
HAL Id: hal-01848823
https://hal.science/hal-01848823

Submitted on 25 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

OPTIM: PEDAGOGICAL INTERACTIVE
DOCUMENT DESIGN WITH MINIMAL

PROGRAMMING
Henri Delebecque

To cite this version:
Henri Delebecque. OPTIM: PEDAGOGICAL INTERACTIVE DOCUMENT DESIGN WITH MIN-
IMAL PROGRAMMING. CATE 2005, Aug 2005, Oranjestad, Aruba. �hal-01848823�

https://hal.science/hal-01848823
https://hal.archives-ouvertes.fr

OPTIM: PEDAGOGICAL INTERACTIVE DOCUMENT
DESIGN WITH MINIMAL PROGRAMMING

H. Delebecque

Supélec
3 Rue Joliot-Curie

F 91190 Gif sur Yvette
France

33 1 69851491

Henri.Delebecque@supelec.fr

1. ABSTRACT

In this paper, we propose an open framework
for teachers and lecturers in science, to help
them write their pedagogical documents using
both static textual subject matter, and interac-
tive and multimedia content. Authors can focus
their attention on their pedagogical goals, leav-
ing all aspects (static or dynamic) of the GUI
generation to our OPTIM engine.

This framework will also allow them to factor-
ize the structure common to all their documents
into classes, and will free them from all other
design considerations. Moreover, OPTIM
allows authors to insert interactive parts into
their documents without any GUI program-
ming skills. They only have to provide the
computational code that supplies the numerical
values to be displayed by the GUI, and they can
use whatever programming language they find
the most convenient.

2. INTRODUCTION

We propose a general authoring framework,
called OPTIM, which uses HDML [1], a meta-
language more suited to the definition of peda-
gogical documents than XML. Although one
advantage of XML is the great amount of flexi-
bility its tags offer, this flexibility also results in
a great variety of semantics given to tags by the
various authoring languages based on XML,
and a lack of a standard in the pedagogical

domain. On the contrary, the other extreme is a
general authoring language like DocBook©
which has its own drawbacks, since it defines
only very general structural entities, like
header, footer, body.

We want to help content authors, not always
familiar with programming languages, and
even less familiar with XML, to write their
concrete documents, by defining an authoring
language that will use only their domain spe-
cific terms. For example, a mathematician will
greatly appreciate finding tags named «theo-
rem», «premises», «conclusion», «proof» in
the authoring language he/she uses. This is
something that people have to code manually if
they use languages like Latex.

Moreover, OPTIM will allow authors to insert
interactive objects into their pedagogical docu-
ments. This is of great value in the pedagogical
context, where students and learners can visu-
alize the concepts described in an alternate
graphical manner, while keeping an additional
textual description.

The pedagogical domain helps us in our design,
since the variety of graphical objects found in
application is limited, as is the kind of interac-
tion the user has with them. The purely graphi-
cal part of pedagogical software (even
simulators) is commonly restricted to curves,

animated schematics or graphics, that require
minimal user interaction.

2.1 OPTIM Principles

The OPTIM acronym means «Open Platform
for Teaching Interactively with Multimedia».
OPTIM’s goal is to give teachers a framework
that allow them to focus on contents (in all its
richness), to use their favorite editing tool, and
to ignore presentation issues. This last point
contributes to the openness, a key feature in the
pedagogical world, where languages and tools
are frequently specific. OPTIM uses HDML as
a structuring language for the description of the
document’s static part.

Authors can add interactive parts to their docu-
ments using first OPTIM’s GUI generator, and
then its ability to link this GUI with the specific
code the teacher supplies for the computation
of the information displayed as curves or
dynamic schematics.

To help teachers that contribute to a global ped-
agogical document to write their sections/chap-
ters/books in a rather uniform manner, the
editor of the whole document defines a struc-
tural model. This model defines all the manda-
tory or optional elements authors have to put
into their documents. HDML is clearly a meta-
language, since this model is also used to
define a markup language that we will call the

content authoring language

. This language defines
tag names that are familiar to the content
authors, since they are defined by the editor,
using the words and terms authors currently
use.

We will start with some definitions, to help us
present OPTIM’s general principles. For more
clarity, lets define the following terms in the
context of a large pedagogical document,
which we will generalize below under the

glo-
bal document

 terms.

2.2 Definitions

HDML is used by the three different kinds of
authors described in the next paragraph, while
defining four kinds of documents. These are:

•

The class (the structural model),

•

The presentation model,

•

The concrete document (a class instance).

•

The interactive objects (OPTIM objects)

During the meta-authoring phase, the class
designer, who is also the global pedagogical
document editor, defines the structural model
common to all the pedagogical sub-documents
that share either a common look or structure, or
both. Since this class defines all the elements
that can be displayed, a second author, with
graphical skills, will then design a presentation
model, that will explain how to display all the
elements described by the class for a particular
medium. He will also help the teacher in
designing the look-and-feel of the GUI of all
interactive parts, defined as OPTIM objects.

The HDML engine works then in three phases,
using the four different kinds of documents
described above.

At the end of the meta-authoring phase, the
HDML engine generates a XSLT style-sheet
for each pair of models, building a projection

HDSML
Engine

Medium specific
Presentation Model

Class

Author’s
Documents

written in
HDSML

written in
HTML,…

written in the
domain-specific authoring

language

written in
HTML,…

Documents
Published

Projection
Engine

Optim
object

definition

Computational
code

Applet

OPTIM
Compiler

optional
Run-time

written in the
domain-specific

authoring language

Generated
in

XSLTProjection
Function

function from the class to the presentation
medium. Moreover the HDML engine pro-
duces the grammar of the authoring language,
which will be used by the content author in the
authoring phase.

During this phase, the teachers will write the
concrete document. They can use any editing
tools they want, including tools that are not
XML compliant, though obviously the great
advantage of using XML compliant editing
tools is the syntax sensitive help they can pro-
vide.

The pre-publishing phase allows the HDML
engine to produce documents ready to be pub-
lished. Contents documents, which combine
semantically-rich items (supplied by content
authors), and other items dedicated to presenta-
tion purposes like a logo or background (pro-
vided by the presentation model) are
transformed using projection functions.

During the final phase, the documents are pub-
lished. Authors can activate the new functional-
ity OPTIM adds to HDML, and add
interactively to their static documents. OPTIM
objects are referenced by HDML documents,
and activated at publishing time by the student.
This activation will produce events that are fil-
tered by the GUI defined in the OPTIM
description file, and compiled as Java© objects
by the OPTIM compiler.

All events are either completely managed by
the Java code, or transformed into requests sent
to the code that the content author supplied, to
achieve the computation required. This code
can, for example, compute a new 3D-curve to
be displayed, the new state of a data path into a
processor, or some animation, sound, etc. This
method of separating purely graphical events
(such as clicking, or filling in an entry field)
follows the distinction Java makes between

high-level "action" events, and low-level ones,
like mouseUp or others.

2.3 OPTIM Architecture

Every interactive object included in a concrete
document is described in two complementary
ways. First, the graphical designer has to
explain how the graphical sub-objects will
answer to end-user stimuli (click, keyboard
events,…). And second, the computation code
should be able to send refresh orders to the
GUI, when new data arrives. These two aspects
are managed by a classical MVC architecture
evangelized by Java. This very efficient and
robust way to separate the Model (in charge of
all computational tasks) and the View (that dis-
plays the values in the most convenient way for
a given context or user) has proved its value
since its first definition in the Smalltalk [2]
object-oriented language.

3. STRUCTURING ELEMENTS

The class designer builds the class using either
generic blocks and objects or semantically
qualified elements, such as those defining the
author, the authoring platform, the document
version, or others.

Every element of a class definition inherits the
occurrence constraints that HDML defines for
it. But the class author can modify them,
according to the structural freedom he wants to
give to his concrete document authors. In this
way, he defines the occurrence constraints of
the content authoring language elements.

3.1 The Elements

3.1.1 The Block Element

The block is the most versatile element, able to
contain other generic elements, acting as sub-
blocks or objects (the inclusion of semantically
qualified elements is not currently supported,
since they are limited to the whole page
description).

A block definition in the class has a very
important "name" attribute, that will give its
name to the corresponding tag used by teachers
when they write their concrete documents. An
optional "type" attribute adds semantics by
specifying the kind of block, such as: header,
menu, footer, body.

The "name" attribute makes it possible to
define the content authoring language so it is
adapted for a specific domain. This language is
fine-tuned for the content authors, since it
names the structuring units they will use with
the terms they are most familiar with.

Finally, a block can be structured using sub ele-
ments taken from the following non-exhaustive
list: Block, Object, or OPTIM

The recursive nature of the block element
makes it possible to avoid defining a limited list
of structuring levels, as in DocBook, while giv-
ing it, as the same time, more descriptive
power.

3.1.2 The Object Element

The object element is always a leaf of the XML
node tree. It describes either non-structured
elements (such as a picture, sound or movie)
included by reference, or very basically struc-
tured elements such as hyperlinks or the fields
of a form.

3.1.3 The Optim Element

The Optim element is the link between the
actual concrete document and the interactive
objects built using the OPTIM platform.
OPTIM keeps the content author in a familiar
context, by using the authoring language that
HDML extracts from the class, for all the static
elements that surround the interactive ones.
Moreover, by allowing the teacher to supply the
computational code in various languages

(including those that require a specific run-
time), we insure the maximal adaptability to
most scientific domains, and the openness
teachers commonly require.

3.1.4 Example

Let us give an example, with few lines of
HDML defining a class block named «Theo-
rem», followed by an example of one theorem
definition in a concrete document.

<Blockname="Theorem" type="body">
<Object name="Name" type="text" Occurs="1" />
<Object name="Premises" type="text" Occurs="1+"/>
<Object name="Conclusion" type="text"Occurs="1" />
<Object name="Proof" type="body" Occurs="1" />
<Object name="Keyword" type="text" Occurs="*" />

</Block>

The previous HDML fragment shows that the
class designer has defined the generic struc-
ture for Theorem with the following sub-ele-
ments:

•

a mandatory name (which is a text zone),

•

a mandatory conclusion (as text zones),

•

one or many premises (also as text zones),

•

a mandatory proof (structured with sub-blocks)

•

some optional keyword.,

as in the following example:

<Theorem>
<Name>Thales</Name>
<Keyword>Geometry</Keyword>
<Premises>Let and be two points …</Premises>
…

</Theorem>

We can see here how the content authoring lan-
guage uses domain centered entity names,
instead of the generic ones (like block) that
HDML defines. We can also appreciate how
this authoring language can be easily used by
mathematicians or teachers to write their docu-
ments.

4. RELATED WORK

4.1 HDML vs Tag Libs or XSLT

One can argue that our objectives can be ful-
filled using tag libraries like Struts [3], which
are based on the powerful capabilities such tag
libraries add to HTML. We think that tag librar-
ies are clearly an efficient solution in certain
instances, but limited to HTML production,
and probably more oriented towards dynamic
HTML. Moreover, they tend to stress the look-
and-feel, whereas we want to free the authors
from such considerations, and stress the seman-
tics and document structure. Finally, the cus-
tomization of Struts features supposes skills
that content authors and editors usually don’t
have.

The XSL tool is also very powerful, but has one
major drawback for a teacher: the mastering of
XSLT and X-Path. And if X-Path has to be used
only rarely in our context, XSLT has to be used
regularly for two reasons. First, the author has
to write a separate XSL sheet for every presen-
tation medium used and for every subset of the
document. Then, this XSLT authoring must be
redone every time the user changes the look
and feel, for every presentation medium, and
for every subset of the global document.

Moreover, this way of producing web pages
does not allow any factorization and genericity,
nor any possibility for handling interrelations
between documents. It does not provide any
way to manage the document versioning that
the HDML engine supports, and which is of
great help in managing the production of multi-
ple content authors.

4.2 OPTIM versus current IDEs

One could think that existing Integrated Devel-
opment Environments, like JBuilder©, or
Visual Studio©, are a better choice for develop-
ing the interactive parts of our pedagogical

documents. We think that these products are
too complex for the rather simple graphical
objects authors need. The complexity of the
programming task should not be included in
the GUI’s design, but rather in the development
of the simulation part. And we think that versa-
tility and openness is crucial here, letting our
teachers use their favorite programming lan-
guages. IDEs often impose the mastering of
many specific programming skills, such as ani-
mation techniques and graphical algorithms,
which are clearly not trivial, require a great
investment and constant updates.

4.3 Programmingless Projects

Recently new products, like Gatonero have
emerged that allow the quick design of interac-
tive applications by non programmers. Gaton-
ero offers the ability to describe sophisticated
prototypes using its own specific language, or
the Gatonero Studio tool with drag-and-drop
capabilities. Gatonero’s architecture relies on a
framework, which is announced as "fully-pro-
grammable and object based". Gatonero obvi-
ously offers inheritance capabilities, but also
the reusability of prototypes, as well as multi-
platform deployment, since it is Java based.

We think that the goals of products like this one
are slightly different from ours. They tend to
propose Rapid Application Development tools
rather than a framework that makes it possible
to integrate data produced by a regular compu-
tational code into a pedagogical document.

Moreover, like the SimTool project mentioned
below, Gatonero suffers from the lack of open-
ness, since it offers only one programming lan-
guage. Clearly, this gives it the ability to be
multi-platform, but OPTIM can reach this goal
in a different way, by allowing the client-side
software, highly portable, to interact with a
computational code located on a dedicated
remote server.

4.4 E-Learning Development Tools

We have found active projects, like the one
described in [4], that plans to give teachers a
way to design interactive pedagogical docu-
ments without programming. It is a compo-
nent-ware based project that has the same
openness property as OPTIM, in that it offers
links with databases, e-mail, etc. But this
project is currently based on the Delphi© pro-
gramming languages and seems to have no
capability to cooperate with other program-
ming language, for the computational require-
ments of the simulated objects. Moreover, it
lacks the uniform model OPTIM defines with
HDML, and which guaranties a excellent
adaptability to new application domains.

Another project, SimTool [5], part of the more
ambitious VORMS project, shares some of our
principles. Experiments done using SimTool
have shown that students greatly appreciate
interactive counterparts to textual presenta-
tions. One of the major limitations of SimTool
is the choice of Java for both the GUI construc-
tion and the computational tasks. We think that
different authors will better implement these
two complementary parts, and that one should
leave more freedom in the choice of the com-
putational language. To design a good graphi-
cal user interface it’s necessary to master
computer animation, graphic algorithms, and to
have extensive knowledge of the GUI’s object
library. On the other hand, the teacher, which
is, in this case, the knowledge reference should

only describe the computations required to sup-
ply data to be displayed. This task is complex
enough, and we have to let teachers use their
favorite programming language to complete it.
Moreover, SimTool’s goal is the building of
simulation applets, and it does not cover the
whole design of a teacher’s pedagogical docu-
ment, as does HDML.

5. REFERENCES

[1] Henri Delebecque: HDML a lightweight
authoring metalanguage with object-ori-
ented features IADIS-WWW/Internet 2003

[2] Adele Goldberg, David Robson Smalltalk-
80: The language and its implementation
1983 Addison Wesley

[3] Apache Jakarta Project Struts
http://jakarta.apache.org/struts//s

[4] Ryoji Matsuno, Yutaka Tsutsumi, Richard
Gilbert: A Tiered Approach Utilizing Reus-
able Componentware Methodologies for
Multimedia Educational Software Creation
and Development, Proceedings of Ed-
MEDIA 2004, Lugano Switzerland

[5] Imke Sassen, Torsten Reiners, Björn Pas-
chilk, Stefan Voß: Instructional Design and
Implementation of Interactive Learning
Tools, Proceedings of Ed-MEDIA 2004,
Lugano Switzerland

