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Abstract

The aim of this paper is to use the methods and results of symplec-
tic homogenization (see [V4]) to prove existence of periodic orbits and
invariant measures with rotation number depending on the differential
of the Homogenized Hamiltonian.
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1 Introduction

The symplectic theory of Homogenization, set up in [V4], associates to each
Hamiltonian H(t, q, p) on T ∗T n a homogenized Hamiltonian, H(p), such that
Hk(t, q, p) = H(kt, kq, p) γ-converges to H(p), where the metric γ has been
defined in previous works 1. In other words if we denote by ϕt the flow associ-
ated to the Hamiltonian H, and by ϕt the flow of H(p) – defined in the com-

pletion D̂H (T ∗T n) of the group of Hamiltonian diffeomorphisms of T ∗T n

for the metric γ – then ϕt is the γ-limit of ρ−1k ϕktρk where ρk(q, p) = (kq, p)
and ϕt is the flow of the Hamiltonian vector field associated to H. The goal
of this paper is to draw some dynamical consequences of the homogenization
theorem, to prove existence of certain trajectories of the flow ϕt and then of
invariant measures. We also apply this to the Conley conjecture on T ∗T n.
Symplectic Homogenization may be summarized as the following heuristic
statement

Symplectic Homogenization Principle: The value of any variational
problem associated to Hk will converge to the value of the same variational
problem associated to H.

While the above sentence is vague and does not claim to be a mathemat-
ical statement, we hope it carries sufficient meaning for the reader to help
him understand the substance of the method used in the present paper.

1see [V1], and the related Hofer metric in [Ho]. See also [Hu] for the study of this
metric and its completion mentioned further.
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Notations: We denote by ϕ the time-one flow ϕ1, by Φt the lift of
ϕt to the universal cover R2n of T ∗T n. The action of a trajectory γ(t) =
(q(t), p(t)) = ϕt(q(0), p(0)) defined on [0, 1] is

A(γ) =

∫ 1

0

p(t)q̇(t)−H(t, q(t), p(t))]dt

The average action for a solution defined on [0, T ] is

AT (γ) =
1

T

∫ T

0

p(t)q̇(t)−H(t, q(t), p(t))]dt

Our goal is to prove the following theorems. The Clarke subdifferential
∂CH(p) will be defined in section 8.1 (see [Clarke 1]).

Theorem 1.1. Let H(t, q, p) be a compact supported Hamiltonian in S1 ×
T ∗T n, and denote by H(p) its homogenization defined in [V4]. Let α ∈
∂CH(p). Then there exists, for k large enough, a solution of ϕk(qk, pk) =
(qk + kαk, p

′
k) (with limk αk = α) and average action

Ak =
1

k

∫ k

0

[γ∗kλ−H(t, γk(t))]dt

where γk(t) = ϕt(qk, pk). Moreover as k goes to infinity Ak converges to

lim
k
Ak = 〈p, α〉 −H(p)

Therefore for each α ∈ ∂CH(p) there exists an invariant measure µα with
rotation number α and average action

A(µα)
def
=

∫
T ∗Tn

[p
∂H

∂p
(q, p)−H(q, p)]dµα = 〈p, α〉 −H(p).

First of all, remember that a measure is invariant if (ϕ1)∗(µ) = µ. Of
course the Liouville measure ωn is invariant, and since ϕ is compact sup-
ported, we may truncate ωn to χ(|p|) ·ωn, where χ(r) equals 1 if the support
of ϕ is contained in {(q, p) | |p| ≤ r}. This gives a large family of invariant
measures. However, as explained in [Ma], page 176, the rotation number of
such a measure is the element of H1(T

n,R) given by duality by the map

ρ(µ) :H1(T n,R) −→ R

λ −→
∫
T ∗Tn
〈λ(q),

∂H

∂p
〉dµ =

∫
T ∗Tn

n∑
j=1

λj
∂H

∂pj
dµ
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But for µ = χ(|p|)ωn, using Stoke’s formula, and the fact that the support
of H is contained in {(q, p) | χ(|p|) = 1}, we have∫

T ∗Tn
〈λ(q),

∂H

∂p
〉ωn =

∫
T ∗Tn

n∑
j=1

∂

∂pj
(λj(q)H(q, p))ωn = 0

since H is compact supported. Therefore ρ(ωn) = 0.
Moreover the average action of this measure is given by∫

T ∗Tn
[p
∂H

∂p
(q, p)−H(q, p)]ωn =∫

T ∗Tn

[(
n∑
j=1

∂

∂pj
(pjH(q, p))

)
− (n+ 1)H(q, p)

]
ωn = −(n+ 1) Cal(ϕ)

where Cal(ϕ) is the Calabi invariant of ϕ. We shall see that this is at most one
of the many invariant measures we find. Indeed, if α = 0, A(µ0) = −H(p0),
where p0 is a critical point of H. If H(p0) 6= −(n + 1) Cal(ϕ), a generic
property, none of the measures given by the main theorem is of the form
χ(p)ωn. Otherwise, at most one of them, µ0 is of the form χ(p)ωn.

We shall also need to define ∂CH(p) since as we pointed out in [V4], we
cannot hope that H is better than C0,1. It is thus important to figure out
the set ∂H(p) when H is not differentiable at p. Remember also that H
coincides with Mather’s α function when H is strictly convex in p (see [V4],
section 13.1), but in this case the set of values of ∂CH(p) as p describes Rn is
the whole of Rn, so we get any rotation number, as expected from standard
Aubry-Mather theory (see [Ma]). This may be generalized to

Corollary 1.2. Let H(t, q, p) be a coercive Hamiltonian on T ∗T n. Then H
is coercive, so that for any α ∈ Rn, we may find an invariant measure for
the flow, with rotation number α.

The main idea of the proof is to formulate the existence of intersection
points in Φk({q0} × Rn) ∩ ({q0 + kα} × Rn) as a variational problem and
apply our heuristic principle – i.e. that a variational problem involving Hk

must converge to the variational problem involving H.
Another consequence of our methods will be

Theorem 1.3. Let us assume H(t, q, p) is a compact supported Hamiltonian
on T ∗T n.

(a). Assume H 6≡ 0. Then there exists infinitely many distinct non-contractible
periodic orbits for ϕ1
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(b). Assume H ≡ 0. Then there exists infinitely many geometrically distinct
contractible periodic orbits for ϕ1 contained in the support of H, and
moreover there exists a constant C such that

#{x ∈ supp(H) | ∃k ∈ [1, N ] | ϕk(x) = x} ≥ CN

Note that both cases: non-existence of contractible non-trivial periodic
orbits (think of the geodesic flow for the flat metric) and non-existence of non-
contractible ones (for example if supp(H) is contractible) are possible. Our
result could be considered a generalization of the main result in [BPS], where
the first statement is proved under the assumption that H is bounded from
below on a certain Lagrangian submanifold. But this assumption implies,
according to [V4] that H is nonzero.

The Conley’s conjecture proved by N. Hingston on T 2n and on more gen-
eral manifolds by V. Ginzburg (see [Hi], [Gi]) yields existence of infinitely
many contractible periodic orbits for a Hamiltonian on (M,ω). For La-
grangian systems in the cotangent bundle of a compact manifold, the anal-
ogous statement was proved by Y. Long and G.Lu ([L-L]) for the torus and
by G.Lu ([Lu]) in the general case (see also [A-F], and [Mazz]).

Remark 1.4. If ϕt(x) is an orbit of period k, we denote by ν(x, ϕ) the vector
obtained by considering the q component of 1

k
(Φk(q, p)−(q, p)) ∈ 1

k
Z2n. Then

if H 6= 0, we shall prove that the set of limit sets of ν(x, ϕ) as x belongs to
the set of k-periodic orbits is a subset Ω(ϕ1) ⊂ Rn of non-empty interior.

A final comment is in order. In the convex case, Aubry-Mather theory
makes two Claims:

(a). existence of the invariant measure with given rotation number

(b). the support of this invariant measure is a Lipschitz graph over the base
of the cotangent bundle

While we believe that the present work gives the right extension of the first
statement to non-convex situations (for the moment only in T ∗T n and not
in a general cotangent bundle, see however [Vic1] for cotangent bundles and
[Bi] for general symplectic manifolds), we say nothing close to the second
statement. Of course starting from a convex Hamiltonian and applying a
conjugation by a symplectic map, the support of the invariant measure will
be the image by the conjugating map of a Lipschitz graph, and obviously
this will not be -in general - a graph. However other statements could make
sense. One plausible conjecture is to look at the action of ϕt over L̂, the
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Humilière completion of the set L of Lagrangians submanifolds for the γ-
metric. Indeed, the group of Hamiltonian diffeomorphisms acts on this set
(since a Hamiltonian diffeomorphism acts as an isometry for γ, over L, hence

acts over its completion). If there is an element L, in L̂ fixed by ϕt, then
L is not a Lagrangian, but uL(x) is a continous function, well-defined, and
Lipschitz, hence differentiable a.e. The set of points (x, duL(x)) where uL is
differentiable may then be invariant by the flow ϕt. Note that the approach
in this paper is very far from this conjecture, since we obtain the invariant
measure as a limit of measures supported on trajectories, and there is no
obvious way to make this into an element in L̂.

2 Aubry-Mather theory for non-convex Hamil-

tonians

Proof of theorem 1.1. 2

Remember that H(p) is the limit of hk(p) where hk(p) = c(µq ⊗ 1p,Γk),
where

Γk = {(q, Pk(q, p), p− Pk(q, p), Qk(q, p)− q) | ϕk(q, p) = (Qk(q, p), Pk(q, p))}

and ϕk = ρ−1k ϕkρk and Γk is a Lagrangian submanifold in T ∗(T n×Rn). Note
that if Sk(q, P, ξ) is a G.F.Q.I. for Γk ⊂ T ∗(T n × Rn), hk(p) is by definition
the critical value associated to class µq of (q, P ) 7→ Sk(q, P, ξ) (see [V4]). If
the selector hk is smooth at P , i.e. there is a smooth map P 7→ (q(P ), ξ(P ))
such that

∂Sk
∂q

(q(P ), P, ξ(P )) = 0 =
∂Sk
∂ξ

(q(P ), P, ξ(P ))

and S(q(P ), P, ξ(P )) = hk(P ), we have

αk = dhk(P ) =
∂Sk
∂P

(q(P ), P, ξ(P ))

so that the point of Γk corresponding to (q(P ), P, ξ(P )) is (q(P ), P, 0, αk),
which translates into ϕk(q(P ), P ) = (q(P ) + αk, P ), hence ϕk(k · q(P ), P ) =
(k · q(P ) +k ·αk, P ), and the trajectory γk = {ϕkt(q(P ), P ) | t ∈ [0, 1]} yields
a normalized measure µk, such that |(Φ1)∗(µk)− µk| ≤ 2

k
.

Now in general hk and H are not smooth at P . However if αk ∈ ∂Chk(pk),
we have that (αk, pk) belongs to C̃onvx(Γk) (see lemma 8.3 for the definition

2The original version of this paper, from 2010 had a more complicated proof for 1.1,
which relied on Theorem 3.1.
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of C̃onvx(Γk) and the proof of the statement), which means that there are αjk
such that (qj(pk), pk, 0, α

j
k) ∈ Γk and αk is in the convex hull of the αjk. That

is ϕk(k · qj(pk), pk) = (k · qj(pk) + k · αjk, pk). Note that by Caratheodory’s
theorem, we may limit ourselves to 1 ≤ j ≤ n+ 1, and taking subsequences,
we can assume that if α = limk αk we have αj = limk α

j
k, and α is in the

convex hull of the αj.
Now setting γjk = {ϕkt(qj(P ), P ) | t ∈ [0, 1]}, the 1

k
[γjk] converge as mea-

sures to the probability measure µj, with rotation number αj and action
〈p∞, αj〉−H(p∞), so the action of the convex hull of these measures contains
a measure with rotation number α and action 〈p∞, α〉 −H(p∞).

3 Strong convergence in Symplectic homog-

enization

The goal of this section is to improve the convergence result of [V4]. Remem-
ber that we defined the sequence ϕk = ρ−1k ϕkρk where ρk(q, p) = (k · q, p).
Note that ρ−1k is not well-defined, but ϕk is well defined if ϕ is Hamiltonianly
isotopic to the identity, as the unique solution of ρkϕk = ϕkρk obtained by
continuation starting from ϕ = ϕk = Id.

Indeed instead of γ-convergence, we shall prove the following result that
we call h-convergence (h stands for homological) and prove that

Theorem 3.1. Let a < b be real numbers, L1, L2 be lagrangian submani-
folds Hamiltonianly isotopic to the zero section. There is a sequence (εk)k≥1
converging to zero, and maps

ia,bk : FH∗(ϕk(L1), L2; a, b) −→ FH∗(ϕ(L1), L2; a+ εk, b+ εk)

and

ja,bk : FH∗(ϕ(L1), L2; a, b) −→ FH∗(ϕk(L1), L2; a+ εk, b+ εk)

such that in the limit of k going to infinity

ia+εk,b+εkk ◦ ja,bk : FH∗(ϕ(L); a, b) −→ FH∗(ϕ(L); a+ 2εk, b+ 2εk)

converges to the identity as k goes to infinity. Moreover the maps ia,bk , ja,bk
are natural, that is the following diagrams are commutative for a < b, c < d
satisfying a < c, b < d
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FH∗(ϕk(L1), L2; c, d)

��

ic,dk // FH∗(ϕ(L1), L2; c+ εk, d+ εk)

��
FH∗(ϕk(L1), L2; a, b)

ia,bk // FH∗(ϕ(L1), L2; a+ εk, b+ εk)

FH∗(ϕ(L), c, d)

��

jc,dk // FH∗(ϕk(L), c+ εk, d+ εk)

��
FH∗(ϕ(L), a, b)

ja,bk // FH∗(ϕk(L1), L2; a+ εk, b+ εk)

where the vertical maps are the natural maps.

Remarks 3.2. (a). ϕ(L) is not a Lagrangian, it is an element in the com-

pletion L̂ for the γ-metric of the set L of Lagrangians Hamiltonianly
isotopic to the zero section. We must prove that FH∗(ϕ(L); a, b) makes
sense in this situation. This was already noticed in [V2], and we shall
be more precise about that in section 4.

(b). The results in [V4] imply that ϕk × Id γ-converges to ϕ × Id, so if L
is the graph of a Hamiltonian map, ψ, we get that the result in the
proposition still holds with ϕk(L) and ϕ(L) replaced by ϕkψ and ϕψ.

To prove Theorem 3.1, we shall use Lisa Traynor’s version of Floer ho-
mology as Generating function homology (see [Tr], and [V3] for the proof of
the isomorphism between Floer and Generating Homology). We will in fact
compare the relative homology of generating functions corresponding to ϕ(L)
and ϕk(L). For this we need to consider as in [V4] for S1(x, η1), S2(x, η2),
GFQI respectively for L1 and L2, and Fk(x, y, ξ) a GFQI for ϕk. This means
that ϕk is determined by

ϕk

(
x+

∂Fk
∂y

(x, y, ξ), y

)
=

(
x, y +

∂Fk
∂x

(x, y, ξ)

)
⇔ ∂Fk

∂ξ
(x, y, ξ) = 0

and

Gk(x; y, u, ξ, η) = S1(u; η) + Fk(x, y, ξ) + 〈y, x− u〉 − S2(x, η2)

a generating function of ϕk(L1) − L2. Similarly if hk(y) = c(µx ⊗ 1(y), Fk)
and ϕk the flow of the integrable Hamiltonian hk. we have the following
“generating function” of ϕk(L1)− L2

Gk(u;x, y, η) = S1(u; η1) + hk(y) + 〈y, x− u〉 − S2(x, η2)

Remember from [V4] that the sequence (hk)k≥1 C
0-converges to H.

First of all we have
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Definition 3.3.

Fk(x, y; ξ) =
1

k

[
S(kx, p1) +

k−1∑
j=2

S(kqj, pj) + S(kqk, y)

]
+ B̂k(x, y, ξ)− 〈y, x〉 =

1

k

[
S(kx, p1) +

k−1∑
j=2

S(kqj, pj) + S(kqk, y)

]
+Bk(x, y, ξ)

where
B̂k(q1, pk; p1, q2, · · · , qk−1, pk−1, qk) =

and Bk(x, y, ξ) = B̂k(x, y, ξ) − 〈y, x〉. We then set hk(y) = c(µx, Fk,y) =
c(µx ⊗ 1(y), Fk) where Fk,y = Fk(x, y; ξ).

Lemma 3.4. Let Γ be a cycle in H∗(G
b

k, G
a

k). Then there is a sequence εk of
positive numbers converging to 0 such that there exists a cycle

Γ×Y C−

where C− =
⋃
y C
−(y) where C−(y) is a cycle homologous to T nx ×{y}×E−k

such that
Fk(x, y, ξ) ≤ hk(y) + aχjδ(y) + εk

whenever (x, y, ξ) ∈ C−.

Proof. The proof of the lemma follows the lines of the proof of proposition
5.13 in [V4]. Let Fk(u, y; ξ) be a GFQI for Φk, and Sj(u; ηj) a GFQI for Lj,
so that

Gk(x;u, y, ξ, η) = S1(u; η1) + Fk(x, y; ξ) + 〈y, x− u〉 − S2(x, η2)

is a GFQI for Φk(L1)− L2, and similarly for

Gk(x;u, y, η) = S1(u; η1) + hk(y) + 〈y, x− u〉 − S2(x; η2)

a GFQI for Φk the time-one flow for hk(y), where hk(y) = c(µx ⊗ 1(y), Fk),
and limk hk(y) = H(y) by assumption.

Since hk(y) = c(µx⊗1(y), Fk), this means there exists a cycle C−(y) with
[C−(y)] = [T nx × E−k ] in H∗(F

∞
k,y, F

−∞
k,y ), and

hk(y)− ε ≤ sup
(x,ξ)∈C−(y)

Fk(x, y, ξ) ≤ hk(y) + ε

Assume first, as we did in [V4] that we can choose the map y −→ C−(y)
to be continuous. Set C− =

⋃
y{y}×C−(y). Let then Γ be cycle representing

a nonzero class in H∗(G
b

k, G
a

k), and consider the cycle

Γ×Y C̃− = {(x, u, y, ξ, η) | (x, ξ) ∈ C−(y), (x, u, y, η) ∈ Γ}

9



Then
Gk(Γ×Y C−) ≤ b+ ε

and since ∂(Γ×Y C−) = ∂Γ×Y C−, we have

Gk(∂Γ×Y C−) ≤ a+ ε

so that Γ ×Y C− represents a homology class in H∗(G
b+ε
k , Ga+ε

k ). We must

now prove that if Γ is a nonzero class in H∗(G
b

k , G
a

k ) for k large enough, then
[Γ ×Y C−] is nonzero in H∗(G

b+ε
k , Ga+ε

k ). Indeed, denoting by f≥λ the set

{x | f(x) ≥ λ}, let Γ′ be a cycle in H∗(G
≥a
k , G

≥b
k ) such that Γ′ · Γ = k 6= 0.

Such a cycle exists by Alexander duality. Let C+(y) be such that [C+(y)] =
[pt× E+

k ] so that C−(y) · C+(y) = {pt} and such that

inf{Fk(u, y, ξ) | (u, ξ) ∈ C+(y)} ≥ hk(y)− ε

We assume again that C+(y) depends continuously on y.
Then

[Γ′ ×Y C+] · [Γ×Y C−] = [(Γ′ · Γ)×Y (C+ ∩ C−)] = {pt} × {pt} 6= 0

And since Γ′×Y C+ ⊂ G≥ak and ∂(Γ′×Y C+) = (∂Γ′×Y C+) ⊂ G≥bk we get
that there is a class inH∗(G

≥a
k , G≥bk ) such that it has nonzero intersection with

the class [Γ×Y C−] in H∗((G
b+ε
k , Ga+ε

k ). This implies that H∗((G
b+ε
k , Ga+ε

k ) 6=
0. This argument holds provided the cycles C±(y) can be chosen to depend
continuously on y, which is not usually the case. So our argument must be
modified as we did in [V4]. Here is a detailed proof. As in [V4] we need the

Lemma 3.5. Let F (u, x) be a smooth function on V × X such that there
exists f ∈ C0(V,R) such that for each u ∈ V , there exists a cycle C(u) ⊂
{u} × V representing a fixed class in H∗(X) with F (u,C(u)) ≤ f(u). Then
for any ε > 0 there is a δ > 0 so that for any subset U in V , such that each
connected component of V \ U has diameter less than δ, there exists a cycle

C̃ in H∗(V × X) and a constant a, depending only on F , such that if we

denote by C̃(u) the slice C̃ ∩π−1(u) (π : V ×X −→ X is the first projection)

we have [C̃(u)] = [C(u)] in H∗(X) and

F (u, C̃(u)) ≤ f(u) + aχU(u) + ε

Proof. Continuity of F implies that if we take C̃(u) to be locally constant in
V \ U , the inequality F (u, x) ≤ f(u) + ε will be satisifed for (u, x) ∈ {u} ×
C(u0), where u, u0 are close enough. Assume first that V is one dimensional,
so that we take for V \U a union of simplices, and for U the neighbourhood
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of 0-dimensional faces (i.e. vertices). Assume C̃ is defined over u ∈ Tj,

and denote by C̃j(u) the set C̃ ∩ π−1(u), where the Tj are edges, but do not
coincide on the intersections, for example on T1∩T2. However on u0 ∈ T1∩T2,
we have that C̃1(u0) 6= C̃1(u0) while [C̃1(u0)] = [C̃2(u0)] in H∗(X). We then

write C̃1(u0)− C̃2(u0) = ∂C1,2(u0) where F (u0, C̃1,2(u0)) ≤ a1 We now repeat
this procedure on any adjacent pair of edges, and write

C̃ =
⋃
u∈Tj

C̃j(u)
⋃

i 6=j,u∈Ti∩Tj

C̃i,j(u)

Clearly C̃ ∩ π−1(u) = C̃(u) for a generic u, and F (u, C̃(u)) ≤ f(u) + a1.
In the general case, we start with the top dimensional simplices, and argue
by induction on the dimension of the simplices.

We thus return to our original problem, and consider C̃ but now the
inequality

hk(y)− ε ≤ sup
(u,ξ)∈C−(y)

Fk(u, y, ξ) ≤ hk(y) + ε

only holds outside a set U2δ, where Uδ in a neighborhood of a fine grid in Rn,
while we have the general bound∣∣∣∣∣ sup

(u,ξ)∈C−(y)

Fk(u, y, ξ)− hk(y)

∣∣∣∣∣ ≤ aχδ(y) + ε

where χδ is 1 in Uδ and vanishes outside U2δ.
Now we consider ` different such continuous families, corresponding to

function χδj , such that their supports U δ
j have no more than n+ 1 nonempty

intersections.
We can then use Fk to write a generating function for Φ`k(L1)− L2 (see

[V4]):

G`,k(x1; v, x, y, ξ, η) =

S1(u, η1) +
1

`

∑̀
j=1

Fk(`xj, yj, ξj) +Q`(x, y) + 〈y` − v, u− x1〉 − S2(x1, η2)

where

Q`(x, y) = Q`(x1, yk; y1, x2, · · · , x`−1, y`−1, x`) =
`−1∑
j=1

〈yj−yj+1, xj−xj+1〉+〈y`, x1〉

11



We then consider

G`,k(x1, u;x, y, η) =

S1(u, η1) +
1

`

∑̀
j=1

(hk(yj) + aχδj(yj)) +Q`(x, y) + 〈y` − v, u− x1〉 − S2(x1, η2)

From now on we shall assume ε << b− a. Let Γ be a cycle in a nonzero

homology class in H∗(G
b

`,k, G
a

`,k), and consider the cycle

(Γ×Y C−[`]) =
{

(u;x, y, ξ, η1, η2) | (u, x, y, η) ∈ Γ, (`xj, ξj) ∈ C̃−j (yj)
}
.

It is contained in Gb+ε
`,k , and its boundary is in Ga+ε

`,k . It thus represents a

class in H∗(G
b+ε
`,k , G

a+ε
`,k ).

We still have to identify the limit as k goes to infinity of H∗(G
b

`,k, G
a

`,k)

with H∗(G
b
, G

a
).

Let

Kδ
`,k =

1

`

(∑̀
j=1

hk(y) + akχ
δ
j(y)

)
.

be a Hamiltonian with flow Ψk,`,δ. Clearly G`,k is a generating function for
Ψk,`,δ(L1)− L2.

Now at most (n+ 1) of the supports of χδj intersect, so that

|Kδ
`,k(y)− hk(y)| ≤ A

`

and this difference goes to zero as ` goes to infinity and since hk(y) converges
to H(y), thus for k, ` large enough, we have

|Kδ
`,k(y)−H(y)| ≤ εk,`

This classically implies ([V2], proposition 1.1 and Remark 1.2) that the map

FH∗(Φ(L1), L2; a, b) −→ FH∗(Ψ`,k,δ(L1), L2; a+ ε, b+ ε) ' H∗(G
b+ε

`,k , G
a+ε

`,k )

is an isomorphism in the limit ε −→ 0, so we finally get a map

FH∗(Φ(L1), L2, a, b) −→ H∗(G
b+ε

`,k , G
a+ε

`,k ) ' FH∗(Φk`(L1), L2; a+ ε, b+ ε)

12



This concludes the construction3 of ja,bk .
Now the same argument can be carried out replacing ϕ by ϕ−1 and ex-

changing L1 and L2. Note that by Poincaré duality

FH∗(ϕ−1k (L2), L1; a, b) ' FH∗(L2, ϕk(L1); a, b) ' FH−∗(ϕk(L1), L2;−b,−a)

One may check directly that the Floer complex associated to (L2, ϕ(L1))
is the same as the one associated to (ϕ(L1), L2) but the action filtration has
the opposite sign, the indices also change sign, and the differential is reversed:
the coefficients of 〈δx, y〉 now become those of 〈δ∗y, x〉: in other words we
replace the matrix of the coboundary operator by its adjoint.

From the above construction, we have a map from

`a,bk : FH∗((ϕ)−1(L2), L1;−b,−a) −→ FH∗(ϕ−1k (L2), L1;−b+ εk,−a+ εk)

Note that here we use the fact that ϕ−1 = (ϕ)−1, or equivalently −H =
−H, a crucial point proved in [V4], proposition 5.14. The above map is in
fact a map

`a,bk : FH−∗(ϕ(L1), L2; a, b) −→ FH−∗(ϕk(L1), L2; a− εk, b− εk)

Now we have the non degenerate Poincaré duality

FH∗(Λ1,Λ2; a, b)⊗ FH−∗(Λ1,Λ2; a, b) −→ Z

and we have for u, v ∈ FH−∗(ϕ(L1), L2; a, b) the identity 〈ja,bk (u), `a,bk (v)〉 =

〈u, v〉 and setting ia,bk = (`a,bk )∗ we have

ja+εk,b+εkk ◦ ia,bk : FH∗(ϕ−1(L); a, b) −→ FH∗(ϕ(L); a+ 2εk, b+ 2εk)

converging to the identity as k goes to +∞.

Remark 3.6. In terms of barcodes (see [Z-C, PolShel, LNV]), this means that
the barcodes of ϕ1

k converge to the barcode of ϕ1.

3To be honest the construction is only made for a sequence going to infinity, but an
argument similar to the argument in [V4], lemma 5.10 proves that any subsequence will
have the same limit.
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4 Floer cohomology for C0 integrable Hamil-

tonians

Let H(p) be a smooth integrable Hamiltonian. Then the corresponding
flow is (q, p) 7→ (q + t∇H(p), p). If we consider its graph {(q, p,Q, P ) |
(Q,P ) = ϕ1(q, p)} and its image by (q, p,Q, P ) 7→ (q, PP − p, q − Q) is
ΓH = {(q, p, 0,∇H(p))} and has S(x, y) = H(y) as generating function (with
no fibre variable). In the following proposition, we refer to Appendix 8 for
the definitions of ∂C and ds.

Proposition 4.1. If α ∈ dsH(p) and c = H(p), we have

FH∗(ΓHα , 0Tn×Rn ; c+ ε, c− ε) 6= 0

Proof. Indeed, since S(x, y) = H(y) is a generating function for ΓH , we
have that Sα(x, y) = H(y) − 〈y, α〉 is a generating function for ΓHα . So we
have FH∗(ΓHα , 0Tn×Rn ; c + ε, c− ε) = H∗(Hc+ε

α , Hc−ε
α ). By definition this is

non-zero if α ∈ dsH(p).

Let u ∈ Rn and set Λu = {(x, y,X, Y ) | X = 0, Y = u}. Now let
fu,C(x, y) = 〈u, y〉χ( y

C
) where χ(y) = 1 for |y| ≤ 1, and vanishes for |y| ≥ 2.

Then
∂fu,C
∂x

(x, y) = 0 and
∂fu,C
∂y

(x, y)) = u for |y| ≤ C, so H̃u(y) = H(y) −
fu,C(x, y) coincides with Hu in {(x, y, ξ, η) | |y| ≤ C}

Λ̃u = {(x, y, ∂fu,C
∂x

(x, y),
∂fu,C
∂y

(x, y)) | (x, y) ∈ T n × Rn}

coincides with Λu in {(x, y, ξ, η) | |y| ≤ C}, so Λu ∩ ΓH = Λ̃u ∩ ΓH , provided
the Lipschitz constant of H is less than C. The following is a consequence
of the above remarks :

Corollary 4.2. If u ∈ Rn is such that u ∈ dsH(p), then

FH∗(ΓH ,Λu, c+ε, c−ε) = FH∗(ΓH , Λ̃u, c+ε, c−ε) = FH∗(ΓHu , 0Tn×Rn ; c+ε, c−ε) 6= 0

5 A proof of the weak Conley conjecture on

T ∗T n.

Proof. Let us consider now the case of periodic orbits and prove Theorem 1.3.
Let α be a rational vector. We write α = u

v
with u ∈ Zn, v ∈ N∗ mutually

prime. We need to find fixed points of Φkv−ku that will yield periodic orbits
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of Φ of period kv and rotation number u
v
. This is equivalent to finding fixed

points of ρ−1k Φkvρk − u = Φv
k − u.

If Γvk is the graph of Φv
k that is

Γvk = (q, Pk(q, p), Pk(q, p)− p, q −Qk(q, p)) | (Qk, Pk) = Φv
k(q, p)}

and we look the points in Γvk ∩Λu where Λu = {(x, y,X, Y ) | X = 0, Y =
u}, as before, fu,C(x, y) = 〈u, y〉χ( y

C
) where χ = 1 for |y| ≤ 1, and vanishes

for |y| ≥ 2, and

Λ̃u = {(x, y, ∂fu,C
∂x

(x, y),
∂fu,C
∂y

(x, y)) | (x, y) ∈ T n × Rn}

We claim that for C large enough, Γvk ∩ Λ̃u ⊂ Γvk ∩ Λu ∪ 0Tn×Rn . Indeed,

Λu and Λ̃u coincide in {(x, y,X, Y ) | |y| ≤ C}, but outside this set, Γvk
coincides with the zero section. There are actually two types of points in
(Λ̃u−Λu)∩Γvk the ones with action 0, the other with action Au,C = fu,C(yu,C)
where f ′u,C(yu,C) = 0 and yu,C is a non-trivial critical point of fu,C . Note that
setting F = fu,1 we have fu,C(y) = kCF ( y

C
). So, f ′u,C(y) = kF ′( y

C
) and

yk,C = Cz where z is a non-trivial critical point of F , and fu,C(yu,C) =
kCF (z). Thus if fu,C(yk,C) 6= 0 we have that for C large enough, the critical
value is outside any given interval.

Now since Γvk
c−→ Γ

v
, where Γ

v
is the graph of Φ

v
in the γ-completion L̂,

and provided we have FH∗(Γ
v
, Λ̃u, c − ε, c + ε) 6= 0, according to Theorem

3.1, this implies for k large enough FH∗(Γvk, Λ̃u, c − ε, c + ε) 6= 0 and as we

saw that FH∗(Γk, Λ̃u, c− ε, c+ ε) = FH∗(Γvk,Λu, c− ε, c+ ε) we have a fixed
point with action in [c− ε, c+ ε]. Now

FH∗(Γ
v
, Λ̃u, a, b) = H∗(v ·H(y)− fu,C(x, y); a, b) =

= H∗(v ·Hu/v; a, b) = H∗(Hu/v,
a

v
,
b

v
)

whereHu(y) = H(y)−〈u, y〉, henceH∗(Hu/v; c/v−ε, c/v+ε) 6= 0 is equivalent
to the existence of p such that dsH(p) = u/v and Hu(y) = c/v according to
Appendix 8.

Let us now consider a Hamiltonian H and let H be the homogenized
Hamiltonian. We refer to [V1] for the defintion of the capacities c±. Assume
first that H = 0, this means in particular that limk

1
k
c±(ϕk) = 0. But since

c+(ϕ) = c−(ϕ) = 0 if and only if ϕ = Id, there is an infinite sequence of k such
that either c+(ϕk) > 0 or c−(ϕk) < 0. Replacing ϕ by ϕ−1 we may always
assume we are in the first case. Then the fixed point xk corresponding to
c+(ϕk) is such that its action, A(xk, ϕ

k) = c+(ϕk). In case xk is the fixed point
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of ϕ, we get that A(xk, ϕ
k) = k · A(xk, ϕ). More generally if x = xpj = xpk

we get 1
pj
A(x, ϕpj) = 1

pk
A(x, ϕpk), so 1

pj
c+(ϕpj) = 1

pk
c+(ϕpk), but since the

sequence 1
k
c±(ϕk) is positive and converges to zero, it is non constant and

takes infinitely many values. Thus, there are infinitely many fixed points. In
particular, we may as in [V1] (prop 4.13, page 701) show that the growth of
the number of fixed points is at least linear, that is for some constant C, we
have

#{x | ∃k ∈ [1, N ] | ϕk(x) = x} ≥ CN

Assume now that H 6= 0. Then the set {dsH(p) | p ∈ Rn} has non-
empty interior according to lemma 8.3 of section 8. There are thus infinitely
many rational, non-colinear values of α such that we have a periodic orbit of
rotation number α.

6 On the ergodicity of the invariant measures

We consider the subsets in Rn+1 given by

R(H) = {(α, 〈p, α〉 −H(p)) | α ∈ ∂CH(p)}

and

R(H) = {(α,A) | ∃µ, ρ(µ) = α, ϕ∗H(µ) = µ,AH(µ) = A}

Note that it follows from the computations in the previous section that
these definitions are compatible, that is

R(H) = R(H)

We proved in the previous sections that R(H) ⊂ R(H). Moreover for each
element in R(H) there is a well defined measure µα,A such that ρ(µα,A) =
α, ϕ∗H(µα,A) = µα,A, AH(µα,A) = A.

We want to figure out whether the measures thus found are ergodic, or
whether we can find the minimal number of ergodic measures. Indeed, we
assume there are ergodic measures µ1, ..., µq generating all the measures we
obtained. For this, we need the measures we found to be contained in a
polytope with q vertices. Since we know that the projection of R(H) on Rn

contains an open set , we must have q ≥ n + 1. If moreover R(H) contains
an open set in Rn+1, necessarily we shall have q ≥ n + 2. We could also
consider a simpler question: among the invariant measures we found, which
ones can be considered combination of others ? Clearly, we can consider
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the convex hull of R(H): then extremal points of this hull cannot be in the
convex combinations of the same. This provides a lot of such measures, for
example if R(H) is strictly convex.

7 The case of non-compact supported Hamil-

tonians

A priori our results only deal with compact supported Hamiltoanians. How-
ever the same truncation tricks as in [V4] allow one extend homogenization
to coercive Hamiltonians and to prove the following statements whose proofs
are left to the reader

Theorem 7.1. Let H(t, q, p) be a coercive Hamiltonian in S1 × T ∗T n, and
denote by H(p) its homogenization defined in [V4]. Let α ∈ ∂CH(p). Then
there exists, for k large enough, a solution of ϕk(qk, pk) = (qk+kαk, p

′
k) (with

limk αk = α) and average action

Ak =
1

k

∫ k

0

[γ∗kλ−H(t, γk(t))]dt

where γk(t) = ϕt(qk, pk). Moreover as k goes to infinity Ak converges to

lim
k
Ak = p · α−H(p)

Therefore there exists an invariant measure µα with rotation number α and
average action

A(µα)
def
=

∫
T ∗Tn

[p
∂CH

∂p
(q, p)−H(q, p)]dµα = p · α−H(p).

In particular for H(q, p) strictly convex in p, we have that H(p) is also
convex in p and so for each α there exists a unique pα such α ∈ ∂H(p). Note
that in this case Mather’s theory is much more complete, and tells us that
the measure obtained are minimal, and are the graph of a Lipschitz function
over a subset of T n.

8 Appendix: Critical point theory for non-

smooth functions and subdifferentials

The aim of this section is to clarify the notions of differential that occur cru-
cially in the previous sections. Indeed, restricting the set of rotation numbers
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of invariant measures to the values corresponding to regular points is not an
option, since even in the convex case, the function H has generally dense
subsets of non-differentiable values. We shall deal with two situations. The
first one corresponds to Lipschitz functions: these occur as homogenization
of C1 (or Lipschitz) Hamiltonians, which are the only ones we encounter in
practice. This is the subject of the first subsection, and uses analytic tools,
basically a notion of subdifferential and a suitable version of the Morse defor-
mation lemma. The second one applies to any continuous function. It is best
suited to our general line of work, and in principle allows us to use the main
theorem in the case of Hamiltonians belonging to the Humilière completion,
even though one should formalize the notion of invariant measure for such
objects.

8.1 Analytical theory in the Lipschitz case

While the critical point theory has been studied for (smooth and non-smooth)
functionals on infinite dimensional spaces, we shall here restrict ourselves to
the finite dimensional case. First assume f is Lipschitz on a smooth manifold
M . Then we define

Definition 8.1. Let f be a Lipschitz function. The vector w is in ∂Cf(x)
the Clarke differential of f at x, if and only if

∀v ∈ E lim sup
h→0,λ→0

1

λ
[f(x+ h+ λv)− f(x+ h)] ≥ 〈w, v〉

The following proposition describes the main properties of ∂Cf

Proposition 8.2 ([Clarke 2, Chang]). We have the following properties:

(a). ∂Cf(x) is a non-empty convex compact set in T ∗xM

(b). ∂C(f + g)(x) ⊂ ∂Cf(x) + ∂Cg(x)

(c). ∂C(αf)(x) = α∂Cf(x)

(d). The set-valued mapping x −→ ∂Cf(x) is upper semi-continuous. The
map x −→ λf (x) = minw∈∂Cf(x) |w| is lower semi-continuous.

(e). Let ϕ ∈ C1([0, 1], X) then f ◦ ϕ is differentiable almost everywhere
(according to Rademacher’s theorem) hence

h′(t) ≤ max{〈w,ϕ′(t)〉 | w ∈ ∂Cf(ϕ(t))}
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Definition 8.3. Let f be a Lipschitz function. We define the set of critical
points at level c as Kc = {x ∈ f−1(c) | 0 ∈ ∂f(x)}. We set λf (x) =
infw∈∂f(x) ‖w‖}

Definition 8.4. Let f be a Lipschitz function. We shall say that f satisfies
the Palais-Smale condition if for all c, a sequence (xn) such that f(xn) −→ c
and limn λf (xn) = 0 has a converging subsequence.

The crucial fact is the existence of a pseudo-gradient vector field in the
complement of Kc. We denote by Nδ(Kc) a δ-neighbourhood of Kc.

Lemma 8.5 (Lemma 3.3 in [Chang]). There exists a Lipschitz vector field
v(x) defined in a neighborhood of B(c, ε, δ) = (f c+ε−f c−ε)\Nδ(Kc) such that
‖v(x)‖ ≤ 1 and 〈v(x), w〉 ≥ b

2
for all w ∈ ∂f(x), where 0 < b = inf{λf (x) |

x ∈ B(c, ε, δ)}.

From this we see that following the flow of the vector field v, if c is a
cycle representing a homology class in H∗(U ∩ f c+ε, U ∩ f c−ε) for ε small
enough, then the flow of v applied to c shows that c is homologous to a cycle
in U ∩ f c−ε, hence c is zero. This brings us to the following subsection.

8.2 Topological theory (according to [Vic2])

Let f be a continuous function on X. We define a strict critical point of f ,
as follows

Definition 8.6. Let f be a continuous function. We define the set of strict
critical points at level c as the set of points such that

lim
U3x

lim
ε→0

H∗(U ∩ f c+ε, U ∩ f c−ε) 6= 0

If f−1(c) contains a critical point, it is called a critical level. Other points
are called weakly regular points.

For example even if f is smooth, this does not coincide exactly with the
usual notion of critical and regular point. For example if f(x) = x3, the
origin is critical but weakly regular, since there is not topological change for
the sublevels of f at 0. .

From the above lemma the first part of the following proposition follows

Proposition 8.7. Let f be Lipschitz and satisfy the Palais-Smale condition
above. Then strict critical points at level c are contained in Kc. Moreover
if f has a local maximum (resp. minimum) at x, then x is a strict critical
point.
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Proof. The second statement follows obviously from the fact that for a local
minimum, that is a strict minimum in U , we have H0(f c+ε ∩ U, f c−ε ∩ U) =
H0(f c+ε ∩ U, ∅) 6= 0 since f c+ε ∩ U is non-empty.

Definition 8.8. We denote by dtf(x) the set of p such that f(x) − 〈p, x〉
has a strict critical point at x. This is called the topological differential at
x. The set of all limits of dtf(xn) as xn converges to x is denoted by Dtf(x).

Remark 8.9. The set Dtf(x) coincides with ∂f(x) as defined in Definition
3.6 of [Vic2].

Proposition 8.10. The set Dtf(x) is contained in ∂Cf(x) and the convex
hull of Dtf(x) equals ∂Cf(x).

Proof. This is theorem 3.14 and 3.20 of [Vic2].

The above notion is analogous to the one defined using microlocal theory
of sheafs of [K-S], as is explained in [Vic2]. Indeed, the singular support of a
sheaf is a classical notion in sheaf theory (see [K-S]), defined as follows:

Definition 8.11. Let F be a sheaf on X. Then (x0, p0) /∈ SS(F ) if for any
p close to p0, and ψ such that p = dψ(x) and ψ(x) = 0 we have

RΓ({ψ ≤ 0},F)x = 0

This is equivalent to limW3xH
∗(W,W ∩ {ψ ≤ 0};F) = 0.

The connection between the two definitions is as follows. Consider the
sheaf Ff on M × R that is the constant sheaf on {(x, t) | f(x) ≥ t} and
vanishes elsewhere. Then SS(Ff ) = {(x, t, p, τ) | τDtf(x) = p}. It is not
hard to see that as expected, SS(Ff ) is a conical coisotropic submanifold.

It follows from the sheaf theoretic Morse lemma from [K-S] (Corollary
5.4.19, page 239) that

Proposition 8.12. Let f be a continuous function satisfying the Palais-
Smale condition above. Let us assume c is a regular level. Then for ε small
enough, H∗(f c+ε, f c−ε) = 0.

Proof. Let kX be the sheaf of locally constant functions. Then according to
the sheaf-theoretic Morse lemma,

RΓ(f c+ε; kX) −→ RΓ(f c+ε; kX)

is an isomorphism, but this implies by the long exact sequence in cohomology
that H∗(f c+ε, f c−ε) = 0.
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Finally we have

Proposition 8.13. Let f be a continuous function satisfying the Palais-
Smale condition above. Let us assume f−1(c) contains an isolated strict
critical point. Then for ε small enough, H∗(f c+ε, f c−ε) 6= 0.

Proof. This follows from the fact that if a sheaf is equal to a sky-scraper
sheaf near U it has non-trivial sections. A more elementary approach is as
follows. First notice that if we have two sets B ⊂ A and open sets U ⊂ V
and A ∩ ((V \ U) = B ∩ ((V \ U) then

H∗(A,B) = H∗(A ∩ U,B ∩ U)⊕H∗(A ∩ (X \ V ), B ∩ (X \ V )

Now if x is an isolated critical point, of f according to lemma 8.5 (i.e. lemma
3.3 in [Chang]), we can deform f c+ε to f c−ε in V \U , for some x ∈ U ⊂ U ⊂ V .
Thus

H∗(f c+ε, f c−ε) = H∗(f c+ε∩U, f c−ε∩U)⊕H∗(f c+ε∩ (X \V ), f c−ε∩ (X \V ))

and since the first term of the right-hand side is non-zero, so is the left-hand
side.

Note that if we have an open set Ω where f is flat, then any x ∈ Ω is
a strict critical point, but this does not imply H∗(f c+ε, f c−ε) 6= 0. So the
above proposition does not hold if the critical point is not isolated. Take as
an example f(x) < 0 for x < −1, f(x) > 0 for x > 1 and f = 0 on [−1, 1].
Then H∗(f b, fa) = 0 for all a < b, while 0 ∈ dtf(0).

This prompts the following definition

Definition 8.14. The real number c ∈ R is a strong critical value of f ∈
C0,1(X) if limε→0H

∗(f c+ε, f c−ε) 6= 0. If x ∈ f−1(c), x is a strong critical
point if

lim
ε→0

H∗(f c+ε, f c−ε) −→ lim
ε→0

lim
x∈U

H∗(f c+ε ∩ U, f c−ε ∩ U)

is non-zero. For X = Rn, we say that the strong differential of f at x0 is
the set of α such that fα(x) = f(x) − 〈α, x〉 has a strong critical point at
x0. We denote it by dsf(x0). Finally we denote by Dsf(x0) the set of limits
of strong differentials at x0, that is the set of limits of dsf(xn) such that xn
converges to 0.

An obvious application of Mayer-Vietoris implies
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Proposition 8.15. If c is a strong critical value, then f−1(c) contains a
strong critical point.

Clearly a strong critical point is a strict critical point, but the converse
need not be true. Note that the notion of strong critical point is not purely
local. However the converse holds if either the critical point si isolated, or
the critical point is a local minimum (or a local maximum).

We now prove that for a smooth function, the various differentials coin-
cide.

Corollary 8.16. For a smooth function we have {Dsf(x0) | x0 ∈ f−1(c)} =
{df(x0) | x0 ∈ f−1(c)}.

Proof. It is clear that for a smooth function, if dsf(x) exists, it is equal to
df(x). Now it is enough to show that if df(x0) = 0, f(x0) = 0, there is a
sequence xn such that df(xn) = αn, αn is an isolated solution of df(x) = αn
and limn f(xn) = 0. But by Morse-Sard’s theorem, the set of values of df
at which d2f(x) is degenerate has measure zero, so we can find a sequence
αn → 0 such that f(x)− 〈αn, x〉 is Morse, hence αn = dsf(xn) = df(xn) and
df(xn)→ df(x0).

Proposition 8.17. Assume fk C
0 converges to f . Then if p ∈ dsf(x) there

is xk such that for k large enough, p ∈ dsfk(xk). In particular if U ⊂ Ū ⊂ V ,
where U, V are open, and U is contained in the set {dsf(x) | x ∈ N}, then
the same holds for {dsfk(x) | x ∈ N} for k large enough.

Proof. Indeed, this follows from the fact that

H∗(f c+ε, f c−ε) = lim
k
H∗(f c+εk , f c−εk )

so if H∗(f c+εp , f c−εp ) 6= 0 the same holds for (fk)p.

8.3 A lemma on the set of subdifferentials

We have

Lemma 8.18. Let f be a compact supported function on Rn. If f is non-
constant then the set of dsf(x) as x describes Rn must contain a neighbour-
hood of 0. More precisely if supp(f) ⊂ B(0, 1), we have

{dsf(x) | x ∈ B(0, 1)} ⊃ B(0, ‖f‖C0/4)
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Proof. Assume for simplicity that f vanishes outside the unit ball, B. Con-
sider the function fp(x) = f(x) − 〈p, x〉. We claim that for p small enough
this function has either a local minimum or a local maximum and therefore
p ∈ ∂f(x). Indeed, f = f0 has either a strictly negative minimum or strictly
positive maximum. Assume we are in the first case. Then f(x0) ≤ −ε0 ≤
minu∈∂B f(u) − ε0 for some x0 ∈ B and ε0 > 0. For p small enough (take
|p| ≤ ε0

4
), the same holds for fp with a smaller constant, that is

fp(x0) ≤ min
u∈∂B

fp(u)− 1

2
ε0

As a result fp must have a global minimum, which is necessarily a strong
critical point.

8.4 Subdifferential of selectors

Let (Lk)k≥1 be a sequence of smooth Lagrangians Hamiltonianly isotopic to

the zero section in T ∗(N × M) such that Lk γ-converges to L ∈ L̂. Let
uk(x) = c(α ⊗ 1x, Lk) and u(x) = c(α ⊗ 1x, L). Set Convp(Lk) to be the
union of the convex envelopes of the Lk ∩ T ∗xN . This is a closed convex

(in p) set, and C̃onvp(Lk) the union of the convex enveloppes of f−1k (c) ⊂
Lk, where hk : Lk −→ R is the primitive of pdq on Lk. Note that both

C̃onvp(Lk) and Convp(Lk) are closed. The following can be considered as an
extension of theorem 2.1 (4) page 251 of [Clarke 1] (for the case where α is
the fundamental class of M).

Proposition 8.19. Let (Lk)k≥1 be a sequence of smooth Lagrangians Hamil-
tonianly isotopic to the zero section in T ∗N such that Lk γ-converges to

L ∈ L̂. We have ∂Cuk(x) ⊂ C̃onvp(Lk) and ∂Cu(x) ⊂ limk C̃onvp(Lk).

Proof. The second result follows from the first part and from the fact that
according to [V4], uk C

0-converges to u, and according to [Clarke 1], for any
sequence uk of functions converging to u, we have ∂Cu(x) ⊂ {limk ∂Cuk(xk)}
where xk converges to x.

Let us now prove the first part. Let Lk be such that there exists Σk of
measure zero such that on N \ Σk we have a G.F.Q.I. Sk(q, x, ξ) of Lk and
Sk(•, x, •) is Morse and has all distinct critical values, with critical points
qrk(x), ξrk(x) and 1 ≤ r ≤ p (p is only constant on each connected com-
ponent of N \ Σk). This is generic for the C∞ topology. Then we have
on N \ Σk that c(α ⊗ 1x, Lk) = S(qk(x), x, ξk(x)) where x 7→ qrk(x), ξrk(x)
for r ∈ 1, ...p is a smooth function on N \ Σk. Now ∂Sk

∂q
(qrk(x), x, ξrk(x)) =

∂Sk
∂ξ

(qrk(x), x, ξrk(x)) = 0, so that d
dx
c(α ⊗ 1x, Lk) = d

dx
Sk(q

r
k(x), x, ξrk(x)) =
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∂Sk
∂x

(qrk(x), x, ξrk(x)) ∈ Lk for some r. Since Lk is closed, and according to
[Clarke 1], ∂Cuk(x) = {limk duk(xl) | xl → x, xl ∈ Ω} where Ω is any set
of full measure in the set of differentiability points of uk, we get, using alos

that uk(x) = Sk(q
r
k(x), x, ξrk(x)) that for all k, ∂Cuk(x) ∈ C̃onvp(Lk). Now,

clearly by C∞ density, we can always perturb the Lk so that they are generic
in the above sense, and if uk,l → uk converges in the C∞ topology as l goes
to infinity , we have ∂Cuk = liml ∂Cuk,l, and since limk Lk,l = Lk we get
∂Cuk(x) ⊂ Convp(Lk), as claimed.

Remark 8.20. Let us mention here a result of Seyfaddini and the author,
that is mentioned in [Vic2]. Let Lk be a sequence γ-converging to a smooth
Lagrangian L. Then L ⊂ limk Lk, that is for each z ∈ L there is a sequence
zk ∈ Lk such that limk zk = z. Thuis is a trivial consequence of lemma 7
in [H-L-S]. This can be proved directly as follows. Indeed, if this was not
the case, we would have B(z, r) such that B(z, r) ∩ Lk = ∅.Then for any
ϕH with Hamiltonian supported in B(z, r), we have γ(Lk, ϕ(Lk)) = 0, hence
γ(L, ϕ(L)) = 0. But it is easy to see by a local construction that this does
not hold for all ϕ supported near z.

9 Questions and remarks

We may notice that our results should still hold for Hamiltonians in Ĥ (T ∗T n)
the γ-completion of H (T ∗T n) or at least for H(t, q, p) of class C0. However,
we do not know what the proper definition of “invariant measure” should be
for such an object. Note that existence of points in Ψ({q}×Rn)∩{q0+α}×Rn

could be defined as FH
[a,b]
∗ (Ψ({q} ×Rn), {q0 + α} ×Rn) 6= 0 for some a < b,

but this does not seem to help for invariant measures. Note however that
inviariant measures are always limits of combinations of orbits, so this may
be a useful tool.

Note also that it is probably the following convergence defining a stronger
convergence as follows

Definition 9.1. We say that ψn h-converges to ψ if FH
[a,b]
∗ (ψnψ

−1) −→
R(a, b) where R(a, b) = H∗(M) for a < 0 < b and R(a, b) = 0 otherwise.

that makes sense.

9.1 The structure of µα

It would be interesting to understand the structure of µα. In the convex case,
the support of µα is a graph of the differential of a Lipschitz function, hence
is Lagrangian in a generalized sense. Here, the support of µα cannot be a
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graph, since replacing H by H ◦ ψ replaces µα by ψ∗(µα), hence supp(µα) is
replaced by ψ(supp(µα)).

Question 1. Can one replace the support of µα by an invariant Lagrangian
current, that is a current Tα such that Tα ∧ ω = 0 dim(supp(Tα)) = n, and
(ϕt)∗(Tα) = Tα ?

A question we did not answer until now is the location of the support of
the metric with respect to the support of H.

Proposition 9.2. For α 6= 0, the support of µ is contained in the interior
of supp(H), that is µα(interior(supp(H))) = 1.

Proof. Indeed, if a trajectory meets the complement of the support of H, it
is constant. Therefore the γk must all be contained in the support of H and
since µα is the limit of the 1

k
[γk], the proposition follows.

It is also not difficult to say more in the case that H is time-independent.
Since the orbit of a point remains in a fixed energy level, and the same will
be true for the limit of the measure supported on such orbits. As a result we
get the followig result, proved in the Lagrangian situation in [DC]

Proposition 9.3. Assume H is autonomous. Then, for any α the measure
µα is supported on a level set {(x, p) | H(x, p) = c}. Moroever A(µα) =
p · α− c.

Proof. Indeed, each of the trajectories γk is continaed in some H)1(ck). If we
select a subsequence such that ck converges to some value c, then we hame
that µα is supported in H−1(c).

This implies that for α 6= 0, the measure is supported at a positive dis-
tance from the support.

Question 2. Is this still true for the time dependent case ?
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