
HAL Id: hal-01848834
https://hal.science/hal-01848834

Submitted on 25 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hands-on Experience for Teaching Computer
Architecture
Henri Delebecque

To cite this version:
Henri Delebecque. Hands-on Experience for Teaching Computer Architecture. 10th International
Conference on Technology and Education, Mar 1993, Boston, United States. �hal-01848834�

https://hal.science/hal-01848834
https://hal.archives-ouvertes.fr


Hands-on Experience for Teaching Computer
A r c h i t e c t u r e

H. Delebecque*

Abstract

Teaching computer architecture in our School of Electrical
Engineering (Supélec) includes both lectures and practical
projects. Regarding the practical projects (each about 50 hours
of work) three different pedagogical computers have been
defined. The first one is very simple: it has only eight
instructions and two addressing modes. It emphasizes the very
basic concepts of computer architecture, and all our first-year
students must design and build it after completing a course on
the fundamentals of combinational and sequential logic. The
second pedagogical computer has a more complex architecture
and all the senior computer science majors have to design and
build either a PDP/11-like or a stack-based microprogrammed
processor. The third processor our majors have to design and
build is a pipelined RISC processor, including their choice of
trade-offs between hardware and software as part of their
task. The building part of the projects, which have all to end up
with a fully working processor, is possible in the rather short
time available by using a pedagogical hardware toolkit which
has been developed in our lab for that purpose. This toolkit has
been designed to allow students to concentrate on the
functional characteristics of digital devices by reducing the
practical constraints induced by real circuits to a minimum
(fan-in and fan-out, short-circuits, wiring, lay-out, etc.). We are
currently developing more advanced add-on devices for the
toolkit to allow students to explore further concepts of modern
architectures, such as the cooperation of processors in multi-
processor arrays. More information on the contents of the
projects, the reactions of the students and the design of the
toolkit are given below.

1. Pedagogical Context

"Computer Architecture" is a two-year general course which is
compulsory for all students at Supélec, and includes both
lectures and practical sessions. The first year course helps
students to assimilate the basic concepts of computer



architecture from the hardware and software points of view.
Students become familiar with the usual topics of
combinational and sequential logic, and acquire knowledge in
high level and assembly programming languages.

The second year course lets students master the fundamental
physical entities of computer architecture, namely busses,
memory chips and modules, interrupts, and their software
counterparts. All students ending their second year at Supélec
design and build a pedagogical computer, named OPIP, during a
lab session which will be described later.

During their third and last year, all students have to specialize
in one of fourteen majors, each in a particular field (e.g.
communications systems, power electronics, computer
science…). Students who choose to major in computer science
will have to master the main fields of modern computer
systems, through theoretical lectures and lab work. For that
purpose, they have to complete two hardware oriented
projects. The first lab-project is devoted to the design and
building of a PDP-11-like microprogrammed processor, and the
second one is dedicated to a pipelined RISC processor.

2. Pedagogical aims

We have designed the three lab sessions in Computer Science
with the four following pedagogical goals in mind. The first two
of them are specific to the Computer Architecture domain, and
the two others represent general principles of education in our
school of engineering

2.1 Students should master the computer's complexity

One of the main purposes of the first lab session is to make
students able to design and build a fully working computer
within a one-day session. During this session they learn that a
computer is neither a "completely closed black box", nor a
"magic device", but rather only a complex and comprehensible
automaton.

To achieve this goal, we prpose the students to build a very
small but realistic computer : the OPIP. It is small since it has
only eight instructions, and a 4K-word memory module.
However, it remains realistic, because it is based on the same
principles as most modern computers.



Students have to build their OPIP using a small set of hardware
modules, each devoted to a simple functionality: Arithmetic
and Logical Unit, data storage for the memory and register
modules, etc. Each module has been designed to remain easily
understandable with the theoretical knowledge gained during
the lectures in Computer Science. This allows students to keep a
clear overall understanding of their computer during the whole
building phase, and thus to master easily its behaviour, even in
its finest details.

2.2 Lab sessions present architectures of increasing
c o m p l e x i t y

Computer architecture lectures present computers in increasing
order of complexity and the lab sessions follow this
progression. Nevertheless, the basic building blocks remain the
same, for economical and pedagogical reasons. For this reason,
we limit the diversity of the hardware modules, which reduces
design and servicing costs and we present our students an
homogeneous set of tools, able to synthesize and debug the
three kinds of processors with the same paradigm. To achieve
these goals, we have focused on modularity and clearness in
the design of the hardware toolkit involved in these projects.

2.3 Students should use their theoretical knowledge

During lab sessions, we ask students to apply the notions
presented in lectures, such as the interpretation of an
instruction, the effect of an addressing mode, the purpose and
behaviour of the various registers. These lab sessions are
complementary to lectures since students learn to solve
particular but real problems with the methods taught in
theoretical lectures, which in turn helps them to better
understand the concepts.

These lab sessions are a good example of "horizontal" projects,
where students have to use concepts acquired in "vertical"
lectures (e.g in digital electronics, computer architecture,
programming languages).

2.4 A minimal training time

The time devoted to lab sessions in Computer Science during
the two first years is limited to about 50 hours, because the
global curriculum has to cover the whole scope of electrical



engineering. This time is divided into two modules, one per
year. The first one allows students to become familiar with
assembly programming languages, whereas the second is the
OPIP lab session. To fulfil this requirement, we had to design a
toolkit and projects so as to minimize both the training phase,
and the time spent by students in auxiliary operations (wiring
of modules, loading and downloading the memory, etc).

Lab Material

All these practical sessions use a pedagogical hardware toolkit,
called the ESE1000, which has been designed and built at The
Computer Science Department. ESE1000 presents modules such
as registers, arithmetic and logical unit, or memory in a
pedagogical way: inputs and outputs are continuously
displayed in hexadecimal, power supply connections are
hidden, outputs are protected against short-circuits. Moreover,
ESE1000 features modules which are as universal as possible,
allowing it to support the three lab sessions mentioned above
with only eight kinds of modules.

The Arithmetic and Logic Unit, register and memory modules
are common to the three architectures. The ALU module allows
sixteen different operations (addition, subtraction, one's or
two's complement…). The register module includes a 16-bit
wide register (usually devoted to the role of accumulator), and
a 16 bit-wide Program Counter. Finally, a 4K-word memory
module allows dual access through two independent ports and
it has built-in latches for address and incoming data, allowing
students to minimize data transfers between the memory and
the other modules. There is also a front panel with sockets for
Programmable Logic Devices. This panel is able to control the
other modules through the equations loaded into PLDs by the
students. The OPIP and RISC projects both use a multiphase
clock, but the CISC architecture requires a microprogrammed
sequencer.

Pedagogical results

The OPIP lab session is proposed to our 360 students, which
first design a basic but rather slow processor, and then
optimize it to suppress useless phases of instruction
interpretation. The OPIP is also given as a one-day vocational
training workshop. In both cases, 90% of the students complete



the minimal requirement, and 70% the optimized one.
Moreover, former pupils asked to mention one of their
favourite lab session very often select the OPIP, even if they
dislike hardware. They stress the advantage of remaining
physically in contact with the computer they are building, and
thus understanding everything that happens.

The success rate is lower for the CISC project. We have
observed that the length of this project should better be
restrained to the only four afternoons available in a week (the
remaining time is reserved for lectures and sport). Often the
work which is left for the following week is unsatisfactory,
because students seem to lose track of what they were working
on. Moreover, the programming environment supplied until
now leads to lengthy loading and downloading operations
which slow down the debugging phase. To overcome that
difficulty, we are currently developing a powerful front-end,
based on the X-Windows interface, and supported by
workstations (Macintoshes or DEC VaxStations)


