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The models
We consider a population of n agents that interact stochastically and aim to converge on a particular
opinion held by few knowledgable individuals. For simplicity, we assume that the set of opinions contain
two opinions only, namely, 0 and 1.

As detailed in this section, we shall assume that agents have access to significant amount of resources,
often exceeding more reasonable and realistic assumptions. Since we are concerned with lower bounds,
we do not lose generality from such permissive assumptions. These liberal assumptions will actually
simplify our proofs. One of these assumptions is the assumption that each agent is equipped with a
unique identity id(v) in the range {1, 2, . . . , n} (see more details in Section Liberal assumptions).

Initial configuration
The initial configuration is described in several layers. First, the neutral initial configuration corresponds
to the initial states of the agents, before the sources and the desired opinion to converge to are set. (The
term neutral is motivated by a physical analogy, as opposed to a charged initial configuration.)

A random initialization is then applied to the given neutral initial configuration, which determines
the set of sources and the opinion that agents need to converge to. This will result in what we call the
charged initial configuration. It can represent, for example, an external event that was identified by few
agents which now need to deliver their knowledge to the rest of the population.

Neutral initial configuration x(0)

Each agent v starts the execution with an input that contains, in addition to its identity:

• an initial state taken from some discrete set of states, and

• a binary opinion variable λv ∈ {0, 1}.

(The opinion of an agent could have been considered as part of the state of the agent. We separate these
two notions merely for the presentation purposes.) The neutral initial configuration x(0) is the vector
whose i’th index, x(0)

i for i ∈ {1, 2, . . . , n}, is the input of the agent with identity i.

Charged initial configuration and correct opinion

The charged initial configuration is determined in three stages. The first corresponds to the random
selection of sources, the second to the selection of the correct opinion, and the third to a possible update
of states of sources, as a result of being selected as sources with a particular opinion.

1st stage - Random selection of sources. Given an integer s ≤ n, a set S of size s is chosen
uniformly at random (u.a.r) among the agents. The agents in S are called sources. Note that any agent
has equal probability of being a source. We assume that each source knows it is a source, and conversely,
each non-source knows it is not a source.
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2nd stage - Random selection of correct opinion. In the main model we consider, after sources
have been determined in the first stage, the sources are randomly initialized with an opinion, called
the correct opinion. That is, a fair coin is flipped to determine an opinion in {0, 1} and all sources are
assigned with this opinion.

3rd stage - Update of initial states of sources. To capture a change in behavior as a result of
being selected as a source with a particular opinion, we assume that once the opinion of a source u
has been determined, the initial state of u may change according to some distribution fsource−state that
depends on (1) its identity, (2) its opinion, and (3) the neutral configuration. Each source samples its
new state independently.

Alphabet and messages
Agents communicate by observing each other according to some random pattern (for details see the
Section Random interaction patterns). To improve communication agents may choose which content,
called message, they wish to reveal to other agents that observe them. Importantly, however, such
messages are subject to noise.

More specifically, at any given time, each agent v (including sources) displays a message m ∈ Σ,
where Σ is some finite alphabet. The alphabet Σ agents use to communicate may be richer than the
actual information content they seek to disseminate, namely, their opinions. This, for instance, gives
them the possibility to express several levels of certainty [15]. We can safely assume that the size of Σ is
at least two, and that Σ includes both symbols 0 and 1. We are mostly concerned with the case where
Σ is of constant size (i.e., independent of the number of agents), but note that our results hold for any
size of the alphabet Σ, as long as the noise criterion is satisfied (see below).

δ-uniform noise
When an agent u observes some agent v, it receives a sample of the message currently held by v. The
noise in the sample is characterized by a noise parameter 0 < δ ≤ 1/2. One of the important aspects in
our theorems is that they are general enough to hold assuming any distribution governing the noise, as
long as it satisfies the following noise criterion.

Definition 1 (The noise criterion with parameter δ). Any time some agent u observes an agent v holding
some message m ∈ Σ, the probability that u actually receives a message m′ is at least δ, for any m′ ∈ Σ.
We assume that all noisy samples are independent.

Observe that the aforementioned criterion implies that δ ≤ 1/|Σ|, and that the case δ = 1/|Σ|
corresponds to messages being completely random, and the rumor spreading problem is thus unsolvable.

We next define a weaker criterion, that is particularly meaningful in cases in which sources are
more restricted in their message repertoire than general agents. This may be the case, for example,
if sources always choose to display their opinion as their message (possibly together with some extra
symbol indicating that they are sources). Formally, we define Σ′ ⊆ Σ as the set of possible messages
that a source can hold together with the set of messages that can be observed when viewing a source
(i.e., after noise is applied). Our theorems actually apply to the following criterion, that requires that
only messages in Σ′ are attained due to noise with some sufficient probability.

Definition 2 (Σ′-relaxed noise ellipticity parameter δ). We say that the noise has Σ′-relaxed ellipticity
δ if Pm,m′ ≥ δ for any m ∈ Σ and m′ ∈ Σ′.

Random interaction patterns
We consider several basic interaction patterns. Our main model is the parallel-PULL model. In this
model, time is divided into rounds, where at each round i ∈ N+, each agent u independently selects
an agent v (possibly u = v) u.a.r from the population and then u observes the message held by v.
The parallel-PULL model should be contrasted with the parallel-PUSH model, in which u can choose
between sending a message to the selected node v or doing nothing. We shall also consider the following
variants of PULL model.

• parallel-PULL(k). Generalizing parallel-PULL for an integer 1 ≤ k ≤ n, the parallel-PULL(k)
model allows agents to observe k other agents in each round. That is, at each round i ∈ N+, each
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agent independently selects a set of k agents (possibly including itself) u.a.r from the population
and observes each of them.

• sequential-PULL. In each time step t ∈ N+, two agents u and v are selected uniformly at random
(u.a.r) among the population, and agent u observes v.

• broadcast-PULL. At each time step t ∈ N+ one agent is chosen u.a.r. from the population and all
agents observe it, receiving the same noisy sample of its message.

The broadcast-PULL model is mainly used for technical considerations. We use it in our proofs as it
simplifies our arguments while not harming their generality. Nevertheless, this broadcast model can also
capture some situations in which agents can be seen simultaneously by many other agents, where the
fact that all agents observe the same sample can be viewed as noise being originated by the observed
agent.

Regarding the difference in time units between the models, since interactions occur in parallel in the
parallel-PULL model, one round in that model should informally be thought of as roughly n time steps
in the sequential-PULL or broadcast-PULL model.

Liberal assumptions
As mentioned, we shall assume that agents have abilities that surpass their realistic ones. This does
not only increases the generality of our lower bounds, but also simplifies their proofs. Specifically, the
following liberal assumptions are considered.

• Unique identities. Each agent is equipped with a unique identity id(v) ∈ {1, 2, . . . , n}, that is,
for every two agents u and v, we have id(u) 6= id(v). Moreover, whenever an agent u observes some
agent v, we assume that u can infer the identity of v. In other words, we provide agents with the
ability to reliably distinguish between different agents at no cost.

• Unlimited internal computational power. We allow agents to have unlimited computational
abilities including infinite memory capacity. Therefore, agents can potentially perform arbitrarily
complex computations based on their knowledge (and their id).

• Complete knowledge of the system. Informally, we assume that agents have access to the
complete description of the system except for who are the sources and what is their opinion. More
formally, we assume that each agent has access to:

– the neutral initial configuration x(0),

– all the systems parameters, including the number of agents n, the noise parameter δ, the
number of sources s, and the distribution fsource−state governing the update the states of
sources in the third stage of the charged initial configuration.

• Full synchronization. We assume that all agents are equipped with clocks that can count time
steps (in sequential-PULL or broadcast-PULL) or rounds (in parallel-PULL(k)). The clocks are
synchronized, ticking at the same pace, and initialized to 0 at the beginning of the execution.
This means, in particular, that if they wish, the agents can actually share a notion of time that is
incremented at each time step.

• Shared randomness. We assume that algorithms can be randomized. That is, to determine
the next action, agents can internally toss coins and base their decision on the outcome of these
coin tosses. Being liberal, we shall assume that randomness is shared in the following sense. At
the outset, an arbitrarily long sequence r of random bits is generated and the very same sequence
r is written in each agent’s memory before the protocol execution starts. Each agent can then
deterministically choose (depending on its state) which random bits in r to use as the outcome
of its own random bits. In particular, since agents are allowed to have distinct initial states (e.g.
by having unique identity labels), they can choose to make use of disjoint sets of random bits,
thus making use of independent random variables. On the other hand, the shared randomness also
implies that, for example, two agents can possibly make use of the very same random bits or merely
observe the outcome of the random bits used by the other agents. Furthermore, the above implies
that, conditioning on an agent u being a non-source agent, all the random bits used by u during
the execution are accessible to all other agents.
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• Coordinated sources. Even though non-source agents do not know who the sources are, we
assume that sources do know who are the other sources. This means, in particular, that the
sources can coordinate their actions.

Algorithm
Upon observation, each agent can alter its internal state (and in particular, its message to be seen by
others) as well as its opinion. In reality, the updates of these variables may follow different constraints.
In the case of ants for example, it may take a long time to change their message even if their internal
state changes. As part our liberal approach, we allow agents to change any part of their internal state
instantaneously.

The strategy in which agents update these variables is called “algorithm”. As mentioned, algorithms
can be randomized, that is, to determine the next action, agents can use the outcome of coin tosses in
the sequence r (see the shared randomness assumption in Liberal assumptions). Overall, the action of
an agent u at time t depends on:

1. the initial state of u in the charged initial configuration (including, in particular, the identity of u
and whether or not it is a source),

2. the initial knowledge of u (including the system’s parameters and the neutral configuration),

3. the time step t, and the list of its observations (history) up to time t− 1, denoted x(<t)
u ,

4. the sequence of random bits r.

Convergence and time complexity
At any time, the opinion of an agent can be viewed as a binary guess function that is used to express
its most knowledgeable guess of the correct opinion. The agents aim to minimize the probability that
they fail to guess this opinion. In this context, it can be shown that the optimal guessing function is
deterministic (see A remark about random guess functions, in the Appendix).

Definition 3. We say that convergence has been achieved if one can specify a particular non-source
agent v, for which it is guaranteed that its opinion is the correct opinion with probability at least 2/3.
The time complexity is the number of time steps (respectively, rounds) required to achieve convergence.

We remark that the latter definition encompasses all three models considered.

Remark 1 (Different sampling rates of sources). We consider sources as agents in the population but
remark that they can also be thought of as representing the environment. In this case, one may consider
a different rate for sampling a source (environment) vs. sampling a typical agent. For example, the
probability to observe any given source (or environment) may be x times more than the probability to
observe any given non-source agent. This scenario can also be captured by a slight adaptation of our
analysis. When x is an integer, we can alternatively obtain such a generalization by considering additional
artificial sources in the system. Specifically, we replace each source ui with a set of sources Ui consisting
of x sources that coordinate their actions and behave identically (recall that we assume that sources know
who are the other sources and can coordinate their actions), simulating the original behavior of ui. Since
the number of sources increases by a multiplicative factor of x, our lower bounds (see Theorem 4 and
Corollary 14.1) decrease by a multiplicative factor of x2.

Related works in computer science
In Rumor Spreading problems (also referred to as Broadcast) a piece of information typically held by a
single designated agent is to be disseminated to the rest of the population. It is the subject of a vast
literature in theoretical computer science, and more specifically in the distributed computing community,
see, e.g., [3, 4, 6, 7, 8, 11, 13, 14, 16]. While some works assume a fixed topology, the canonical setting does
not assume a network. Instead agents communicate through uniform PUSH/PULL based interactions
(including the phone callmodel), in which agents interact in pairs with other agents independently chosen
at each time step uniformly at random from all agents in the population. The success of such protocols
is largely due to their inherent simplicity and fault-tolerant resilience [10, 14]. In particular, it has been
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shown that under the PUSH model, there exists an efficient rumor spreading protocol that uses a single
bit per message and can overcome flips in messages (noise) [11].

The line of research initiated by El-Gamal [9], also studies a broadcast problem with noisy interactions.
The regime however is rather different from ours: all n agents hold a bit they wish to transmit to a single
receiver. This line of research culminated in the Ω(n log log n) lower bound on the number of messages
shown in [13], matching the upper bound shown many years earlier in [12].

Several works have investigated algorithmic properties of networks with unstable topological struc-
ture, such as ephemeral networks, evolving graphs and edge-Markovian evolving graphs [2, 5, 1]. Such
works prove analytical results assuming that the evolution of the topology satisfies certain constraints,
and did not consider the case of noise affecting communication in conjunction with the dynamicity of
the topology.

The lower bounds
Throughout this section we consider δ < 1/|Σ|, such that (1−δ|Σ|)

δsn ≤ 1
10 . Our goal in this section is to

prove the following result.

Theorem 4. Assume that the relaxed δ-uniform noise criterion is satisfied.

• Let k be an integer. Any rumor spreading protocol on the parallel-PULL(k) model cannot converge
in fewer rounds than

Ω

(
nδ

ks2(1− δ|Σ|)2

)
.

• Consider either the sequential-PULL or the broadcast-PULL model. Any rumor spreading protocol
cannot converges in fewer time steps than

Ω

(
n2δ

s2(1− δ|Σ|)2

)
.

To prove the theorem, we first prove (in Reducing to the broadcast-PULL Model) that an efficient
rumor spreading algorithm in either the noisy sequential-PULLmodel or the parallel-PULL(k) model can
be used to construct an efficient algorithm in the broadcast-PULL model. The resulting algorithm has
the same time complexity as the original one in the context of sequential-PULL and adds a multiplicative
factor of kn in the context of parallel-PULL(k).

We then show how to relate the rumor spreading problem in broadcast-PULL to a statistical inference
test (Rumor Spreading and hypothesis testing). A lower bound on the latter setting is then achieved by
adapting techniques from mathematical statistics (Proof of Theorem 7).

Remark 2. The lower bound of Theorem 4 loses relevance when s is of order greater than
√
n. Indeed,

the following simple protocol in the broadcast-PULL model turns out to match the lower bound. For
simplicity’s sake, let us consider the case of a binary alphabet Σ = {0, 1}, and assume without loss of
generality that the sources’ opinion is 1. Each non-source agent, at each time step, chooses a random
message u.a.r. in Σ, while each source agent always displays the correct message. After n time steps, the
agents have collected n observations. If s �

√
10n, a straightforward application of the Chernoff bound

shows that with high probability at least s/2 of the n observations come from source agents. Thus, at
most n−s/2 of the observations have distribution Bernoulli( 1

2 ), while at least s/2 of them are identically
1 before the effect of noise is taken into account. Since s/2 is of the same order of the standard deviation
of the non-source messages, the agents have a good probability to correctly infer the correct opinion by
choosing the most frequent message among the n observations.

Reducing to the broadcast-PULL Model
The following lemma establishes a formal relation between the convergence times of the models we
consider. We assume all models are subject to the same noise distribution.

Lemma 5. Any protocol operating in sequential-PULL can be simulated by a protocol operating in
broadcast-PULL with the same time complexity. Moreover, for any integer 1 ≤ k ≤ n, any protocol P
operating in parallel-PULL(k) can be simulated by a protocol operating in broadcast-PULL with a time
complexity that is kn times that of P in parallel-PULL(k).
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Proof. Let us first show how to simulate a time step of sequential-PULL in the broadcast-PULL model.
Recall that in broadcast-PULL, in each time step, all agents receive the same observation sampled u.a.r
from the population. Upon drawing such an observation, all agents use their shared randomness to
generate a (shared) uniform random integer X between 1 and n. Then, the agent whose unique identity
corresponds to X is the one processing the observation, while all other agents ignore it. This reduces
the situation to a scenario in sequential-PULL, and the agents can safely execute the original algorithm
designed for that model.

As for simulating a time step of parallel-PULL(k) in the broadcast-PULL model, agents divide time
steps in the latter model into rounds, each composing of precisely kn time steps. Recall that the model
assumes that agents share clocks that start when the execution starts and tick at each time step. This
implies that the agents can agree on the division of time into rounds, and can further agree on the round
number. For an integer i, where 1 ≤ i ≤ kn, during the i-th step of each round, only the agent whose
identity is (i mod n)+1 receives the observation, while all other agents ignore it. Observe that receiving
the observation doesn’t imply that the agent processes this observation. In fact, it will store it in its
memory until the round is completed, and process it only then. The aforementioned rule for receiving
a message, ensures that when a round is completed in the broadcast-PULL model, each agent receives
precisely k independent uniform samples as it would in a round of parallel-PULL(k). Therefore, at the
end of each round j ∈ N+ in the broadcast-PULL model, all agents can safely execute their actions in the
j’th round of the original protocol designed for parallel-PULL(k). This draws a precise bijection from
rounds in parallel-PULL(k) and rounds in broadcast-PULL. The multiplicative overhead of kn simply
follows from the fact that each round in broadcast-PULL consists of kn time steps.

Thanks to Lemma 5, Theorem 4 directly follows from the next theorem.

Theorem 6. Consider the broadcast-PULL model and assume that the relaxed δ-uniform noise criterion
is satisfied. Any rumor spreading protocol cannot converge in fewer time steps than

Ω

(
n2δ

s2(1− δ|Σ|)2

)
.

The remaining of the section is dedicated to proving Theorem 6. Towards achieving this, we view the
task of guessing the correct opinion in the broadcast-PULL model, given access to noisy samples, within
the more general framework of distinguishing between two types of stochastic processes which obey some
specific assumptions.

Rumor Spreading and hypothesis testing
Consider the following class of problems.

Adaptive Coin Distinguishing Task (ACDT). A distinguisher is presented with a sequence of ob-
servations taken from a coin of type η where η ∈ {0, 1}. We can think of the type η as initially set to 0 or
1 with probability 1/2 (independently of everything else). The goal of the distinguisher is to determine
the type η, based on the observations.

More specifically, for a given time step t, denote the sequence of previous observations (up to, and
including, time t− 1) by

x(<t) = (x(1), . . . , x(t−1)).

For each time t, we denote the probability distribution of the observation X(t)
η ∈ Σ that the distinguisher

receives, given the type η ∈ {0, 1} and the history of previous observations x(<t), as

P (X(t)
η = m | x(<t)). (1)

We follow the common practice to use uppercase letters to denote random variables and lowercase letter
to denote a particular realisation, e. g. X(≤t) for the sequence of observations up to time t, and x(≤t)

for a corresponding realization.

Remark 3. We note that ACDT generalizes in several respects the canonical problem of distinguishing
between an unbiased coin and a coin with fixed bias ε (see, e.g., Chapter 5 in [17]). It is more general
because 1. the probabilities of observations may vary adaptively as a function of the outcome of the
previous samples, since the coins and p

(t)
1 (m) P (X

(t)
0 = m | x(<t)) and P (X

(t)
1 = m | x(<t)) in (1)

actually depend on x(<t), the history of observations up to time t− 1, and 2. instead of binary random
variables we consider Σ-valued random variables.
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We next introduce, for each m ∈ Σ, the parameter

ε(m,x(<t)) = P (X
(t)
1 = m | x(<t))− P (X

(t)
0 = m | x(<t)).

Since, at all times t, it holds that
∑
m∈Σ P (X

(t)
0 = m | x(<t)) =

∑
m∈Σ P (X

(t)
1 = m | x(<t)) = 1, then∑

m∈Σ ε(m,x
(<t)) = 0. We shall be interested in the quantity

dε(x
(<t)) :=

∑
m∈Σ

|ε(m,x(<t))|,

which corresponds to the `1 distance between the distributions P (X
(t)
0 = m | x(<t)) and P (X

(t)
1 = m |

x(<t)) given the sequence of previous observations.

The bounded family ACDT(ε, δ). We consider a family of instances of ACDT, called ACDT(ε, δ), governed
by parameters ε and δ. Specifically, this family contains all instances of ACDT such that for every t, and
every history x(<t), we have:

• dε(x(<t)) ≤ ε, and

• for every m ∈ Σ such that ε(m,x(<t)) 6= 0, we have δ ≤ P (X
(t)
η = m | x(<t)) for η ∈ {0, 1}.

In the rest of the current section, we show how Theorem 6, that deals with the broadcast-PULL model,
follows directly from the next theorem that concerns the adaptive coin distinguishing task, by setting

ε =
2s(1− δ|Σ|)

n
.

The actual proof of Theorem 7 appears in Proof of Theorem 7.

Theorem 7. Consider any protocol for any instance of ACDT(ε, δ), The number of samples required to
distinguish between a process of type 0 and a process of type 1 with probability of error less than 1

3 is at
least

ln 2

9

(
6(δ − ε)3

δ3 − δ2ε+ 3δε2 − ε3

)
δ

ε2
.

In particular, if 10ε < δ, then the number of necessary samples is Ω
(
δ
ε2

)
.

Proof of Theorem 6 assuming Theorem 7

Consider a rumor spreading protocol P in the broadcast-PULL model. Fix a node u. We first show that
running P by all agents, the perspective of node u corresponds to a specific instance of ACDT( 2s(1−δ|Σ|)

n
, δ)

called Π(P, u). We break down the proof of such correspondence into two claims.

The ACDT instance Π(P, u). Recall that we assume that each agent knows the complete neutral initial
configuration, the number of sources s, and the shared of random bits sequence r. We avoid writing such
parameters as explicit arguments to Π(P, u) in order to simplify notation, however, we stress that what
follows assumes that these parameters are fixed. The bounds we show hold for any fixed value of r and
hence also when r is randomized.

Each agent is interested in discriminating between two families of charged initial configurations:
Those in which the correct opinion is 0 and those in which it is 1 (each of these possibilities occurs
with probability 1

2 ). Recall that the correct opinion is determined in the 2nd stage of the charged initial
configuration, and is independent form the choice of sources (1st stage).

We next consider the perspective of a generic non-source agent u, and define the instance Π(P, u) as
follows. Given the history x(<t), we set P (X

(t)
η = m | x(<t)), for η ∈ {0, 1}, to be equal to the probability

that u observes message m ∈ Σ at time step t of the execution P. For clarity’s sake, we remark that the
latter probability is conditional on:

• the history of observations being x(<t),

• the sequence of random bits r,
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• the correct opinion being η ∈ {0, 1},

• the neutral initial configuration,

• the identity of u,

• the algorithm P, and

• the system’s parameters (including the distribution fsource−state and the number of sources s).

Claim 8. Let P be a correct protocol for the rumor spreading problem in broadcast-PULL and let u be
an agent for which the protocol is guaranteed to produce the correct opinion with probability at least p by
some time T (if one exists), for any fixed constant p ∈ (0, 1). Then Π(P, u) can be solved in time T with
correctness being guaranteed with probability at least p.

Proof. Conditioning on η ∈ {0, 1} and on the random seed r, the distribution of observations in the
Π(P, u) instance follows precisely the distribution of observations as perceived from the perspective of u
in broadcast-PULL. Hence, if the protocol P at u terminates with output j ∈ {0, 1} at round T , after
the T -th observation in Π(P, u) we can set Π(P, u)’s output to j as well. Given that the two stochastic
processes have the same law, the correctness guarantees are the same.

Claim 9. Π(P, u) ∈ ACDT
(
2(1−δ|Σ|)s

n
, δ
)
.

Proof. Since the noise in broadcast-PULL flips each message m ∈ Σ into any m′ ∈ Σ′ with probability
at least δ, regardless of the previous history and of η ∈ {0, 1}, at all times t we have

m ∈ Σ′ =⇒ P (X(t)
η = m | x(<t)) ≥ δ.

Consider a message m ∈ Σ \ Σ′ (if such a message exists). By definition, such a message could only
be received by observing a non-source agent. But given the same history x(<t), the same sequence of
random bits r, and the same initial knowledge, the behavior of a non-source agent is the same, no matter
what is the correct opinion η. Hence, for m ∈ Σ\Σ′ we have P (X

(t)
0 = m | x(<t)) = P (X

(t)
1 = m | x(<t)),

or in other words,
m ∈ Σ \ Σ′ =⇒ ε(m,x(<t)) = 0.

It remains to show that dε(x(<t)) ≤ 2(1−δ|Σ|)s
n . Let us consider two executions of the rumor spreading

protocol, with the same neutral initial configuration, same shared sequence of random bits r, same set
of sources, except that in the first the correct opinion is 0 while in the other it is 1. Let us condition on
the history of observations x(<t) being the same in both processes.

As mentioned, given the same history x(<t), the behavior of a non-source agent is the same, regardless
of the correct opinion η. It follows that the difference in the probability of observing any given message
is only due to the event that a source is observed. Recall that the number of sources is s. Therefore, the
probability of observing a source is s/n, and we may write as a first approximation ε(m,x(<t)) ≤ s/n .
However, we can be more precise. In fact, ε(m,x(<t)) is slightly smaller than s/n, because the noise can
still affect the message of a source.

We may interpret ε(m,x(<t)) as the following difference. For a source v ∈ S, let mv
η be the message of

u assuming the given history x(<t) and that v is of type η ∈ {0, 1} (the message mv
η is deterministically

determined given the sequence r of random bits, the neutral initial configuration, the parameters of the
system, and the identity of v). Let αm′,m be the probability that the noise transforms a message m′ into
a message m. Then

ε(m,x(<t)) =
1

n

∑
v∈S

(αmv
1 ,m
− αmv

0 ,m
),

and
dε(x

(<t)) =
∑
m∈Σ

|ε(m,x(<t))| ≤ 1

n

∑
m∈Σ

∑
v∈S
|αmv

1 ,m
− αmv

0 ,m
|. (2)

By the definition of ACDT(ε, δ), it follows that either αmv
1 ,m

= αmv
0 ,m

(if ε(m,x(<t)) = 0) or δ ≤
αmv

1 ,m
, αmv

0 ,m
≤ 1 − δ (if ε(m,x(<t)) 6= 0). Thus, to bound the right hand side in (2), we can use

the following claim (proven in Proof of Claim 10)
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Claim 10. Let P and Q be two distributions over a universe Σ such that for any element m ∈ Σ,
δ ≤ P (m), Q(m) ≤ 1− δ. Then

∑
m∈Σ|P (m)−Q(m)| ≤ 2(1− δ|Σ|).

Applying Claim 10 for a fixed v ∈ S to distributions (αmv
0 ,m

)m and (αmv
1 ,m

)m, we obtain

1

n

∑
m∈Σ

∑
v∈S
|αmv

1 ,m
− αmv

0 ,m
| ≤ 1

n
2
∑
v∈S

(1− δ|Σ|) ≤ 2(1− δ|Σ|)s
n

.

Hence, we have Π(P) ∈ ACDT
(
2(1−δ|Σ|)s

n
, δ
)
, establishing Claim 9.

Thanks to Claims 8 and 9, Theorem 6 regarding the broadcast-PULL model becomes a direct conse-
quence of Theorem 7 on the adaptive coin distinguishing task, taking

ε =
2(1− δ|Σ|)s

n
.

More precisely, the assumption (1−δ|Σ|)
δsn ≤ c for some small constant c, ensures that ε

δ ≤ c as required by

Theorem 7. The lower bound Ω
(
ε2

δ

)
corresponds to

Ω

(
n2δ

(1− δ|Σ|)2s2

)
.

This concludes the proof of Theorem 6. To establish our results it remains to prove Theorem 7.

Proof of Theorem 7
We start by recalling some facts from Hypothesis Testing.

We use the notation log(·) to denote the base 2 logarithms, i.e., log2(·) and for a probability dis-
tribution P , use the notation P (x) as a short for P (X = x). First let us recall two standard notions
of (pseudo) distances between probability distributions. Given two discrete distributions P0, P1 over a
probability space Ω with the same support, the total variation distance is defined as

TV (P0, P1) :=
1

2

∑
x∈Ω

|P0(x)− P1(x)|,

and the Kullback-Leibler divergence KL(P0, P1) is defined as

KL(P0, P1) :=
∑
x∈Ω

P0(x) log
P1(x)

P0(x)
.

The assumption that the support is the same is not necessary but it is sufficient for our purposes, and is
thus made for simplicity’s sake.

The following lemma shows that, when trying to discriminate between distributions P0, P1, the total
variation relates to the smallest error probability we can hope for.

Lemma 11 (Neyman-Pearson [17, Lemma 5.3 and Proposition 5.4]). Let P0, P1 be two distributions. Let
X ∈ Ω be a random variable of distribution either P0 or P1. Consider a (possibly probabilistic) mapping
f : Ω→ {0, 1} that attempts to “guess” whether the observation X was drawn from P0 (in which case it
outputs 0) or from P1 (in which case it outputs 1). Then, we have the following lower bound,

P0 (f(X) = 1) + P1 (f(X) = 0) ≥ 1− TV (P0, P1).

The total variation is related to the KL divergence by the following inequality.

Lemma 12 (Pinsker [17, Lemma 5.8]). For any two distributions P0, P1,

TV (P0, P1) ≤
√
KL (P0, P1).

We are now ready to prove the theorem.
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Proof of Theorem 7. Let us define Pη ( · ) = P ( · | “correct distribution is η”) for η ∈ {0, 1}. We denote
P

(≤t)
η , η ∈ {0, 1}, the two possible distributions of X(≤t). We refer to P (≤t)

0 as the distribution of type
0 and to P (≤t)

1 as the distribution of type 1. Furthermore, we define the correct type of a sequence of
observations X(≤t) to be 0 if the observations are sampled from P

(≤t)
0 , and to be 1 if they are sampled

from P
(≤t)
1 .

After t observations x(≤t) = (x(1), . . . , x(t)) we have to decide whether the distribution is of type 0
or 1. Our goal is to maximize the probability of guessing the type of the distribution, observing X(≤t),
which means that we want to minimize

P
(
f(X(≤t)) 6= “correct type”

)
=

∑
η∈{0,1}

Pη

(
f(X(≤t)) = 1− η

)
P (“correct type is η”) . (3)

Recall that the correct type is either 0 or 1 with probability 1
2 . Thus, the error probability described in

(3) becomes
1

2
P0

(
f(X(≤t)) = 1

)
+

1

2
P1

(
f(X(≤t)) = 0

)
. (4)

By combining Lemmas 11 and 12 with X = X(≤t) and Pη = P
(≤t)
η for η = 0, 1, we get the following

Theorem. Although for convenience we think of f as a deterministic function, it could in principle be
randomized (see A remark about random guess functions, in the Appendix).

Theorem 13. Let f be any guess function. Then

P0

(
f(X(≤t)) = 1

)
+ P1

(
f(X(≤t)) = 0

)
≥ 1−

√
KL

(
P

(≤t)
0 , P

(≤t)
1

)
.

Theorem 13 implies that for the probability of error to be small, it must be the case that the term
KL

(
P

(≤t)
0 , P

(≤t)
1

)
is large. Our next goal is therefore to show that in order to make this term large, t

must be large.
Note that P (≤T )

η for η ∈ {0, 1} cannot be written as the mere product of the marginal distributions
of the X(t)s, since the observations at different times may not necessarily be independent. Nevertheless,
we can still express the term KL(P

(≤T )
0 , P

(≤T )
1 ) as a sum, using the Chain Rule for KL divergence. It

yields

KL(P
(≤T )
0 , P

(≤T )
1 ) =

∑
t≤T

KL(P0(x(t) | x(<t)), P1(x(t) | x(<t))), (5)

where

KL(P0(x(t) | x(<t)), P1(x(t) | x(<t)))

:=
∑

x(<t)∈Σt−1

P0(x(<t))
∑
x(t)∈Σ

P0(x(t) | x(<t)) log
P0(x(t) | x(<t))

P1(x(t) | x(<t))
.

=
∑

x(<t)∈Σt−1

P0(x(<t))
∑
m∈Σ

P0(X
(t)
0 = m | x(<t)) log

P (X
(t)
0 = m | x(<t))

P (X
(t)
1 = m | x(<t))

. (6)

Since we are considering an instance of ACDT (ε, δ), we have

• dε(x(<t)) =
∑
m∈Σ |ε(m,x(<t))| ≤ ε, and

• for every m ∈ Σ such that ε(m,x(<t)) 6= 0, it holds that δ ≤ Pη(X
(t)
0 = m | x(<t)) for η ∈ {0, 1}.

We make use of the previous facts to upper bound the KL divergence terms in the right hand side of (6),
as follows (recall that we omit the dependency of p(<t) and ε(<t) on the past observations x(<T ) ∈ Σt−1,
in the interest of readability).

KL(P0(x(t) | x(<t)), P1(x(t) | x(<t)))

=
∑

x(<t)∈Σt−1

P0(x(<t))
∑
m∈Σ

(
P (X

(t)
0 = m | x(<t)) log

P (X
(t)
0 = m | x(<t))

P (X
(t)
0 = m | x(<t)) + ε(m,x(<t))

)

= −
∑
x(<t)

P0(x(<t))
∑
m∈Σ

(
P (X

(t)
0 = m | x(<t)) log

(
1 +

ε(m,x(<t))

P (X
(t)
0 = m | x(<t))

))
. (7)
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Recall that we assume
ε(m,x(<t))

P (X
(t)
0 = m | x(<t))

≤ ε(m,x(<t))

δ
≤ ε

δ
.

We make use of the following claim, which follows from the Taylor expansion of log(1 + u) around 0.
More details can be found in the Appendix, Proof of Claim 14.

Claim 14. Let x ∈ [−a, a] for some a ∈ (0, 1). Then |log(1 + x)− x+ x2/2| ≤ x3

3(1−a)3 .

Using Claim 14 with a = ε
δ , we can bound the inner sum appearing in (7) from above and below with

1

ln 2

∑
m∈Σ

(
ε(m,x(<t))− 1

2

(ε(m,x(<t)))2

P (X
(t)
0 = m | x(<t))

± δ3

3(δ − ε)3

(
(ε(m,x(<t)))3

P (X
(t)
0 = m | x(<t))2

))
. (8)

Since
∑
m|ε(m,x(<t))| ≤ ε, we also have that

∑
m (ε(m,x(<t)))2 ≤ ε2. The latter bound, together

with the fact that P (X
(t)
0 = m̃ | x(<t)) ≥ δ for any m̃ ∈ Σ such that ε(m̃, x(<t)) 6= 0, implies

∑
m

(ε(m,x(<t)))2

P (X
(t)
0 = m | x(<t))

≤ ε2

δ
. (9)

Finally, we can similarly bound the term
∑
m∈Σ

(
(ε(m,x(<t)))3/P (X

(t)
0 = m | x(<t))2

)
with

∑
m∈Σ

(
(ε(m,x(<t)))3/P (X

(t)
0 = m | x(<t))2

)
≤ ε3

δ2
. (10)

Recall that
∑
m ε(m,x

(<t)) = 0, thus the first term in (8) disappears. Hence, substituting the bounds
(9) and (10) in (8), we have

∑
m

P (X(t) = m|x(< t))

∣∣∣∣∣log

(
1 +

ε(m,x(<t))

P (X
(t)
0 = m | x(<t))

)∣∣∣∣∣
≤ 1

ln 2

(
1

2

ε2

δ
+

δε3

3(δ − ε)3

)
·
∑
m

P (X(t) = m|x(< t))

≤ 1

ln 2

(
1

2
+

δ2ε

3(δ − ε)3

)
ε2

δ
· 1. (11)

If we define the right hand side (11) to be W (ε, δ) and we substitute the previous bound in (7), we get

KL(P0(x(t) | x(<t)), P1(x(t) | x(<t))) ≤W (ε, δ),

and combining the previous bound with (5), we can finally conclude that for any integer T , we have

KL(P
(≤T )
0 , P

(≤T )
1 ) ≤ T ·W (ε, δ).

Thus, from Theorem 13 and the latter bound, it follows that the error under a uniform prior of the
source type, as defined in (4), is at least

1

2
P0

(
f(X(≤t)) = 1

)
+

1

2
P1

(
f(X(≤t)) = 0

)
≥ 1

2
− 1

2

√
KL(P

(≤T )
0 , P

(≤T )
1 ) ≥ 1

2
− 1

2

√
T ·W (ε, δ).

Hence, the number of samples T needs to be greater than

1

9

1

W (ε, δ)
=

ln 2

9

(
6(δ − ε)3

δ3 − δ2ε+ 3δε2 − ε3

)
δ

ε2
.

to allow the possibility that the error be less than 1/3.
In particular, if we assume that 10ε < δ, then we can bound

δ2ε

3(δ − ε)3
≤ δ3

10
· 1

3(9/10)3δ3
≤ 100

2187
.
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It follows that (11) can be bounded with

W (ε, δ) ≤ δ

ε2

1

ln 2

(
1

2
+

100

2187

)
≤ 0.79 ,

and so
1

9

1

W (ε, δ)
≥ 0.14 · δ

ε2
= Ω

(
δ

ε2

)
.

This completes the proof of Theorem 7 and hence of Theorem 6.

Detectable sources
In this section, we aim to prove the following.

Corollary 14.1. Consider the setting in which sources are reliably detectable. Assume that the relaxed

δ-uniform noise criterion is satisfied and let T =
(

n2δ
s2(1−δ|Σ|)2

)1/3

.

• Consider the sequential-PULL model. Assume that sT ≥ C log n, for a large enough constant C.
Any rumor spreading scheme cannot converge in less than Ω (T ) time steps.

• Let k be an integer. Assume that sT/k ≥ C log n, for a large enough constant C. Any rumor
spreading protocol in the parallel-PULL(k) model cannot converge in less than Ω(T/k) rounds.

Proof. Let us start with the first item of the corollary, namely the lower bound in the sequential-PULL
model. For any step t, let S(t) denote the set of sources together with the agents that have directly
observed at least one of the sources at some point up to time t. We have S = S(0) ⊆ S(1) ⊆ S(2) ⊆ . . ..
The size of the set S(t) is a random variable which is expected to grow at a moderate speed. Specifically,
letting s′ = 11

10 · s · T , we obtain:

Claim 15. With probability at least 1− n−10, we have |S(T )| ≤ s′.

Proof of Claim 15. The variable S(T ) may be written as a sum of indicator variables

S(T ) =

n∑
i=1

1(Agent i observed at least one source before step t)

≤
n∑
i=1

∑
r≤T

1(Agent i observes a source on step r).

This last expression is a sum of n ·T independent Bernoulli variables with parameter s/n. In other terms,
it is a binomial variable with probability s/n and T ·n trials. By a standard Chernoff bound the probability
that it deviates by a multiplicative factor 11

10 from its mean s · T is less than exp(−Ω(sT )) ≤ n−10. The
last bound holds because we assume sT ≥ C log n for some large enough constant C.

Denote by E the event that |S(t)| ≤ s′ for every t ≤ T . Using Claim 15, we know that P (E) ≥ 1−n−10.
Our next goal is to prove that the probability ρ that a given agent correctly guesses the correct opinion
is low for any given time t ≤ cT , where c is a small constant. For this purpose, we condition on the
highly likely event E . Removing this conditioning will amount to adding a negligible term (of order at
most n−10) to ρ.

In order to bound ρ, we would like to invoke Theorem 6 with the number of sources upper bounded
by s′. Let us explain why it applies in this context. To begin with, we may adversarially assume (from
the perspective of the lower bound) that all agents in S(t) learn the value of the correct bit to spread.
Thus, they essentially become “sources” themselves. In this case the number of sources varies with time,
but the proof of Theorem 6 can easily be shown to cover this case as long as s (i.e., s′ here) is an upper
bound on the number of sources at all times. We can therefore safely apply Theorem 6 with s′. By the
choice of T ,

T = Θ

(
n2δ

(s′)2(1− δ|Σ|)2

)
.

Hence, we can set c to be a sufficiently small constant such that for all times t ≤ cT , the probability of
guessing correctly, even in this adversarial scenario, is less than 1/3. In other words, we have ρ ≤ 1/3.
All together, this yields a lower bound of Ω(T ) on the convergence time.
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As for the parallel-PULL(k) model, the argument is similar. After T ′ = T/k parallel rounds, using
a similar claim as Claim 15, we have that with high probability, at most O(ksT ′) agents have directly
observed one of the s sources by time T ′. Applying Theorem 6 with s′′ = O(ksT ′) = O(sT ) yields a
lower bound (in terms of samples in the broadcast model) of

Θ

(
n2δ

(s′′)2(1− δ|Σ|)2

)
= Θ

(
n2δ

s2T 2(1− δ|Σ|)2

)
= Θ(T ).

The last line follows by choice of T . Hence T is a lower bound on the number of samples, which is
attained in T ′ rounds of parallel-PULL(k) model.
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Missing proofs

Proof of Claim 10
The proof of the Claim could be slightly shortened using the well-known fact that the l1 distance between
two probability distribution equals two times the total variation between them. We derive a proof from
first principles for completeness.

In general, define Σ+, Σ− and Σ= respectively as {m : P (m) > Q(m)}, {m : P (m) < Q(m)} and
{m : P (m) = Q(m)}. We have∑

m∈Σ

|P (m)−Q(m)| =
∑
m∈Σ+

(P (m)−Q(m)) +
∑
m∈Σ−

(Q(m)− P (m))

= P (Σ+)−Q(Σ+) +Q(Σ−)− P (Σ−)

= 1− P (Σ−)− P (Σ=)−Q(Σ+) + 1−Q(Σ+)−Q(Σ=)− P (Σ−)

= 2− 2P (Σ−)− 2Q(Σ+)− P (Σ=)−Q(Σ=).

Note that for any set S, Q(S) ≥ δ|S| using the fact that Q(m) ≥ δ for any m and similarly for P . Thus
the last line is bounded by 2− 2δ(|Σ=|+ |Σ−|+ |Σ=|) = 2(1− δ|Σ|).

This completes the proof of Claim 10.

A remark about random guess functions
In this section, we show that we may relax the guessing function f to be probabilistic. In other words,
allowing P (f(x̃(≤t)) = 1) = p for some x̃(≤t) and some probability 0 < p < 1, would not allow to reduce
further the value of (4). Indeed, if we consider a probabilistic f(x̃(≤t)) in (4), we could rewrite the latter
as a convex combination of deterministic guessing functions. To illustrate this, consider for example the
case in which f is random only on a particular input x̃(≤t), and define the two deterministic guessing
function

f1(x(≤t)) =

{
1 if x(≤t) = x̃(≤t),

f(x(≤t)) otherwise,
and f0(x(≤t)) =

{
0 if x(≤t) = x̃(≤t),

f(x(≤t)) otherwise.

From the above definition (and the law of total probability), it follows that

Pη

(
f(X(≤t)) = 1

)
= pPη

(
f1(X(≤t)) = 1

)
+ (1− p)Pη

(
f0(X(≤t)) = 1

)
for η ∈ {0, 1} ,

which means
1

2
P0

(
f(X(≤t)) = 1

)
+

1

2
P1

(
f(X(≤t)) = 0

)
=

1

2

(
pP0

(
f1(X(≤t)) = 1

)
+ (1− p)P0

(
f0(X(≤t)) = 1

))
+

1

2

(
pP1

(
f1(X(≤t)) = 0

)
+ (1− p)P1

(
f0(X(≤t)) = 0

))
.

The above calculation can be generalized to the case in which f is random on any subset of inputs
(possibly all). Thus, our results still hold for probabilistic guess functions. Informally, this means that
we can allow agents to take decisions by “flipping a coin”. We assume f to be deterministic for the sole
purpose of easing the presentation.

Proof of Claim 14
Using a Taylor expansion of log(1 + u) of order 3 around 0 and the Remainder Theorem, we obtain, for
any x ∈ [−a, a],

|log(1 + x)− x+ x2/2| ≤ x3

6
max

y∈[−a,a]
(log(1 + y))(3),

where f (3) for a function f stands for the third derivative of f . Since

(log(1 + y))(3) =
2

(1 + y)3
,

Claim 14 follows.
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