
HAL Id: hal-01848554
https://hal.science/hal-01848554v1

Submitted on 24 Jul 2018 (v1), last revised 20 Dec 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reachability for Two-Counter Machines with One Test
and One Reset

Alain Finkel, Jérôme Leroux, Grégoire Sutre

To cite this version:
Alain Finkel, Jérôme Leroux, Grégoire Sutre. Reachability for Two-Counter Machines with One
Test and One Reset. FSTTCS 2018 - 38th IARCS Annual Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science, Dec 2018, Ahmedabad, India. pp.31:1-31:14,
�10.4230/LIPIcs.FSTTCS.2018.31�. �hal-01848554v1�

https://hal.science/hal-01848554v1
https://hal.archives-ouvertes.fr


Reachability for Two-Counter Machines with One1

Test and One Reset2

Alain Finkel3

LSV, ENS Paris-Saclay, CNRS, Université Paris-Saclay, France4

alain.finkel@lsv.ens-paris-saclay.fr5

Jérôme Leroux6

LaBRI, Univ. Bordeaux, CNRS, Bordeaux-INP, Talence, France7

jerome.leroux@labri.fr8

Grégoire Sutre9

LaBRI, Univ. Bordeaux, CNRS, Bordeaux-INP, Talence, France10

gregoire.sutre@labri.fr11

Abstract12

We prove that the reachability relation of two-counter machines with one zero-test and one reset13

is Presburger-definable and effectively computable. Our proof is based on the introduction of two14

classes of Presburger-definable relations effectively stable by transitive closure. This approach15

generalizes and simplifies the existing different proofs and it solves an open problem introduced16

by Finkel and Sutre in 2000.17
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1 Introduction24

Context Vector addition systems with states (VASS) are equivalent to Petri nets and25

to counter machines without the ability to test counters for zero. Although VASS have26

been studied since the 1970’s, they remain fascinating since there are still some important27

open problems like the complexity of reachability (known between ExpSpace and cubic-28

Ackermannian) or even an efficient (in practice) algorithm to solve reachability. In 1979,29

Hopcroft and Pansiot [13] gave an algorithm that computes the Presburger-definable reach-30

ability set of a 2-dim VASS, hence VASS in dimension 2 are more easy to verify and they31

enjoy interesting properties like reachability and equivalence of reachability sets, for instance,32

are both decidable. Unfortunately, these results do not extend in dimension 3 or for 2-dim33

VASS with zero-tests on the two counters: the reachability set (hence also the reachability34

relation) is not Presburger-definable for 3-dim VASS [13] ; reachability, and all non-trivial35

problems, are undecidable for 2-dim VASS extended with zero-tests on the two counters.36

In 2004, Leroux and Sutre proved that the reachability relation of a 2-dim VASS is37

also effectively Presburger-definable [17] and this is not a consequence of the Presburger-38

definability of the reachability set. As a matter of fact, there exist counter machines with39

a Presburger-definable reachability set but with a non Presburger-definable reachability40
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XX:2 Reachability for Test/Reset Two-Counter Machines

Class Post∗ Pre∗ ∗−→

T1Tr2 ' T1,2 ' T1,2R1,2Tr1,2 Not Recursive Not Recursive Not Recursive
T1R2 ' T1R1,2Tr1 Eff. Presburger Eff. Presburger Eff. Presburger
R1,2Tr1 ' R1,2Tr1,2 Eff. Presburger Eff. Presburger Eff. Presburger

T1 ' T1R1Tr1 Eff. Presburger Eff. Presburger Eff. Presburger
2-dim VASS Eff. Presburger Eff. Presburger Eff. Presburger

Figure 1 Reachability sets (Post∗ and Pre∗) and reachability relation ( ∗−→) for extensions of
2-dimensional VASS. We let ' denote the existence of mutual reductions between two classes of
machines that preserve the effective Preburger-definability of the reachability sets and relation. The
contributions of this paper are indicated in boldface.

relation. But, for all recursive 2-dim extended VASSs, the reachability sets are Presburger-41

definable [11, 10]. More precisely, let us denote by TIRJTrK , with I, J,K ⊆ {1, 2}, the42

class of 2-dim VASS extended with zero-tests on the I-counters, resets on the J-counters43

and transfers from the K-counters. For instance, T{1}R{1,2}Tr∅, also written T1R1,2 for44

short, is the class of 2-dim VASS extended with zero-tests on the first counter, resets on both45

counters, and no transfer. The relations between classes from [11] are recalled in Figure 1 and46

the class T1R2 has been shown to be the “maximal” class having Presburger-definable post∗47

and pre∗ reachability sets [11]. However, it was unknown whether the Presburger-definable48

reachability set post∗ can be effectively computed or not. In fact, even the boundedness49

problem (is the reachability set post∗ finite?) was open for this class.50

Contributions Our main contribution is a proof that the reachability relation of counter51

machines in T1R2 is effectively Presburger-definable. The impact of our result is threefold.52

We solve the main open problem in [11] which was the question of the existence of53

an algorithm that computes the Presburger-definable reachability set for two-counter54

machines in T1R2.55

In fact, we prove a stronger result, namely that the reachability relation of counter machines56

in T1R2 is Presburger-definable and computable. This completes the decidability picture57

of 2-dim extended VASS.58

We provide a simple proof for the effective Presburger-definability of the reachability59

relation in T1R2. As an immediate consequence, one may deduce all existing results [11,60

10] for 2-dim extended VASS and our proof unifies all different existing proofs on 2-dim61

extended VASS, including the proof in [6] that the boundedness problem is decidable for62

the class R1,2 of 2-dim VASS extended with resets on both counters.63

Related work VASS have been extended with resets, transfers and zero-tests. Extended64

VASS with resets and transfers are well structured transition systems [9] hence termination65

and coverability are decidable; but reachability and boundedness are undecidable (except66

boundedness that is decidable for extended VASS with transfers) [5, 6]. Reachability and67

place-boundedness problems are decidable for extended VASS with one zero-test [19, 3, 8, 4].68

Recently, Akshay & al. studied extended Petri nets with a hierarchy on places and with69

resets, transfers and zero-tests [1]. As a counter is a particular case of a stack, it is natural70

to study counter machines with one stack. Termination and boundedness are decidable for71

VASS with one stack [16] but surprisingly, the decidability status of the reachability problem72

is open for VASS with one stack, both in arbitrary dimension and in dimension 1. We only73

know that reachability and coverability for VASS with one stack are Tower-hard [14, 15].74
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A

B

C

D

c1 ← c1 + 1

c1 == 0

c1 == 0

c2 ← 0

(c1, c2)← (c1 − 2, c2 + 1)

(c1, c2)← (c1 − 2, c2 + 4)

(c1, c2)← (c1 + 1, c2 − 1)

Figure 2 A 2-dimensional VASS extended with zero-tests on the first counter and resets on the
second counter (shortly called TRVASS).

Outline We present in Section 2 an example of 2-dim extended VASS in T1R2. This75

example motivates the study of two classes of binary relations on natural numbers, namely76

diagonal relations in Section 3 and horizontal relations in Section 4. These two classes of77

relations are combined in Section 5 into a new class of one counter automata with effectively78

Presburger-definable reachability relations. These automata are used in Section 6 to compute79

the reachability relations of 2-dim extended VASS in T1R2.80

For the remainder of the paper, 2-dim extended VASS in T1R2 are shortly called TRVASS.81

2 Motivating Example82

Figure 2 depicts an example of a TRVASS. There are four states A, B, C and D, and two83

counters c1 and c2. Following the standard semantics of vector addition systems, these84

counters range over natural numbers. The operations labeling the three loops and the edge85

from A to C are classical addition instructions of vector addition systems. In dimension 2,86

these addition instructions are always of the form (c1, c2)← (c1 + a1, c2 + a2) where a1 and87

a2 are integer constants. For instance, the instruction (c1, c2)← (c1 − 2, c2 + 1) labeling the88

loop on B means that c1 is decremented by 2 and at the same time c2 is incremented by 1.89

As the counters must remain nonnegative, this instruction may be executed (i.e., the loop on90

B may be taken) only if c1 ≥ 2. In addition to classical addition instructions, TRVASS may91

test the first counter for zero, written c1 == 0, and reset the second counter to zero, written92

c2 ← 0.93

The operational semantics of a TRVASS is given, as for vector addition systems, by an94

infinite directed graph whose nodes are called configurations and whose edges are called steps.95

Formal definitions will be given in Section 6. For the TRVASS of Figure 2, configurations96

are triples q(x1, x2) where q ∈ {A,B,C,D} is a state and x1, x2 ∈ N are values of the97

counters c1 and c2, respectively. It is understood that N denotes the set of natural numbers98

{0, 1, 2, . . .}. There is a step from a configuration p(x1, x2) to a configuration q(y1, y2),99

written p(x1, x2)→ q(y1, y2), if there is an edge from p to q labeled by an operation (1) that100

can be executed from the counter values (x1, x2) and (2) whose execution changes the counter101
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values from (x1, x2) to (y1, y2). Here, we have the steps B(5, 1)→ B(3, 2), C(0, 2)→ D(0, 2)102

and D(7, 3)→ A(7, 0). But there is no step from C(1, 2) and there is no step to A(7, 1).103

The reachability relation of a TRVASS, written ∗−→, is the reflexive-transitive closure of
the step relation →. The reachability relation is one of the main objects of interest for
verification purposes. Coming back to our example of Figure 2, we have A(1, 0) ∗−→ A(2, 0)
since we have the following contiguous sequence of steps:

A(1, 0)→ C(2, 0)→ C(0, 4)→ D(0, 4)→ D(1, 3)→ D(2, 2)→ A(2, 0)

By removing the steps → D(1, 3)→ D(2, 2), we also get that A(1, 0) ∗−→ A(0, 0). In fact, it
can be shown that A(1, 0) ∗−→ A(y, 0) for every y ∈ N, thanks to the following pattern, where
k denotes an odd natural number and i ∈ {1, 2}:

A(k, 0)→ C(k + 1, 0) ∗−→ D(2k + 2, 0) ∗−→ D(k + i, k + 2− i) ∗−→ A(k + i, 0)

One may wonder whether it also holds that A(x, 0) ∗−→ A(y, 0) for every x, y ∈ N. A104

consequence of our main result (see Theorem 14) is that we can do even better: we can105

compute the set of pairs (x, y) ∈ N×N such that A(x, 0) ∗−→ A(y, 0), as a formula in Presburger106

arithmetic1.107

I Remark. It is well-known that zero-tests are more expressive than resets. Indeed, a reset108

c1 ← 0 can be simulated by a loop c1 ← c1 − 1 followed by a zero-test c1 == 0. A crucial109

difference between resets and zero-tests is monotony. In a 2-dimensional VASS extended with110

resets on both counters (shortly called RRVASS), larger counter values are always better,111

in the sense that every behavior from a configuration q(x1, x2) can be reproduced from a112

configuration q(x′1, x′2) with x′1 ≥ x1 and x′2 ≥ x2. This is not true anymore in presence113

of zero-tests. This difference makes the analysis of TRVASS more complex than that of114

RRVASS, as illustrated in the following example. J115

I Example 1. Consider the RRVASS obtained from the TRVASS of Figure 2 by replacing
the two zero-tests (from B to D and from C to D) with resets c1 ← 0. Suppose that we want
to show that c1 is unbounded in state A from A(1, 0), i.e., A(1, 0) ∗−→ A(y, 0) for infinitely
many y ∈ N. A natural strategy is, starting from A(x, 0) with x ≥ 1, to reach D(0, y) with y
as large as possible (without visiting A on the way), and then to reach A(y, 0) by taking the
“transfer” loop on D as much as possible. By iterating this strategy, we get

A(1, 0) ∗−→ D(0, 4) ∗−→ A(4, 0) ∗−→ D(0, 8) ∗−→ A(8, 0) ∗−→ D(0, 16) ∗−→ A(16, 0) · · ·

This witnesses that c1 is unbounded in state A from A(1, 0). In comparison, this strategy
does not work for the original TRVASS of Figure 2. Indeed, we get

A(1, 0) ∗−→ D(0, 4) ∗−→ A(4, 0) ∗−→ D(0, 2) ∗−→ A(2, 0) ∗−→ D(0, 1) ∗−→ A(1, 0)

by following this strategy. This is because the only way to reach D from a configuration116

A(x, 0) with x even is via B. J117

The rest of the paper is devoted to the proof that the reachability relation of a TRVASS118

is effectively Presburger-definable, i.e., there is an algorithm that, given a TRVASS and two119

states p and q, computes a formula ϕ(x1, x2, y1, y2) in Presburger arithmetic whose models120

1 Recall that Presburger arithmetic [18] is the first-order theory of the natural numbers with addition.
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are precisely the quadruples (x1, x2, y1, y2) of natural numbers such that p(x1, x2) ∗−→ q(y1, y2).121

It is already known that the reachability relation is effectively Presburger-definable in absence122

of zero-tests and resets [17]. Obviously, the counter c1 is zero after a zero-test c1 == 0123

and, similarly, the counter c2 is zero after a reset c2 ← 0. So we focus on the reachability124

subrelations between configurations where at least one of the counters is zero, for instance,125

{(x, 0, 0, y) | p(x, 0) ∗−→ q(0, y)}. Such a subrelation can be seen as a (binary) relation on N.126

This motivates our study in Sections 3 and 4 of two classes of relations on N that naturally127

stem from the operational semantics of TRVASS.128

3 Diagonal Relations129

We call a relation R ⊆ N× N diagonal when (x, y) ∈ R implies (x+ c, y + c) ∈ R for every130

c ∈ N. For instance, the identity relation on N, namely {(x, x) | x ∈ N}, is a diagonal relation.131

The usual order ≤ on natural numbers is also a diagonal relation. It is readily seen that the132

class of diagonal relations is closed under union, intersection, composition, and transitive133

closure. In this section, we show that the transitive closure of a diagonal Presburger-definable134

relation is effectively Presburger-definable. Our study of diagonal relations is motivated by135

the following observation.136

I Remark. The reachability subrelations {(x, y) | p(0, x) ∗−→ q(0, y)}, where p and q are137

states, are diagonal in a TRVASS with no reset. Analogously, the reachability subrelations138

{(x, y) | p(x, 0) ∗−→ q(y, 0)} are diagonal in a TRVASS with no zero-test. J139

I Example 2. Let us consider the diagonal relation R ⊆ N × N defined by (x, y) ∈ R if,140

and only if, the Presburger formula x ≤ y ∧ y ≤ 2x holds. It is routinely checked that141

the transitive closure R+ of R satisfies (x, y) ∈ R+ if, and only if, the Presburger formula142

(x = 0⇔ y = 0) ∧ x ≤ y holds. J143

We fix, for the remainder of this section, a diagonal relation R ⊆ N× N. Consider the
subsets IR and DR of N defined by

IR
def= {x | ∃y : (x, y) ∈ R ∧ x < y} DR

def= {y | ∃x : (x, y) ∈ R ∧ x > y}

Since R is diagonal, the sets IR and DR are upward-closed, meaning that x ∈ IR implies144

x′ ∈ IR for every x′ ≥ x (and similarly for DR). If x ∈ IR then (x, x + δ) ∈ R for some145

positive integer δ > 0. Since R is diagonal, (x′, x′ + δ) ∈ R for every x′ ≥ x. So the pair146

(x, x+ δ) can be viewed as an “increasing loop” that applies to every x′ ≥ x. Similarly, if147

y ∈ DR then there is a “decreasing loop” (y + δ, y) ∈ R that applies to every y′ ≥ y. We are148

mostly interested in increasing and decreasing loops that apply to every element of IR and149

DR, respectively. This leads us to the following definitions:150

α
def=

{
min{δ > 0 | ∀x ∈ IR : (x, x+ δ) ∈ R} if IR 6= ∅
0 otherwise

(1)151

β
def=

{
min{δ > 0 | ∀y ∈ DR : (y + δ, y) ∈ R} if DR 6= ∅
0 otherwise

(2)152

153

Let us explain why the natural numbers α and β are well-defined. If IR 6= ∅ then there154

exists δ > 0 such that (m,m + δ) ∈ R where m = min IR. It follows from diagonality155

of R that (x, x + δ) ∈ R for every x ≥ m, hence, for every x ∈ IR. Therefore the set156
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{δ > 0 | ∀x ∈ IR : (x, x + δ) ∈ R} is non-empty, and so it has a minimum. A similar157

argument shows that {δ > 0 | ∀y ∈ DR : (y + δ, y) ∈ R} is non-empty when DR 6= ∅.158

We are now almost ready to provide a characterization of the transitive closure of R+.159

To do so, we introduce the relations IncR and DecR on N defined by160

IncR(x, y) def= (x = y) ∨ (x ∈ IR ∧ ∃h ∈ N : y = x+ hα)161

DecR(x, y) def= (x = y) ∨ (y ∈ DR ∧ ∃k ∈ N : x = y + kβ)162
163

We let # denote relational composition (S # R def= {(x, z) | ∃y : xS y R z}). The powers of a164

relation R are inductively defined by R1 def= R and Rn+1 def= R #Rn.165

I Lemma 3. It holds that R+ = IncR # (R ∪ · · · ∪Rα+β+1) # DecR.166

Proof. We introduce the relation C = IncR # (R ∪ · · · ∪ Rα+β+1) # DecR, so as to reduce167

clutter. To prove that C ⊆ R+, we show that IncR and DecR are both contained in R∗. Let168

(x, y) ∈ IncR. If x = y then (x, y) ∈ R∗. Otherwise, x ∈ IR and there exists h ∈ N such that169

y = x+ hα. Moreover, h and α are positive as x 6= y. It follows from x ∈ IR and α > 0 that170

(x, x+α) ∈ R. Since R is diagonal, we derive that (x, x+α), . . . , (x+(h−1)α, x+hα) are all171

in R. Hence, (x, y) ∈ R+. We have shown that IncR ⊆ R∗. Now let (x, y) ∈ DecR. If x = y172

then (x, y) ∈ R∗. Otherwise, y ∈ DR and there exists k ∈ N such that x = y+ kβ. Moreover,173

k and β are positive as x 6= y. It follows from y ∈ DR and β > 0 that (y + β, y) ∈ R.174

Since R is diagonal, we derive that (y + kβ, y + (k − 1)β), . . . , (y + β, y) are all in R. Hence,175

(x, y) ∈ R+. We have shown that DecR ⊆ R∗. We derive from IncR ⊆ R∗ and DecR ⊆ R∗176

that C ⊆ R+.177

Let us now prove the converse inclusion R+ ⊆ C. We first observe that IncR = Inc∗R178

and DecR = Dec∗R. These equalities easily follow from the definitions of IncR and DecR. As179

a consequence, we get that180

C = Inc∗R # (R ∪ · · · ∪Rα+β+1) # Dec∗R (3)181

Let us prove by induction on n that Rn ⊆ C for all n ≥ 1. The base cases n = 1, . . . , α+β+1
are trivial. Assume that Rm ⊆ C for all 1 ≤ m < n, where n ≥ α+ β + 2, and let us show
that this inclusion also holds for m = n. Let (x, y) ∈ Rn. There exists x0, . . . , xn such that
x = x0Rx1R · · ·Rxn = y. We start by showing the two following properties, as they will
be crucial for the rest of the proof.

x 6∈ IR =⇒ x0 ≥ x1 ≥ · · · ≥ xn and y 6∈ DR =⇒ x0 ≤ x1 ≤ · · · ≤ xn

We prove these properties by contraposition. If xi < xi+1 for some 0 ≤ i < n, then we may,182

w.l.o.g., choose the first such i. This entails that x0 ≥ · · · ≥ xi. Moreover, xi ∈ IR since183

xi < xi+1 and xiRxi+1. It follows that x = x0 ∈ IR as IR is upward-closed. Similarly, if184

xi−1 > xi for some 0 < i ≤ n, then we may, w.l.o.g., choose the last such i. This entails185

that xi ≤ · · · ≤ xn. Moreover, xi ∈ DR since xi−1 > xi and xi−1Rxi. It follows that186

y = xn ∈ DR as DR is upward-closed.187

To prove that (x, y) ∈ C, we consider four cases, depending on the membership of x in188

IR and on the membership of y in DR.189

If x 6∈ IR and y 6∈ DR then x0 = x1 = · · · = xn. This means in particular that x0Rxn,190

hence, x = x0 C xn = y.191

If x 6∈ IR and y ∈ DR then x0 ≥ x1 ≥ · · · ≥ xn. Note that β > 0 since DR is non-empty.192

Since n ≥ β, there exists 0 ≤ i < j ≤ n and k ∈ N such that xi = xj + kβ. Recall193
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that x = x0R
i xi and xj Rn−j xn = y. As R is diagonal, we derive that xiRn−j y′ where194

y′ = y+kβ. We obtain that xRn+i−j y′. It follows from the induction hypothesis that xC y′.195

Moreover, we have (y′, y) ∈ DecR since y ∈ DR and y′ = y + kβ. Hence, x (C # DecR) y and196

we derive from Equation 3 that xC y.197

If x ∈ IR and y 6∈ DR then x0 ≤ x1 ≤ · · · ≤ xn. Note that α > 0 since IR is non-empty.198

Since n ≥ α, there exists 0 ≤ i < j ≤ n and h ∈ N such that xj = xi + hα. Recall that199

x = x0R
i xi and xj Rn−j xn = y. As R is diagonal, we derive that x′Ri xj where x′ = x+hα.200

We obtain that x′Rn+i−j y. It follows from the induction hypothesis that x′ C y. Moreover,201

we have (x, x′) ∈ IncR since x ∈ IR and x′ = x+ hα. Hence, x (IncR # C) y and we derive202

from Equation 3 that xC y.203

If x ∈ IR and y ∈ DR then both α and β are positive. Since n ≥ α, there exists204

0 ≤ i < j ≤ n such that xi ≡ xj (mod α). If xi ≤ xj then xj = xi + hα for some h ∈ N and205

we may proceed as in the case x ∈ IR ∧ y 6∈ DR to show that xC y. Otherwise, xi = xj + kα206

for some k ∈ N. Recall that x = x0R
i xi and xj R

n−j xn = y. As R is diagonal, we207

derive that x′Ri z′Rn−j y′ where x′ = x+ kα(β − 1), z′ = xi + kα(β − 1) = xj + kαβ and208

y′ = y + kαβ. We obtain that x′Rn+i−j y′. It follows from the induction hypothesis that209

x′ C y′. Moreover, we have (x, x′) ∈ IncR since x ∈ IR and x′ = x+ kα(β − 1), and we also210

have (y′, y) ∈ DecR since y ∈ DR and y′ = y + kαβ. Hence, x (IncR # C # DecR) y and we211

derive from Equation 3 that xC y. J212

We derive the following theorem.213

I Theorem 4. The transitive closure of a diagonal Presburger-definable relation is effectively214

Presburger-definable.215

Proof. Assume that ϕR(x, y) is a Presburger formula denoting a diagonal relation R. The216

sets IR and DR are defined by the Presburger formulas ∃y : ϕR(x, y) ∧ x < y and ∃x :217

ϕR(x, y) ∧ x > y, respectively. The natural numbers α and β defined in Equations 1 and 2218

are obviously computable from ϕR. So the characterization given in Lemma 3 immediately219

provides a computable Presburger formula denoting R+. J220

4 Horizontal Relations221

A relation R ⊆ N× N is said to be horizontal if (x, y) ∈ R implies (x+ c, y) ∈ R for every222

c ∈ N. The class of horizontal relations is clearly stable by union, intersection, composition,223

and transitive closure. In this section we prove that the transitive closure of a horizontal224

Presburger-definable relation is effectively Presburger-definable. Our study of horizontal225

relations is motivated by the following observation.226

I Remark. The reachability subrelations {(x, y) | p(0, x) ∗−→ c2←0−−−→ ∗−→ q(y, 0)}, where p and q227

are states, are horizontal in a TRVASS. J228

I Example 5. Let us consider the following horizontal relation R:

R
def= {(x, y) | 2y ≤ x ∨ (y ∈ 4N ∧ y ≤ 2x+ 2)}

We prove that R+ is equal to C def= {(x, y) | x = 0 ⇒ y = 0} as follows. Since R ⊆ C and229

C is transitive, we get R+ ⊆ C. Conversely, let (x, y) ∈ C. If x = 0 then y = 0 and from230

(0, 0) ∈ R we derive (x, y) ∈ R+. So, we can assume that x ≥ 1. In that case (x, 4) ∈ R and231

(4z, 4(z+ 1)) ∈ R for every z > 0. It follows that (x, n) ∈ R+ for every n ∈ 4 + 4N. Moreover,232

there exists such an n satisfying 2y ≤ n. For such an n, we have (x, n) ∈ R+ and (n, y) ∈ R.233

We deduce that (x, y) ∈ R+. It follows that R+ = C. J234
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The effective Presburger-definability of the transitive closure comes from the following235

characterization.236

I Lemma 6. For every horizontal relation R we have:237

R+ = {(x, y) | ∃z : (z, y) ∈ R ∧ ∀u : x ≤ u < z ⇒ ∃v : (u, v) ∈ R ∧ u < v} (4)238

Proof. Assume first that (x, y) ∈ R+. There exists a sequence x0, . . . xk such that x =239

x0Rx1 . . . R xk = y with k ≥ 1. Let z = xk−1 and let us prove that for every u ∈240

{x, . . . , z − 1} there exists v > u such that (u, v) ∈ R. If z ≤ x we are done. So we can241

assume that z > x. Since x0 ≤ u, there exists a maximal j ∈ {1, . . . , k} such that xj−1 ≤ u.242

Let v = xj and observe that (u, v) ∈ R. Since xk−1 = z > u, it follows that j < k and by243

maximality of j we deduce that xj > u. Therefore v > u.244

Conversely, let us consider (x, y) ∈ N× N such that there exists z satisfying (z, y) ∈ R245

and such that for every u ∈ {x, . . . , z − 1} there exists v > u such that (u, v) ∈ R. Notice246

that there exists a sequence x0 < · · · < xk with k ≥ 0 such that x = x0Rx1 . . . R xk ≥ z. It247

follows that (x, xk) ∈ R∗. Moreover, since (z, y) ∈ R, z ≤ xk, and R is horizontal we deduce248

that (xk, y) ∈ R. It follows that (x, y) ∈ R+. J249

The previous lemma shows that the transitive closure of a horizontal relation R denoted250

by a Presburger formula ϕR is denoted by the Presburger formula obtained from (4) by251

replacing (z, y) ∈ R and (u, v) ∈ R by ϕR(z, y) and ϕR(u, v) respectively. We have proved252

the following theorem.253

I Theorem 7. The transitive closure of a horizontal Presburger-definable relation is effectively254

Presburger-definable.255

5 Presburger Automata256

We exhibit in this section a general class of one counter automata with effectively Presburger-257

definable reachability relations. These automata will be used in the next section to compute258

the reachability relations of TRVASS.259

A Presburger automaton is a pair P = (Q,∆) where Q is a finite set of states, and ∆260

is a finite set of transitions (p,R, q) where p, q ∈ Q and R ⊆ N × N is a relation denoted261

by a Presburger formula (which is left implicit). A configuration is a pair (q, x) ∈ Q × N,262

also written as q(x) in the sequel. The one-step relation →P is the binary relation over263

configurations defined by p(x)→P q(y) if there exists (p,R, q) ∈ ∆ such that (x, y) ∈ R. The264

reachability relation ∗−→P is defined as the reflexive-transitive closure of →P .265

I Remark. The reflexive-transitive closure R∗ of a Presburger-definable relation R ⊆ N× N266

need not be Presburger-definable, in general. For instance, if R = {(x, y) ∈ N× N | y = 2x}267

then R∗ is the relation {(x, y) ∈ N × N | ∃k ∈ N : y = 2kx}, which is not definable in268

Presburger arithmetic. Worse, a simple reduction from the halting problem for Minsky269

machines shows that membership of a pair (x, y) in R∗ is undecidable (where R is a270

Presburger-definable relation given as input along with x and y). J271

A consequence of the above remark is that the reachability problem for Presburger272

automata is undecidable, even if we restrict ourselves to Presburger automata with a single273

state and a single transition. This comes from the fact that transitions can use arbitrary274

Presburger-definable relations. We will exhibit a subclass of Presburger automata with275

effectively Presburger-definable reachability relations (hence, with a decidable reachability276
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problem) by limiting the expressive power of the transitions occurring on cycles. We say that277

a transition (p,R, q) is diagonal if R is diagonal, horizontal if R is horizontal, and ordinary278

if it is neither diagonal nor horizontal. Note that a relation on N may be both diagonal279

and horizontal, for instance {(x, y) ∈ N × N | y ≤ 2x}. A cycle is non-empty sequence of280

transitions (p1, R1, q1), . . . , (pn, Rn, qn) such that qn = p1 and qi = pi+1 for all 1 ≤ i < n.281

I Lemma 8. Let P be a Presburger automaton. If every cycle of P contains only diagonal282

transitions then ∗−→P is effectively Presburger-definable.283

Proof. We first observe that ∗−→P is effectively Presburger-definable when P = (Q,∆) is284

a Presburger automaton whose transitions are all diagonal. Indeed, we may view P as a285

finite-state automaton over the finite alphabet {R | (p,R, q) ∈ ∆}. For every states p and q,286

we may compute a regular expression denoting the language accepted by P with initial state p287

and final state q. The obvious evaluation of this regular expression (concatenation · becomes288

relational composition #, sum + becomes union ∪, and star ? becomes reflexive-transitive289

closure ∗) yields the relation {(x, y) | p(x) ∗−→P q(y)}. This evaluation is computable because290

Presburger-definable diagonal relations are effectively closed under union, composition and291

reflexive-transitive closure (as an immediate consequence of Theorem 4). We have shown292

that ∗−→P is effectively Presburger-definable when all transitions of P are diagonal.293

We now prove the lemma. Let P = (Q,∆) be a Presburger automaton such that every
cycle of P contains only diagonal transitions. Let N be the Presburger automaton obtained
from P by keeping only diagonal transitions. Consider two configurations p(x) and q(y). It
is readily seen that p(x) ∗−→P q(y) if, and only if, there exists 1 ≤ k ≤ |Q|, s1, . . . , sk ∈ Q and
x1, y1, . . . , xk, yk ∈ N such that p(x) = s1(x1), sk(yk) = q(y) and

s1(x1) ∗−→P s1(y1)→P s2(x2) ∗−→P s2(y2) · · · sk−1(yk−1)→P sk(xk) ∗−→P sk(yk)

Observe that for every state s ∈ Q and for every x, y ∈ N, s(x) ∗−→P s(y) if, and only if,294

s(x) ∗−→N s(y). Moreover, ∗−→N is effectively Presburger-definable since all transitions of N295

are diagonal. We derive from the above characterization of ∗−→P that ∗−→P is also effectively296

Presburger-definable. J297

We say that a Presburger automaton P is shallow if every cycle that contains an ordinary298

transition also contains a horizontal transition. Shallowness of Presburger automata is299

decidable. This follows from two easy observations. Firstly, diagonality and horizontality of300

Presburger-definable relations on N are decidable, since these properties can be expressed in301

Presburger arithmetic. Secondly, a Presburger automaton is shallow if, and only if, every302

simple cycle containing an ordinary transition also contains a horizontal transition. We now303

show the main result of this section.304

I Theorem 9. The reachability relation of a shallow Presburger automaton is effectively305

Presburger-definable.306

Proof. By induction on the number of horizontal transitions. The base case follows from
Lemma 8. Indeed, if P is a shallow Presburger automaton with no horizontal transition then
every cycle of P contains only diagonal transitions. Assume that the theorem holds for every
shallow Presburger automaton with n horizontal transitions, where n ∈ N. Let P = (Q,∆)
be a Presburger automaton with n+ 1 horizontal transitions. Pick a horizontal transition
(p,R, q) ∈ ∆ and let N be the Presburger automaton obtained from P by removing the
transition (p,R, q). Let S denote the reachability relation from q to p in N , namely the
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relation S = {(y, x) | q(y) ∗−→N p(x)}. It is readily seen that, for every configurations s(x)
and t(y) of P , s(x) ∗−→P t(y) if, and only if, s(x) ∗−→N t(y) or there exists x′, y′ ∈ N such that

s(x) ∗−→N p(x′) ∧ (x′, y′) ∈ ((R # S)∗ #R) ∧ q(y′) ∗−→N t(y)

By induction hypothesis, the relation ∗−→N is effectively Presburger-definable, and so is R # S.307

Moreover, R # S is horizontal since R is horizontal. It follows from Theorem 7 that (R # S)∗308

is effectively Presburger-definable. We derive from the above characterization of ∗−→P that309
∗−→P is also effectively Presburger-definable. J310

I Remark. The notions of diagonal relations, horizontal relations and Presburger automata311

are extended to larger dimensions in the obvious way. A relation R ⊆ Nd × Nd is diagonal312

(resp. horizontal) if (x,y) ∈ R implies (x + c,y + c) ∈ R (resp. (x + c,y) ∈ R) for every313

c ∈ Nd. But Theorem 9 does not extend to larger dimensions, even if we restrict ourselves314

to Presburger automata with a single state and a single transition. In fact, the reflexive-315

transitive closure of a Presburger-definable relation that is diagonal (resp. horizontal) need316

not be Presburger-definable. Consider the relation R ⊆ N2 ×N2 defined by (x1, x2)R (y1, y2)317

if, and only if, the Presburger formula y1 ≤ 2x1 ∧ y2 < x2 holds. The relation R is both318

diagonal and horizontal. It is routinely checked that the reflexive-transitive closure R∗ is the319

set of pairs ((x1, x2), (y1, y2)) ∈ N2 × N2 such that y1 ≤ 2x2−y2x1 and y2 ≤ x2, which is not320

definable in Presburger arithmetic. J321

6 Reachability Relations of TRVASS322

A TRVASS is a 2-dimensional vector addition system with states (2-dim VASS) such that
the first counter can be tested for zero and the second one can be reseted to zero. Formally,
a TRVASS is a triple V = (Q,Σ,∆) where Q is a finite set of states, Σ ⊆ Z2 ∪ {T,R} is
a finite set of actions, and ∆ ⊆ Q × Σ × Q is a finite set of transitions. A configuration
of V is a triple (q, x1, x2) ∈ Q× N× N written as q(x1, x2) in the sequel. The operational
semantics of V is given by the binary relations a−→V over configurations, with a ∈ Σ, defined
by p(x1, x2) a−→V q(y1, y2) if (p, a, q) ∈ ∆ and

(y1, y2) = (x1 + a1, x2 + a2) if a = (a1, a2) ∈ Z2

(y1, y2) = (0, x2) ∧ x1 = 0 if a = T

(y1, y2) = (x1, 0) if a = R

Given a word w = a1 . . . ak of actions aj ∈ Σ, we denote by w−→V the binary relation over323

configurations defined as the relational composition a1−→V # · · · # ak−→V . The relation ε−→V324

denotes the identity relation on configurations. Given a subset W ⊆ Σ∗, we let W−→V denote325

the union
⋃
w∈W

w−→V . The relation Σ∗

−−→V , also written ∗−→V , is called the reachability relation326

of V . Observe that ∗−→V is the reflexive-transitive closure of the step relation→V
def=

⋃
a∈Σ

a−→V .327

The remainder of this section is devoted to the proof that TRVASS have effectively328

Presburger-definable reachability relations. Let us fix a TRVASS V = (Q,Σ,∆). We let A329

denote the set Σ ∩ Z2 of addition vectors.330

The reachability relation of V can be expressed in terms of the reachability relation of
a Presburger automaton by observing that configurations reachable just after a zero-test
T or a reset R are restricted to q(0, n) or q(n, 0), respectively, where q ∈ Q and n ∈ N.
Those configurations are parametrized by introducing the set S = {qT , qR | q ∈ Q} obtained
as two disjoint copies of Q. Elements in {qT | q ∈ Q} are called test states, and those in
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{qR | q ∈ Q} are called reset states. Given s ∈ S and n ∈ N, we introduce the configuration
Js, nK in Q× N2 defined as follows:

Js, nK def=
{
q(0, n) if s = qT

q(n, 0) if s = qR

We also introduce, for each pair (s, t) ∈ S × S, the binary relation Rs,t defined by

Rs,t
def= {(m,n) ∈ N× N | Js,mK A∗X−−−→V Jt, nK}

where X = T if t is a test state and X = R if t is a reset state. It is known that the331

reachability relation of a 2-dim VASS is effectively Presburger-definable [17, 2]. This entails332

that the relation A∗

−−→V is effectively Presburger-definable, and it follows that the relations333

Rs,t are also effectively Presburger-definable. We introduce the Presburger automaton P334

with set of states S and set of transitions {(s,Rs,t, t) | (s, t) ∈ S × S}. Note that P is335

computable from V.336

AR DT

n ≤ m

(m ∈ 2N ∧ n = m
2 ) ∨ (m 6∈ 2N ∧ n = 2(m + 1))

Figure 3 The Presburger automaton P associated to the TRVASS of Figure 2.

I Example 10. Let us come back to the TRVASS of Figure 2. The relations Rs,t are all empty337

except for RAR,DT and RDT ,AR . The corresponding automaton P is depicted in Figure 3.338

Each transition (s,Rs,t, t) is depicted by an edge from s to t labeled by a Presburger formula339

ϕs,t(m,n) denoting the relation Rs,t. The empty relations (which are both diagonal and340

horizontal) and the states not in {AR, DT } are not depicted. Notice that the transition from341

AR to DT is ordinary and the one from DT to AR is horizontal. It follows that P is shallow.342

We observe that the horizontal relation R defined as the composition RDT ,AR #RAR,DT is343

the one introduced in Example 5. J344

We first show that the Presburger automaton P is shallow. By Theorem 9, this will entail345

that its reachability relation ∗−→P is effectively Presburger-definable.346

I Lemma 11. The Presburger automaton P is shallow.347

Proof. It is readily seen that P satisfies the following properties:348

Transitions from reset states to reset states are diagonal,349

Transitions from test states to reset states are horizontal,350

Transitions from test states to test states are diagonal.351

It follows that an ordinary transition of P is a transition from a reset state to a test state. If352

a cycle contains such a transition then it must contain a transition from a test state to a353

reset state as well. Since such a transition is horizontal, we obtain that P is shallow. J354

The two following lemmas show how to decompose the reachability relation of V in terms355

of the reachability relation of P.356

I Lemma 12. For every s, t ∈ S and m,n ∈ N, if s(m) ∗−→P t(n) then Js,mK ∗−→V Jt, nK.357
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Proof. It is easily seen that s(m)→P t(n) implies Js,mK ∗−→V Jt, nK, for every s, t ∈ S and358

m,n ∈ N. We derive, by an immediate induction on k ≥ 1, that s(m) (→P)k t(n) implies359

Js,mK ∗−→V Jt, nK, for every s, t ∈ S and m,n ∈ N. The lemma follows. J360

I Lemma 13. Consider two configurations p(x1, x2) and q(y1, y2) of V. It holds that
p(x1, x2) Σ∗\A∗

−−−−→V q(y1, y2) if, and only if, there exist s, t ∈ S and m,n ∈ N such that:

p(x1, x2) A∗{T,R}−−−−−−→V Js,mK ∧ s(m) ∗−→P t(n) ∧ Jt, nK A∗

−−→V q(y1, y2)

Proof. Lemma 12 shows the “if” direction of the equivalence. For the other direction, let
w ∈ Σ∗\A∗ such that p(x1, x2) w−→V q(y1, y2). By splitting w after each occurrence of an
action in {T,R}, we deduce that w = w0X1 . . . wk−1Xkwk where k ≥ 1, and w0, . . . , wk ∈ A∗.
Let us introduce the configurations c1, . . . , ck satisfying the following relations:

p(x1, x2) w0X1−−−→V c1 · · ·
wk−1Xk−−−−−→V ck

wk−−→V q(y1, y2)

Notice that cj = JqXj

j , njK for some qj ∈ Q and some nj ∈ N. By definition of P, we get361

q
Xj−1
j−1 (nj−1)→P q

Xj

j (nj) for every j ∈ {1, . . . , k}. We have proved the lemma. J362

We deduce our main result.363

I Theorem 14. The reachability relation of a TRVASS is effectively Presburger-definable.364

Proof. Lemma 13 shows that p(x1, x2) ∗−→V q(y1, y2) if, and only if, p(x1, x2) A∗

−−→V q(y1, y2)
or there exists s, t ∈ S and m,n ∈ N such that:

p(x1, x2) A∗{T,R}−−−−−−→V Js,mK ∧ s(m) ∗−→P t(n) ∧ Jt, nK A∗

−−→V q(y1, y2)

From [17, 2], the relation A∗

−−→V is effectively Presburger-definable. From Lemma 11 and365

Theorem 9, the relation ∗−→P is effectively Presburger-definable as well. J366

Coming back to the classes of 2-dim extended VASS discussed in the introduction (see367

Figure 1), Theorem 14 means that the reachability relation is effectively Presburger-definable368

for the “maximal” class T1R2. This result also applies to 2-dim VASS extended with resets369

and transfers on both counters (i.e., the class R1,2Tr1,2), since they can be simulated by370

machines in T1R2.371

7 Conclusion and open problems372

We have shown that the reachability relation of 2-dim VASS extended with tests on the first373

counter and resets on the second counter, is effectively Presburger-definable. This completes374

the decidability picture of 2-dim extended VASS initiated in [11]. Our proof techniques may375

also be used for other classes of counter machines where shallow Presburger automata would376

naturally appear. Many other problems on extensions of VASS are still interesting to solve.377

The reachability problem is NP-complete [12] for 1-dim VASS, PSpace-complete [2] for378

2-dim VASS, and NL-complete [7] for unary 2-dim VASS. But we do not know what are379

the complexities for the reachability problem, for the construction of the reachability set380

and for the reachability relation for all 2-dim extended VASS.381

The boundedness problem is undecidable for 3-dim VASS extended with resets on all382

counters [5] and it is decidable for arbitrary dimension VASS extended with resets on383

two counters [6]. Is boundedness decidable for arbitrary dimension TRVASS ?384
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