 0, we define the set

Ωβ :=

{
x ∈ Ω ; dist(x, ∂Ω) < β

}
,

then

J(Λ̂) ≤ inf
φ∈C∞0 (Ωβ),φ 6=0

aN,s
2

∫∫
DΩβ

|φ(x)− φ(y)|2

|x− y|N+2s
dxdy + |Λ̂|

∫
Ωβ

φ2 dx∫
Ωβ

φ2

d2s
dx

.

By using Hardy’s inequality (1.4), we obtain∫
Ωβ

φ2 dx =

∫
Ωβ

φ2

d2s
d2s dx

≤ β2s

∫
Ωβ

φ2

d2s
dx

≤ β2s

Λ∗s

aN,s
2

∫∫
DΩβ

|φ(x)− φ(y)|2

|x− y|N+2s
dx dy.

Hence, for φ ∈ C∞0 (Ωβ),

aN,s
2

∫∫
DΩβ

|φ(x)− φ(y)|2

|x− y|N+2s
dxdy + |Λ̂|

∫
Ωβ

φ2 dx ≤

aN,s
2

(
1 +

β2s

Λ∗s
|Λ̂|
)∫∫

DΩβ

|φ(x)− φ(y)|2

|x− y|N+2s
dxdy.

Therefore we conclude that

J(Λ̂) ≤
(

1 +
β2s

Λ∗s
|Λ̂|
)

inf
φ∈C∞0 (Ωβ)

aN,s
2

∫ ∫
DΩβ

|φ(x)− φ(y)|2

|x− y|N+2s
dxdy∫

Ωβ

φ2

d2s
dx

≤
(

1 +
β2s

Λ∗s
|Λ̂|
)

Λ∗s(Ωβ).

Recall that Λ∗s(Ω) = Λ∗s, then since Λ∗s(Ω) ≤ Λ∗(Ωβ) ≤ Λ∗s, it follows that Λ∗(Ωβ) =
Λ∗s. Now, using the fact that C > Λ∗s, we can choose β small enough such that(

1 +
β2s

Λ∗s
|Λ̂|
)

Λ∗s < C,

wich gives a contradiction with (4.16). Thus Λ̂ = −∞. �
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We are now ready to prove our main nonexistence result.
Proof of Theorem 4.7.
Without loss of generality, we suppose that 0 � u0 ∈ L∞(Ω). We argue by

contradiction and suppose that problem (4.1) has a positive weak solution u. Using
an approximating argument, we get the existence of a minimal solution to Problem
(4.1) obtained as a limit of approximating problems. We denote this minimal
solution by u. Thus u = lim

n→+∞
un where un is the unique positive solution to

(4.17)


unt + (−∆)sun = λan(x)un in ΩT ,

un(x, t) = 0 in (IRN \ Ω)× (0, T ),
un(x, 0) = u0(x) in Ω,

with an(x) = min{n, 1
d2s }, λ > Λ∗s. It is clear that {un}n is increasing in n and

un → u strongly in C([0, T ], L1(Ω)).
Notice that u(x, t) > 0 for all (x, t) ∈ Ω × (0, T ). By applying Proposition 4.8, it
follows that for all (x, t) ∈ Ω× [t1, t2] with t1 > 0, we have

u(x, t) ≥ C(t1, t2,Ω)ds(x).

Let φ ∈ C∞0 (Ω), using
φ2

un
as a test function in (4.17), we obtain

(4.18)

∫
Ω

unt
un

φ2 dx+

∫
Ω

φ2

un
(−∆)sun dx = λ

∫
Ω

an(x)φ2 dx.

Using Picone’s inequality stated in Proposition 2.8, it holds

(4.19)

∫
Ω

φ2

un
(−∆)sun dx ≤

aN,s
2

∫∫
DΩ

|φ(x)− φ(y)|2

|x− y|N+2s
dxdy,

and integrating in [t1, t2] with t1 > 0, we obtain

λ

∫
Ω

an(x)φ2 dx ≤ aN,s
2

∫∫
DΩ

|φ(x)− φ(y)|2

|x− y|N+2s
dx dy +

1

t2 − t1

∫
Ω

ln

(
un(t2)

un(t1)

)
φ2 dx.

Notice that ln

(
un(·, t2)

un(·, t1)

)
= ln

(
un(·, t2)d(·)
un(·, t1)d(·)

)
.

Since un ↑ u strongly in L1(ΩT ) and using the fact that un(·, t) ≥ C d(·) for all

n ≥ 1 and uniformly for t ∈ [t1, t2], it holds that

∥∥∥∥ ln (un(·, t2)d(·))
∥∥∥∥
Lσ(Ω)

≤ C for

all σ > 1. Thus∥∥∥∥ ln

(
un(·, t2)

un(·, t1)

)∥∥∥∥
Lσ(Ω)

≤
∥∥∥∥ ln (un(·, t2)d(·))

∥∥∥∥
Lσ(Ω)

+

∥∥∥∥ ln (un(·, t1)d(·))
∥∥∥∥
Lσ(Ω)

≤ C.

Hence for all ε > 0, we get the existence of C(ε) such that

1

t2 − t1

∫
Ω

ln

(
un(t2)

un(t1)

)
φ2 dx ≤ εaN,s

2

∫ ∫
Ω

|φ(x)− φ(y)|2

|x− y|N+2s
dx dy + C(ε)

∫
Ω

φ2 dx.
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Letting n→∞, it follows that for all φ ∈ C∞0 (Ω) with φ 6= 0, we have

(1 + ε)
aN,s

2

∫∫
DΩ

|φ(x)− φ(y)|2

|x− y|N+2s
dx dy − λ

∫
Ω

φ2

d2s
dx

∫
Ω

φ2 dx

≥ −C(ε).

Since λ > Λ∗s, we can choose ε small enough such that
λ

1 + ε
> Λ∗s. Then, we obtain

inf
φ∈C∞0 (Ω)

aN,s
2

∫∫
DΩ

|φ(x)− φ(y)|2

|x− y|N+2s
dxdy − λ

1 + ε

∫
Ω

φ2

d2s
dx

∫
Ω

φ2 dx

≥ −C(ε)

1 + ε
> −∞,

Hence, we reach a contradiction with the result of Proposition 4.9. This ends up
the proof.

5. The superlinear case p > 1 : Existence results.

In this section, we are interested in the super-linear case, namely p > 1. The
main idea to get the existence result is to find a suitable supersolution and then we
proceed by iteration. The main existence result of this section is the following.

Theorem 5.1. Assume that Ω is a bounded regular domain of IRN with N > 2s
and p > 1. Then, there exists u0 ∈ L∞(Ω) such that the problem

(5.1)


ut + (−∆)su =

up

d2s
in ΩT ,

u(x, t) = 0 in (IRN \ Ω)× (0, T ),
u(x, 0) = u0(x) in Ω,

has a minimal positive solution u ∈ L2((0, T ),Hs0(Ω)) ∩ L∞(ΩT ).

Proof. In order to prove Theorem 5.1, we use a monotony argument. Fix β > 0 be
such that β ∈ (0, s) if p ≥ 2 and β < (2− p)s if p ∈ (1, 2). Let ξ be the solution to
Problem (2.7), then by Theorem 2.7, it holds that ξ ' ds.
Since p > 1, by setting ξ = Cξ, we can choose C small enough such that

ξt + (−∆)sξ ≥ ξ
p

d2s
.

It is clear that if u0 ≤ ξ, then ξ is supersolution to (5.1). Consider now ξ, the
unique solution to the following problem

(5.2)


vt + (−∆)sv = 0 in ΩT ,

v = 0 in (IRN \ Ω)× (0, T ),
v(x, 0) = u0(x) in Ω.

Then ξ ∈ L2(0, T,Hs0(Ω)) ∩ L∞(ΩT ) and ξ is a subsolution to (5.1) with ξ ≤ ξ.
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We define now the sequence {uk}k by u0 := ξ, and for k ≥ 1, uk is the unique
positive solution to the problem

(5.3)


(uk)t + (−∆)suk =

(uk−1)p

d2s + 1
k

in ΩT ,

uk = 0 in (IRN \ Ω)× (0, T ),
uk(x, 0) = u0(x) in Ω.

Applying the comparison principle to obtain ξ ≤ uk ≤ uk+1 ≤ ξ for all k ≥ 1.

Thus, we get the existence of u ≤ ξ such that uk ↑ u strongly in Lσ(ΩT ) for all
σ ≥ 1 and uk → u strongly in L2((0, T )),Hs0(Ω)). Then u is a bounded solution to

Problem (5.1) with
up

d2s
∈ L1(ΩT ). This concludes the proof. �

Remark 5.2. It seems to be interesting to find natural class of initial data u0

such that Problem (5.1) has a weak solution in the sense that
up

d2s
∈ L1(ΩT ).

6. Extension and open problems.

In this section, we state some extension of the previous results to the case of the
spectral Laplacian.
First let us define the space

(6.1) H̃s(Ω) := {u =

+∞∑
i=1

aiφi ∈ L2(Ω) with

∞∑
i=1

λsia
2
i < +∞},

where (λi, φi) are the eigenvalues and the eigenfunctions of (−∆) with Dirichlet

boundary conditions. The space H̃s(Ω) endowed with the norm

||u||2
H̃s(Ω)

=

+∞∑
i=1

λsia
2
i

is a Hilbert space.

In addition, Observe that H̃s(Ω) is the interpolation space (Hs0(Ω), L2(Ω))[1−s], see
[6, 10, 27]. Therefore, we obtain

H̃s(Ω) =


Hs(Ω) if 0 < s < 1

2 ,

H
1
2
00(Ω) if s = 1

2 ,
Hs0(Ω) if 1

2 < s < 1,

where

H
1
2
00(Ω) :=

u ∈ H 1
2 (Ω) ;

∫
Ω

u2

d(x)
< +∞

 .

The spectral fractional Laplacian As is defined by

(6.2) As(u) =

+∞∑
i=1

λsiaiφi.

As it was proved by Caffarelli-Silvestre in [16] by adding a new variable, it is possible
to consider the spectral fractional Laplacian operator in a bounded domain. This
extension allows us to write nonlocal problems in a local way.
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More precisely, consider the problem

(6.3)

{
Asu = f(x, u) in Ω,
u = 0 on ∂Ω.

Then, define CΩ = Ω × (0,∞) ⊂ RN+1
+ and denote by (x, y) a point in CΩ. For

u ∈ H̃s(Ω), we define the s-harmonic extension w = Es(u) in CΩ as the solution to
the problem

(6.4)

 −div(y1−2s∇w) = 0 in CΩ,
w = 0 in ∂LΩ,
w = u on Ω× {0},

with ∂LΩ = ∂Ω× (0,∞). It is obvious that w belongs to the following space

Xs
0(CΩ) := C∞0 (CΩ)

||.||Xs0(CΩ)
with ||w||2Xs0 (CΩ) = ks

∫
CΩ

y1−2s|∇w|2 dx dy,

where ks is a normalization constant. As consequence, for all u ∈ H̃s(Ω), we have

(6.5) ||Es(u)||Xs0 (CΩ) = ||u||
H̃s(Ω)

.

Going back to problem (6.4), we get

(6.6)
∂w(x, y)

∂νs
≡ − 1

ks
lim
y→0+

∂w(x, y)

∂y
= Asw(x, 0) = Asu(x).

Now, let us recall the next regularity result obtained in [18, Lemma 2.9].

Theorem 6.1. Assume that s ∈ (0, 1) and consider ζ to be the unique solution to
problem

(6.7)

{
Asζ = 1 in Ω,
ζ = 0 in ∂Ω.

Then, ζ ∈ Cα(Ω̄) for all α ∈ (0,min{2s, 1}). Moreover, there exists a positive
constant C = C(Ω, s) such that

(i) ζ ≤ Cd2s if s < 1
2 ,

(ii) ζ ≤ Cds if 1
2 ≤ s < 1.

Set ψ := ζa where a ∈ (0, 1). By the Kato type inequality 2.3, we get

Asψ ≥ C

ζ1−a .

As in Theorem 3.1, we have the next existence result where an additional hypothesis
is needed in the case where s < 1

2 .

Theorem 6.2. Let 0 < s < 1 and consider the problem

(6.8)


ut +As(u) = λ

up

d2s
in ΩT = Ω× (0, T ),

u(x, 0) = u0(x) in Ω,
u = 0 in ∂Ω)× (0, T ),

where 0 � u0 ∈ L1(Ω). Then

(1) if s ∈ (0, 1
2 ), Problem (6.8) has a positive distributional solution for all

p ∈ (0, 1) ;
(2) if s ∈ [ 1

2 , 1), Problem (6.8) has a positive distributional solution for all
p ∈ (0, 1− s).
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Proof. As in the proof of Theorem 3.1, we proceed by approximation. Define un to
be the unique solution to the problem

(6.9)


unt +Asun =

upn−1

(d(x) + 1
n )2s

in ΩT

un(x, t) = 0 in ∂Ω× (0, T ),
un(x, 0) = u0n(x) in Ω,

with u0n := min(n, u0) and u00 := 0. It is clear that un ≥ 0 and un ≤ un+1 for all n.

• Let us begin by the case s ∈ (0, 1
2 ). Define ψ = ζa with a ∈ (0, 1) where ζ is the

unique solution to Problem (6.7). Using ψ as a test function in (6.9), we reach that

d

dt

∫
Ω

unψ dx+

∫
Ω

un
d(1−a)2s

dx ≤
∫

Ω

upnψ

(d(x) + 1
n )2s

dx ≤ C
∫
Ω

upn
d2s(1−a)

dx.

Since p < 1, by Young’s inequality, we obtain

(6.10)
d

dt

∫
Ω

unψ dx+ C

∫
Ω

un
d2s(1−a)

dx ≤ C̄
∫
Ω

1

d2s(1−a)
dx.

Taking into consideration that 2s(1− a) < 1, it follows that
∫

Ω

1

d2s(1−a)
dx < +∞.

Thus

sup
t∈[0,T ]

∫
Ω

un(x, t)ψ dx+ C

∫ T

0

∫
Ω

un
d2s(1−a)

dx dt ≤ CT +

∫
Ω

u0ψ dx < +∞.

Hence the rest of the proof follows as in the proof of Theorem 3.1.
• We deal now with the case s ∈ [ 1

2 , 1). In this case, φ ≤ Cds. Since p < 1− s, we
can choose a ∈ (0, 1) such that p < (1− s

1−s(1−a) ), then as above we have

(6.11)

d

dt

∫
Ω

unψ dx+ C

∫
Ω

un
ds(1−a)

dx

≤ C̄
∫
Ω

up

d2s−a dx ≤ ε
∫

Ω

un
ds(1−a)

dx+ C(ε)

∫
Ω

1

ds(
1
p−1 +1−a)

dx.

But, p < (1− s
1−s(1−a) ) implies s( 1

p−1 + 1− a) < 1, then

∫
Ω

1

ds(
1
p−1 +1−a)

dx < +∞.

Hence

sup
t∈[0,T ]

∫
Ω

un(x, t)ψ dx+ C

∫ T

0

∫
Ω

un
ds(1−a)

dx dt ≤ CT +

∫
Ω

u0ψ dx < +∞.

Then we conclude. �

Remark 6.3. In the case s > 1
2 , we believe that the condition p < 1−s is technical

and general existence result holds for all p < 1.
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