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Abstract

We introduce the Maker-Breaker domination game, a two player
game on a graph. At his turn, the first player, Dominator, select a
vertex in order to dominate the graph while the other player, Staller,
forbids a vertex to Dominator in order to prevent him to reach his
goal. Both players play alternately without missing their turn. This
game is a particular instance of the so-called Maker-Breaker games,
that is studied here in a combinatorial context. In this paper, we first
prove that deciding the winner of the Maker-Breaker domination game
is PSPACE-complete, even for bipartite graphs and split graphs. It
is then showed that the problem is polynomial for cographs and trees.
In particular, we define a strategy for Dominator that is derived from a
variation of the dominating set problem, called the pairing dominating
set problem.

Key words: positional games; Maker-Breaker domination game; domina-
tion game; complexity; tree; cograph;
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1 Introduction

Since their introduction by Erdds and Selfridge in [9], positional games have
been widely studied in the literature (see [11] for a recent survey book on



the topic). These games are played on an hypergraph of vertex set X, with
a finite set F C 2% of hyperedges. The set X is often called the board of the
game, and an element of F a winning set. The game involves two players
that alternately occupy a previously unoccupied vertex of X. The winner is
determined by a convention: in the Maker-Maker convention, the first player
to occupy all the vertices of a winning set is the winner. Such games may end
in a draw, as it is the case in Tic-Tac-Toe. In the Maker-Breaker convention,
the objectives are opposite: one player (the Maker) aims to occupy all the
vertices of a winning set, whereas Breaker wins if he occupies a vertex in
every winning set. In view of the complexity of solving both kinds of games,
Maker-Breaker instances are generally more considered in the literature as
by definition, there is always a winner. In addition, rulesets of such games
are often built from a graph. For example, one can mention the famous
Shannon switching game (popularized as the game BRIDG-1T) [15], where,
given a graph G = (V, E) and two particular vertices u and v, the board X
corresponds to E, and winning sets correspond to all the subsets of E corre-
sponding to a u — v path in G. In the Hamiltonicity game |6], the winning
sets correspond to all the sets of edges containing an Hamiltonian cycle.

In view of such examples, converting a graph property into a 2-player
game is a natural operation. Hence it is not surprising that it has also been
done for dominating sets. More precisely, several games having different rule-
sets and known as domination game have been defined in the literature. For
example, in [1, 10|, a move consists in orienting an edge of a given graph G
and the two players try to maximize (resp. minimize) the domination number
of the resulting digraph. In [5], the rules require two colors during the play.
In [3], the domination game is defined in a sense where the players both select
vertices and try to maximize (resp. minimize) the length of the play before
building a dominating set. Since then, this version has become the stan-
dard one for the domination game, with regular progress on it [4, 8, 14, 13].
However, among the different variants of the domination game , the natural
Maker-Breaker version (in the sense of Erdds and Selfridge) has never been
considered in the literature. In this paper, we consider the so-called Maker
Breaker Domination game, where, given a graph G = (V| F), the board X is
the set V', and F is the set of all the dominating sets of G. In other words,
the two players alternately occupy a not yet occupied vertex of G. Maker
wins if he manages to build a dominating set of G, whereas Breaker wins if
she manages to occupy a vertex and all its neighbors. In what follows and



in order to be consistent with the standard domination game, Maker will be
called Dominator, and Breaker will be the Staller.

When dealing with Maker-Breaker games, there are two main questions
that naturally arise:

e Given a graph G, which player has a winning strategy for the Maker-
Breaker domination game on G 7

e If Dominator has a winning strategy on G, what is the minimum num-
ber of turns needed to win?

The current paper is about the first question. In the next section, we give
definitions for the different cases about the winner, together with first general
results. Section 3 deals with the algorithmic complexity of the problem,
where the PSPAC E-completeness is proved. In Section 4, a so-called pairing
strategy is given, yielding a strategy for Dominator in graphs having certain
properties. The last section is about graph operators that lead to polynomial
strategies on trees and cographs.

2 Preliminaries

A position of the Maker-Breaker domination game is denoted by a triplet
G = (V,E,c), where V is a set of vertices, E is a set of edges on V and ¢
is a function ¢ : V' — {Dominator, Staller, Unplayed}. In other words, the
function ¢ allows to describe any game position encountered during the play.
If, for all win V, ¢(u) = Unplayed, then G is said to be a starting position.
In this case, we will identify G with the graph (V| E).

As by definition, Maker-Breaker games have no draw, there are four cases
- also called outcomes - to characterize the winner of the game, according to
who starts. We define D, S, N and P as the different possible outcomes for
a position of the Maker-Breaker domination game.

Definition 1. A position G has four possible outcomes:
e D if Dominator has a winning strategy as first and second player,

e S is Staller has a winning strategy as first and second player,



e N if the next player (i.e., the one who starts) has a winning strategy,

e P otherwise (i.e., the second player wins).

Note that for proximity reasons, the notion of outcome and the last two
notations are derived from combinatorial game theory [17]. In addition, the
outcome of G is denoted o(G).

If Staller has a winning strategy, then she manages to occupy the closed
neighborhood of a certain vertex u. In this case, we say that she isolates u.

The following proposition is a direct application of a general result on
Maker-Breaker games stated in [11, 2|. It ensures that the outcome P never
occurs. For the sake of completeness, we here give a proof of this result
adapted to our particular case.

Proposition 2 (Imagination strategy). There is no position G of the Maker-
Breaker domination game such that o(G) = P.

Proof. Assume Dominator wins playing second on G. When he is the first
player, he plays any vertex and then imagines he did not. He thus considers
himself as the second player, seeing this vertex as an extra vertex. Whenever
his winning strategy (as a second player) requires to play the extra vertex, he
plays any other unoccupied vertex u, and considers u as the new extra vertex.
If Dominator was winning before all the vertices were chosen, he still wins no
later than his last move in the game where he was playing second. Otherwise,
when Staller chooses the last vertex of the graph, her strategy asks her to
play the extra vertex since it is the only one available in the imagined game,
but it means that Dominator had already won on the previous turn.

Hence if Dominator wins as second player he also wins as first player and
the outcome of the game is D. If he does not win as second player, then the
outcome can be either S or N. O

In other words, this proof ensures that a player has no interest to miss
his/her turn. Figure 1 gives an example of graphs for the three remaining
outcomes.

According to the three possible outcomes of a position, we now introduce

an order relation on the outcomes derived from combinatorial game theory:
S < N < D. This allows us to state the following proposition.
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Figure 1: Example of a graph for each possible outcome.

Proposition 3. Let G = (V, E, ¢) be a position of the Maker-Breaker domi-
nation game and let H = (V, E', c) be another position, with E' C E. Then
o(H) 2 o(G).

Proof. A reformulation of the proposition is that if Dominator has a
winning strategy on H as first or second player, then he also have a winning
strategy on G.

Assume Dominator has a winning strategy on H. A winning strategy
for Dominator on G is to apply the same strategy as on H. Indeed, for
every possible sequence of moves of Staller, Dominator is able to dominate
H. Since every edge of H is also in G, Dominator is also able to dominate
G. O

In other words, this result says that adding edges to a position can only
benefit Dominator , and removing edges can only benefit Staller. Note that
this property does not hold in the standard domination game.

Another result can be derived from Maker-Breaker games. The following
theorem is a well known result from the early studies about positional games.

Theorem 4 (Erdés-Selfridge Criterion [9]). Given a Maker-Breaker game G
on an hypergraph (X, F), we have

1
Z 214l < 5 = (G 18 a Breaker’s win.
AeF

In order to apply this theorem to the Maker-Breaker domination game,
we need to consider a reverse version of it. Indeed, as the set F corresponds
to the dominating sets of GG, the sizes of the winning sets are not easy to
control. Thus, we can also consider the Maker-Breaker domination game as
the Maker-Breaker game where F is the set of the closed neighborhoods of
every vertex of GG. In that case, Dominator is the Breaker, and Staller is the
Maker. Nom Theorem 4 can be applied on this game:



Proposition 5. Let G be a starting position of the Maker-Breaker domina-
tion game and let § be the minimum degree of G. If |V| < 2° then Dominator
has a winning strategy for the Maker-Breaker domination game on G.

Proof. As stated before, the Maker-Breaker domination game on G is
a Maker-Breaker game played on H = (V,F) where F is the set of the
closed neighborhoods of G, and Staller plays the role of Maker in this game.
Applying the Erdés-Selfridge Criterion, we know that if - 27Vl < 1
then Dominator has a winning strategy. For all win V', we have N[u] > §+1,
hence 27 Wl < 2=0+) " Thus if |V| x 270D < 1 then Dominator has a
winning strategy. O

Although this result can only be applied for very particular graphs (hy-
percubes with at least an additional edge for example), it suggests that highly
connected graphs are more advantageous for Dominator.

3 Complexity

In this section, we consider the computational complexity of deciding whether
a game position of the Maker-Breaker domination game is S, N/, or D. First
remark that in the general case, deciding the outcome of a Maker-Breaker
game (X, F) is PSPACE-complete. Indeed, this game exactly corresponds
to the game POS CNF that was proved to be PSPACE-complete in [16].

POS CNF is played on a formula F' in conjunctive normal form, with
variables x; - - - z,,, where each variable is positive, that is F = C; A---ANC,,
with C; = x;, V- -V, . Two players, Prover and Disprover, alternate turns
in choosing a variable that has not been chosen yet. When all variables have
been chosen, variables chosen by Prover are set to true, while variables cho-
sen by Disprover are set to false. Prover wins if F'is true under this valuation
and Disprover wins otherwise. Without loss of generality, we can consider
that each variable appears in the formula, otherwise we consider the formula
F'=FAN(x;V---Va,). Clearly, any Maker-Breaker game (X, F) is equiva-
lent to a POS CNF game, as X corresponds to the set of variables, and the
winning sets correspond to the clauses. Prover has the same role as Breaker,
and Maker the role of Disprover.



The next result shows that the complexity of this game remains PSPAC E-
complete when reduced to instances of the domination game.

Theorem 6. Deciding the outcome of a Maker-Breaker domination game
position is PSPACE-complete on bipartite graphs.

Proof. We reduce the problem from POS CNF. Let FF=C; A --- A C,, be
a positive formula in conjunctive normal form using n variables X ---X,,.
We build a bipartite graph G = (V, E) from F as follows: V = {z;]1 <i <
nfU{N <j<m0<k<1}, E={(z;;c))]1 <i<n1<j<m0<
k <1,X; € C;}. Figure 2 shows an example of such a construction, from
the example where F'= (X7 V Xo) A (Xi VX)) A A (X VX3V X,).

We now show that Prover has a winning strategy in F' if and only if
Dominator has a winning strategy in G.

Assume first Prover has a winning strategy in F'. Dominator builds his
strategy in G as follows: Whenever Prover’s strategy requires to choose a
variable X;, Dominator chooses the vertex x;. Whenever Staller chooses a
vertex cf, Dominator answers by choosing the vertex c}_k . Whenever Staller
chooses a vertex x;, Dominator assumes Disprover chose the variable Xj.
When all vertices are chosen, since Prover was winning in F', for each vertex
c;?, there is a neighbor x; that was chosen by Dominator. As all variables
are in a clause, and for each j, Dominator chose either c? or cjl-, all vertices
of the form z; are also dominated by Dominator’s choice of vertices. Hence
Dominator wins the game.

Assume now Disprover has a winning strategy in F. Staller builds his
strategy in G as follows: Whenever Disprover’s strategy requires to choose
a variable X;, Staller chooses the vertex x;. Whenever Dominator chooses a
vertex cf, Staller answers by choosing the vertex c}”g . Whenever Dominator
chooses a vertex x;, Staller assumes Prover chose the variable X;. When all
vertices are chosen, since Disprover was winning in F, there exists a couple of
vertices (c?, 0]1) such that none of their neighbours was chosen by Dominator.
As Staller managed to choose one among these two, this particular one is not

dominated by Dominator’s choice of vertices. Hence Staller wins the game.
O

Corollary 7. Deciding the outcome of a Maker-Breaker domination game
position is PSPACE-complete on chordal graphs, and also in particular on
split graphs.



Figure 2: Reduction from POS CNF on (X7 V Xo) A (X3 VX)) AL A (X V
X3V X).

Proof. This proof of Theorem 6 remains valid by adding edges between the
vertices x;. In particular, it works if they form a clique, so that the resulting
graph is a split graph, that is special case of chordal graphs. 0]

In view of these complexity results, the question of the threshold between
PSPAC FE-completeness and polynomiality is of natural interest. The fol-
lowing section is a first step towards it, with a characterization of a certain
structure in the graph that induces a natural winning strategy for Dominator

4 Pairing strategy

A natural winning strategy for Breaker in a Maker-Breaker game is the so-
called pairing strategy as defined in [11]. This strategy can be applied when
a subset of the board X can be partitioned into pairs such that each winning
set contains one of the pairs. In that case, a strategy for Breaker as a second
player consists in occupying the other element of the pair that has been just
occupied by Maker. By doing so, Breaker will occupy at least one element in
each winning set and thus win the game. In the context of the Maker-Breaker
domination game , such a subset can be described as follows:

Definition 8. Given a graph G = (V, E), a subset {(u1,v1),. .., (ug,vg)} of
V' is a pairing dominating set if by choosing any vertex in (u;,v;) for each
1 <1 <k, the resulting set (of size k) is a dominating set of G.

Figure 3 shows an example of a pairing dominating set.
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Figure 3: The set {(uq,v1), (ug, v2), (ug, v3)} is a pairing dominating set.

Another way to consider a pairing dominating set is from the union of
the closed neighborhoods of each pair:

Proposition 9. Given a graph G = (V, E), a set D = {(uy,v1),. .., (ug,ve)}
is a pairing dominating set of G if and only if it satisfies

V = JNu]n Ny

i=1

Proof. Tet S = U, N[u] N N[v;]. If S = V, then by definition of S,
choosing any element in (u;, v;) for all ¢ builds a dominating set of G. On the
contrary, if S # V, then there exists a vertex w € V' \ S such that for all i, w
is not a neighbor of either u; or v;. By choosing these non-adjacent vertices
to w, they do not form a dominating set of G as w is not dominated. O

From this property, we will say that a vertex w is pairing dominated
if there exists a pair (u,v) from a pairing dominated set such that w €
N[u] N Nv]. In addition, all the pairs (u,v) satisfying N[u] N N[v] = () are
useless in the construction of a pairing dominating set.

Hence the pairing strategy applied to the Maker-Breaker domination
game can be translated into a strategy on a pairing dominating set:

Proposition 10. If a graph G admits a pairing dominating set, then o(G) =
D.

Proof. If G admits a pairing dominating set, then Dominator applies the
following strategy as a second player: each time Staller occupies a vertex of a
pair (u;,v;) for some 7, Dominator answers by occupying the other vertex of
the same pair if it is not yet occupied. Otherwise, Dominator plays randomly.



By definition of a pairing dominating set, it ensures that the vertices chosen
by Dominator form a dominating set of G. OJ

This result induces the following corollary that ensures a winning strategy
for Dominator as a first player.

Corollary 11. Given a graph G, if there exists a vertex u of G such that
G\ N[u] admits a pairing dominating set, then N < o(Q).

Proof. If such a vertex exists, then Dominator starts and occupy it. He
then applies his pairing strategy on G'\ N[u| as a second player to dominate
the rest of the graph. O

From this property, a natural question that arises is the detection of
graphs having a pairing dominating set. An example of such graphs is when
the vertices of the graph can be partitioned into cliques of size at least 2.
In that case, a trivial pairing dominating set consists in choosing any two
vertices in each clique. Note that the question of the existence of such a
partition is often referred to as the packing by cliques problem (with cliques
of size at least 2). It was proved to be polynomial by Hell and Kirkpatrick
in [12]. A particular case of this decomposition is when the graph admits
a perfect matching. As an example, Proposition 10 ensures that paths or
cycles of even size are D as they have a perfect matching.

Remark 12. The condition of Proposition 10 is not necessary. Indeed, the
graphs of Figure 4 are examples with outcome D and it can be shown that
they do not admit a pairing dominating set. Yet, we will see in Section 5
two families of graphs (cographs and trees) for which there is an equivalence
between the existence of a winning strategy for Dominator and the existence
of a pairing dominating set.

Figure 4: Graphs with outcome D and without a pairing dominating set.
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We conclude this section with a study of the complexity of the pairing
dominating set problem.

Theorem 13. Given a graph G, it is NP-complete to decide whether G
admits a pairing dominating set.

Proof. Let G = (V, E) be a graph. According to Proposition 9, the problem
is clearly in NP. It remains to prove the N P-hardness of the problem by
reducing it from 3-SAT. Let ' = C} V ---V (), be an instance of 3-SAT over
the variables X1, ..., X,,. Without loss of generality, one can assume that all
the variables appear in both their positive and negative version in F', but not
in the same clause. From F', we build the following graph G as illustrated
by Figure 5.

e For 1 < j <m, to each clause C; we associate a vertex c;.

e BEach variable X;, 1 <1 < nis associated to a gadget over seven vertices
{Zi, yi, zi, 2, yhy 21, i} such that z;y;2; and zly. 2] are two triangles, and
t; is adjacent to both z; and ). The pairs (z;,y;) and («},y.) will be

denoted e; and e; respectively.

e For each variable X;, we add the two edges ¢;x; and c¢;y; (resp. ¢;x} and
¢;yi) each time X; appears in clause C; in its positive (resp. negative)
form.

Figure 5: Gadget around a variable X; for the proof of N P-completeness.
The clauses C},,...,Cj, are those where the variable X, appears.

We first claim that any assignment of the variables X, ..., X, that makes
F' satisfiable induces a pairing dominating set in G. Let o be such an assign-
ment. Now build the following set D of pairs of vertices: for each variable
X, we add the pairs {(z;, v:), (t;, 2}), (yi, 2'i)} to D if X; is TRUE in o , and

11



the pairs {(x},y}), (t;, x;), (vi, 2:) } otherwise. It now suffices to check that D
is a pairing dominating set. First of all, one can easily remark that all the
vertices of the gadgets (i.e., vertices different from the clauses ¢;) are pairing
dominated by D. In addition, as each clause C} is satisfied by o, each vertex
c; is adjacent to at least one pair (z;,y;) or (z},y,) of D. Hence any choice
of vertex in such a pair allows to dominate c;.

Now consider a pairing dominating set D of G. We first show that for
each gadget associated a variable X;, up to symmetry, there are only four
cases to dominate the vertices t;, z; and 2/, depicted by Figure 6. Indeed, for
each vertex t;, as it is of degree 2, there are three cases for it to be pairing
dominated by D: either the pair (¢;,2%), or (;, z;), or (z;, ) belongs to D.
(7) the pair (¢;,«}) belongs to D (cases (a), (b) and (c) of Figure 6). Then,
by considering the vertex z., the pair (y., z) must belong to D. Indeed, if
2l is not in a pair of D, then one can always find vertices from D different
from ) and y, such that 2/ is not dominated. The same argument holds if z;
is in D, but not in a pair with y;. Concerning the vertex z;, it is necessarily
dominated by vertices from the triangle x;y,z;, leading to the three cases (a),
(b) and (c) of Figure 6.

(17) the pair (¢;, x;) belongs to D. By symmetry of the gadget, this case is
similar to the previous one and we get the symmetric pairs from figures (a),
(b) and (c).

(7i) the pair (z;, ;) belongs to D (Figure 6 (d)). Then both vertices z; and
z! must belong to D in the pairs (y;, z;) and (y., /). Indeed, if z; (or, by sym-
metry z/) is not in D, then one can always choose vertices from D different
from x; and y; such that z; is not dominated. The same argument holds if z;

is in D, but not in a pair with y;.

In order to find an assignment for F', we now show that D can be trans-
formed into a pairing dominating set where each pair is as in Figure 6 (a) (or
its symmetrical, according to case (ii)). Consider first that for the gadget
associated to some variable X;, the pairs of D are those depicted by Fig-
ure 6 (b). As the vertex z; has no other neighbor than z; and y;, replacing
a pair (z;,2;) by the pair (x;,y;) in D remains a valid pairing dominating
set since both z; and y; are adjacent to z;. This operation is clearly pos-
sible if y; is not in D. In the case where y; is already in D, say in a pair
(yi, u), remark that removing this pair from D does not break the pairing
dominating property of D if (x;,y;) is added. Indeed, as by definition of G,

12



x; and y; have the same neighborhood (except t;, that is already in a pair),
we have that N[u] N N[y;] € N|x;] N Nly,;]. Since z; and y; play a symmet-
rical role, we can use the same argument to replace the pairs of Figure 6
(¢) by those of (a) in D. The last case is when the pairs of D are those of
Figure 6 (d) for the variable X;. Since N[y;] N N[z;] € N[y;] N N[z;] and
Nlz;] N Nz] = {t;} € N[t;) N N[z}] (as X; and X; cannot be in the same
clause), we can replace the pairs of Figure 6 (d) by those of Figure 6 (a) with-
out breaking the pairing dominating property of D. In case ¢; was already
in D, say in a pair (¢;,u), once again this pair can be removed from D as
N{t;] N Nu] is either empty or at most a subset of {z;, 2}, which is already
pairing dominated by the pairs of Figure 6 (a).

Hence we have transformed D such that all the vertices different from
the ¢; are pairing dominated by the pairs of vertices of Figure 6 (a). In
addition, if D admits other pairs than those depicted by Figure 6 (a), then
these pairs are necessarily of the form (c;, ¢;), (2, u), or (2}, u). The last two
types of pairs can be removed from D as N[z;] and N[z/] is already pairing
dominated. Concerning the pairs (¢;, ¢;), they can also be removed from D
as the sets Nc;] N N|¢] belong to the gadgets (and are different from the
clause vertices), and are thus already pairing dominated.

We now build the following assignment of the variables of F: for all

1 <@ < n, the variable X; is set to TRUE if and only if the pair e; belongs to

D. As each vertex c; is pairing dominated in D by at least a pair e; or €; for

some ¢, it means that each corresponding clause C; has at least a variable
equal to TRUE, which concludes the proof.

OJ

5 Graph operations

In the first part of this section, we study the outcome of operations of graphs
for which the outcome is already known. This will lead to polynomial time
algorithms to solve the Maker-Breaker domination game on cographs and
forests, as these families can be built from joins, unions and by adjoining
hanging edges.

13



Figure 6: Possible pair dominating sets for the gadget of the proof of Theo-
rem 13 (up to symmetry).

5.1 Union and join

Let G = (Vg,Eg) and H = (Vy, Ey) be two graphs on disjoint sets of
vertices. The union G U H of G and H is the graph with vertex set Vo U Vy
and edge set EgU Ey. The join G <t H of G and H is the graph with vertex
set Vo UV and edge set Eq U Ey U {w|u € Vg,v € Vi }.

Theorem 14. Let G and H be two starting positions of the Maker-Breaker
domination game.

If o(G) =S oro(H) =S then o GUH) = S.

If o(G) = o(H) = N then o(GU H)

=S.
If o(G) = o(H) = D then o(GUH) =D.

e Otherwise, o(GUH) = N.

This result is summarized in Table 1. Note that the outcome S is absorb-
ing for the union, while the outcome D is neutral.

Proof. Assume Staller has a winning strategy on G or H. Then she has a
winning strategy on G U H. Indeed, without loss of generality assume that

14



o(H)

o(C) DIN|S
D DIN][S
N N|IS|S
S S[s]s

Table 1: Outcomes of the Maker-Breaker domination game played on the
union of G and H.

she has a winning strategy on GG. Her strategy on GU H is to play only on G
following her winning strategy. If at some point Dominator is playing on H,
this can be considered as a passing move in G and by Proposition 2 this does
not compromise Staller’s strategy. At some point she will isolate a vertex in
G and thus in G U H.

Thus if G or H has outcome S, then whatever Dominator plays as a first
move, Staller still has a winning strategy on this graph. If both positions
have outcome N then after Dominator’s first move, Staller can play on the
other component and also wins. This proves the first two points.

If both positions have outcome D, then Dominator has a winning strategy
on both graphs playing second. He can answer to every move of Staller on
the component she plays with his winning strategy on this component. At
the end, Dominator dominates both components and so G U H has outcome
D.

Finally, assume without loss of generality that o(G) = N and o(H) = D.
If Staller plays first, as in the first case, by applying her winning strategy as
the first player in G she will be able to isolate a vertex and to win. On the
other hand, if Dominator plays first, he can play his winning move on G and
then answers to Staller on the component she has played on with his winning
strategy. So the first player has a winning strategy and the outcome is V.

O

Theorem 15. Let G and H be two starting positions of the Maker-Breaker
domination game.

(i) If G =K, and o(H) =S (or H= K, and o(G) =S)
then oG H) = N.

(ii) Otherwise, o(G > H) = D.

15



Proof. (i) Assume that G = K; and o(H) = S. If Dominator starts, he will
win by playing on the only vertex of G and dominates the join, so he has a
winning strategy as a first player. However, since o( H) = S, if Staller starts,
she can play on the only vertex of G and then apply her winning strategy
as second player on H. So she wins on G > H as first player as well as
Dominator. So o(G <t H) = N.

(i) Since we are not in the first case, there are two possibilities : Either
both GG and H have at least two vertices or, without loss of generality, G = K;
and o(H) = N.

Assume first that both G and H have more than two vertices. Let uq,
v1 be two vertices of G and wuq, v two vertices of H. Since every vertex
of G is a neighbor of every vertex of H and conversely, {(uy,v1), (u2,v2)}
forms a pairing dominating set for G >t H and the outcome is D according
to Proposition 10.

Assume now that G = K; and o(H) = N. Note that Dominator has a
winning strategy on H as first player. Assume that Staller is the first player.
If on her first move she does not play on the vertex of GG, then Dominator
wins immediately by playing on it. If she does play on it, then Dominator
will apply his winning strategy as first player on H. This will allow him
to dominate H and, since each vertex of H dominates G, all the vertices
of G 1 H will be dominated. Dominator has a winning strategy as second
player, hence o(G =<1 H) = D. O

The combination of these two results gives a complexity result on the class
of cographs. Recall that cographs (or P;-free graphs) can be inductively built
from a single vertex by taking the union of two cographs or the join of two
cographs. In addition, from a given cograph, recovering this construction
from unions and joins can be found with a linear time algorithm [7]. Since
we know the outcome of Maker-Breaker domination game for K; and for the
union and the join operators, we can deduce the following corollary.

Corollary 16. Deciding the outcome of the Maker-Breaker domination game
on cographs can be done in polynomial time.

As stated in Remark 12, for some families of graphs the outcome of a
starting position is D if and only if it admits a pairing dominating set. We
show that the family of cographs satisfies this property.

Theorem 17. A cograph G has outcome D if and only if it admits a pairing
dominating set.
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Proof. We know from Proposition 10 that if a graph admits a pairing
dominating set, then it has outcome D. It remains to prove that all cographs
with outcome D admits a pairing dominating set.

The proof is done by induction on the number n of vertices of G.

First note that the result is true when n < 2. The only such cographs
are Ki, Ky and K; U Ky, and among them the only graph with outcome D
is Ky. K5 admits a perfect matching and thus a pairing dominating set.

Assume now that every cograph of outcome D with a number of vertices
less or equal to n admits a pairing dominating set. Let G be a cograph of
outcome D with n + 1 vertices. By definition of a cograph, G is either the
union or the join of two smaller cographs.

If GG is the union of two cographs G; and G, they necessarily have out-
come D by Theorem 14. By induction hypothesis, they both admit a pairing
dominating set, which union also is a pairing dominating set for G.

Assume now that G is the join of two cographs Gy and Go.

If both G; and G5 have more than two vertices, then if u;, v; are any
two vertices of G and wus, ve are any two vertices of Ga, {(ug,v1), (u2,v2)}
forms a pairing dominating set for G. Indeed, both u; and v; are neighbors
of every vertices of GGy and both us and vy are neighbors of every vertices of
Gl.

Assume now that G; = K; and let = be its unique vertex. Then G,
has either outcome N or D by Theorem 15. If G5 has outcome D then by
induction hypothesis, it admits a pairing dominating set. Every vertex of
this pairing dominating set is a neighbor of x and it remains also a pairing
dominating set for G.

Assume now that o(G2) = N. G is either the union of two cographs or
the join of two cographs.

If G4 is the join of two cographs, by Theorem 15, it must be the join of a
graph K with vertex y and of a graph H with outcome §. Notice that  and
y are both universal vertices so {(z, y)} is a pairing dominating set for G. If
(G5 is the union of H;, and H, then, without loss of generality, by Theorem 14
o(Hy) = D and o(Hy) = N. By induction hypothesis, H; admits a pairing
dominating set S;. Note also that by Theorem 15, z 1 Hy has outcome D,
so by induction hypothesis it admits a pairing dominating set S5. Since S
dominates H; and Sy dominates {x}U Hj, S;U.S; forms a pairing dominating
set for G. U
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5.2 Glue operator and trees

We now study the operator consisting of gluing two graphs on a vertex. This
operator will be useful in the study of trees. A more formal definition is the
following;:

Definition 18. Let G = (Vg, Eg) and H = (V, Ey) be two graphs and let
u € Vg and v € Vg be two vertices. The glued graph of G and H at u and v
is the graph G2, H with vertex set (Vo \ {u}) U (Vi \ {v}) U{w} (where w
is a new vertex) and for which zy is an edge if and only if zy is an edge of G
or H or y =w and xu is and edge of GG or zv is an edge of H.

If the vertex u is clear from the context or does not matter, the glue will

be denoted by G 2, H. Similarly if the vertex v is not useful in the notation,
we might also remove it. Figure 7 gives a representation of the glued of two
graphs.

G H

Figure 7: Representation of the glued graph of G and H on u and v.

Let H be a graph and v a vertex of H. We say that the couple (H,v) is
neutral for the glue operator if for every graph G and every vertex u of G,

o(GSH) = o(G).

Theorem 19. Let H be a graph and v be a vertex of H. (H,v) is neutral
for the glue operator if and only if o(H) =N and o(H \ {v}) = D.

Proof. First, let H be a graph and v be a vertex of H. Assume that (H,v)
is neutral. Then o(K; 25, H) = o(K;). Notice that Ky 25 H = H and since
o(K1) = N, we necessarily have o(H) = N.

Now consider the graph G that consists of H with a pendant vertex v’

attached to v. This corresponds to Ky 2 H. Since (H,v) is neutral, G has
the same outcome as K, that is D. In particular, Dominator has a winning
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strategy on G by playing second. If Staller plays first on v, Dominator has to
play on ¢'. His remaining winning strategy is a winning strategy on H \ {v}.

This proves that the conditions are necessary for (H,v) to be neutral. We
now prove that they are sufficient.

Let H be a graph, v be a vertex of H and H' = H \ {v}, such that
o(H) = N and o(H') = D. Let G be a graph and u a vertex of G. In the
following, we identify the vertices u and v to w and the glued graph of G and
H will be denoted by G > H.

Since o(H') = D, o(GU H') = o(G) by Theorem 14. Note that G U H’

is a subgraph of G ¢ H where only edges are removed so, by Proposition 3,
o(GXH) »o(GUH'") =0o(G).

We now show that o(G > H) < o(G) to conclude the proof. Note that if
o(G) = D we necessarily have o(G > H) < o(G).

Assume that o(G) < N. This means that Staller has a winning strategy
on G as first player. Since o(H) = N, Staller also has a winning strategy

on H as first player. The following strategy is a winning strategy on G ¢ H
for Staller as first player. Staller begins by applying her winning strategy
on H until the strategy requires her to play on w. If during this stage
Dominator plays on w, by following her strategy, Staller will isolate a vertex
on H different from w. This vertex is not connected to G so she wins. If
Dominator plays on G\ {w} then Staller can imagine that Dominator has
played on w and will win similarly. So we can assume that Dominator always
answers in H'.

When Staller’s strategy on H is to play on w, she switches to her winning
strategy on G instead. Similarly as before, if Dominator does not answer in
G\ {w}, Staller will win by isolating a vertex of G different from w. She
continues to apply her winning strategy on GG until this strategy requires her
to play on w. Note that at this point w is a winning move for Staller both
in G and H.

Staller now plays w and answers to every move of Dominator with her
strategy in the same component. Since she follows her winning strategy in
G and H she will isolate a vertex in each of these graphs. If one of those
two vertices is not w, then Staller wins because this vertex is isolated in

G > H. If both of these vertices are w, then w and its whole neighborhood
are played by Staller in the glued graph and Staller wins. So Staller has a

winning strategy as first player in G2 H and o(G2>< H) < N.
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Assume now that o(G) = S, i.e. Staller has a winning strategy on G as
second player. If Dominator begins by playing on w, then Staller can apply
her winning strategy in G, she will isolate a vertex different from w will win.
If Dominator begins by playing in H’, then Staller can imagine that he played
on w, apply her winning strategy on GG and win similarly as before. So we
can assume that Dominator begins by playing in G\ {w}. Then Staller can
follow the same strategy as when she when playing first and she wins. Thus

o(G>H)=S.
These three cases prove that o(G2SH) = o(G). Since we also have
o(GXSH) = o(G), this prove that o(G2SH) = o(G). O

A question that could be asked is whether or not neutral graphs exist.
We solve it by exhibiting an infinite family of neutral graphs:

Definition 20. For n > 2, the hanging split graph of size n, H,, is the
graph composed of a clique of size n with vertex set {u, us,...,u,_1} and an
independent of size n — 1 with vertex set {vy,...,v,_1}. Add an edge u;v;
forall1 <i<n-—1.

Figure 8 gives a representation of the first two hanging split graphs and
of the general case.

Proposition 21. For alln > 2, (H,,u) is neutral for the glue operator.

Proof. Note that H, \ {u} has a perfect matching so it has outcome D by
Proposition 10.

If Dominator plays first on H,,, a winning strategy is to start on u, then
the remaining graph has a perfect matching and he will win.

If Staller plays first on H,,, a winning strategy is to play on each u;. Dom-
inator has to answer on v; otherwise Staller wins immediately by isolating
this vertex. When every u; is played, she can play on u and isolate it.

So both players have a winning strategy when playing first and thus
o(H,) = N. By Theorem 19, (H,,u) is neutral. 0O

An interest of the neutral graphs is that if a graph G is of the form
G’ ¢, H with (H,v) being neutral, then we can restrict the study of G to the
study of G’. In the following, we apply this idea to trees by noticing that P
is isomorphic to H, and thus neutral.

We define a Ps-irreducible graph as a graph without pendant P,, where
a pendant P is a P, attached to a graph by an edge.
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H, Hj H,

Figure 8: Examples of hanging split graphs.

Lemma 22. Every Ps-irreducible tree has one of the following form :
o K,
o P
o Ky, withn >3

o Trees where there are at least two vertices with more than two leaves as
children.

Figure 9 shows a representation of these different cases.

(©) o0—o0

Figure 9: Different possible reductions for trees.

Proof. Let T be a Ps-irreducible graph. If T" has only one vertex, T' = K;.
Otherwise T must have leaves. If a leaf is connected to a vertex of degree
2, then there is a pendant P, and T is not irreducible. If there is a leaf
connected to a vertex of degree 1, then the only possible case is that 7" = K.
If we are in none of the previous cases, each leaf parent is connected to at
least two leaves. If there is only one leaf parent, then 7' = K, ,, with n > 3
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and otherwise there are at least two leaf parents connected to at least two
leaves.

O

Theorem 23. Deciding the outcome of the Maker-Breaker domination game
on trees 1s polynomial.

Proof. The following algorithm solves the Maker-Breaker domination game
on trees in polynomial time:

For a tree T, iteratively remove a pendant P, until it is not possible
anymore. Let 7" be the obtained tree. If 7" = P,, return the answer D. If
T' = K; or Ky, with n > 3, then return N. Otherwise, return S.

Note that the above algorithm is polynomial. Indeed, removing pendant
Py’s can be done in polynomial time by keeping in memory the set of leaves
at each time and updating it when necessary. Verifying that a tree is Ky, P,
or a star can also be done in polynomial time.

We now prove the correctness of the algorithm. Let T7,...,Ty be the
intermediary trees obtained after removing a pendant P,. From Proposi-
tion 21, we know that Pj is neutral and a pendant P, can be seen as the glue
with a P3. So o(T) = o(T}) = ... = o(T}) = o(T"), and the outcome of T is
the same as the outcome of T". As T" is Ps-irreducible so it corresponds to
one of the situations described in Lemma 22. If it is a P, the outcome is D.
If it is K or K, with n > 3, the first player wins by playing on the central
vertex and thus the outcome is M. In the last case, two distinct vertices
are attached to two leaves or more. Assume that Staller plays second on
T'. After Dominator’s first move, one of these two vertices and its leaves are
unplayed by Dominator. Staller can play this vertex and will isolate one of
its leaves after her next move. Hence 7" is indeed S in this last case.

We conclude that the outcome of T is the same as the outcome of 77 and
the algorithm correctly returns the right output. O

Remark 24. Note that a tree has outcome D only if by removing pendant
Py’s the remaining graph is a P. This means that a tree has outcome D if
and only if it admits a perfect matching and thus if and only if there is a
pairing dominating set.
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6 Conclusion and perspectives

In this paper, the complexity of the Maker-Breaker domination game is stud-
ied for different classes of graphs. PSP AC E-completeness is proved for split
and bipartite graphs, whereas polynomial algorithms are given for cographs
and trees. An interesting equivalence property is that in these last two cases,
the outcome is D if and only if the graph admits a pairing dominating set.
The study of the pairing dominating set problem might be a key in the study
of the threshold between PSPACE and P for the Maker-Breaker domination
game.

As stated in the introduction, another problem that might be relevant to
consider is the number of moves needed by Dominator to win. In particular,
it could be worth studying the correlation of this value with the dominating
number or the game dominating number.

Also, this game has been built from the dominating set problem. Other
remarkable structures in graphs could have been chosen, such as total dom-
inating sets. Another variant would be to consider the game in an oriented
version.
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