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Abstract: The theory of hierarchical image representations has been well-established in Mathematical
Morphology, and provides a suitable framework to handle images through objects or regions taking
into account their scale. Such approaches have increased in popularity and been favourably compared
to treating individual image elements in various domains and applications. This survey paper
presents the development of hierarchical image representations over the last 20 years using the
framework of component trees. We introduce two classes of component trees, partitioning and
inclusion trees, and describe their general characteristics and differences. Examples of hierarchies
for each of the classes are compared, with the resulting study aiming to serve as a guideline when
choosing a hierarchical image representation for any application and image domain.

Keywords: component trees; hierarchical image representation; Mathematical Morphology;
hierarchy indexing

1. Introduction

Properties such as accuracy, size and relation between elements are considered for an image
representation in accordance with the application domain. We list several such families of
representations with their characteristics:

• Pixel-based representation of an image is characterized by a large number of elements in simple
neighborhood relations [1] and contains uninterpreted intensity information [2].

• Block-based representations (on binary images [3–5] and grayscale images [6–8]) divide the
image into the set of (rectangular) arrays of pixels. It has fewer elements than pixel-based
representations, but the image data are still not interpreted. Most common applications include
image compression [3,6,7], segmentation [5,6], and feature and attribute extraction [4,5,8].

• Compressed (or frequency) domain representations store the image as a set of coefficients
in a transform domain, such as Fourier transform [9,10], wavelets [10–12], ridgelets [13],
contourlets [14], etc. Typical uses include image compression [10,11], denoising [13,15],
reconstruction [12], texture analysis and segmentation [16]. Their advantage is a reduced image
size, but they are sensitive to translation, rotation and scaling [17] and make it difficult to
manipulate localized image content.

• Region-based representations group similar connected pixels using a segmentation algorithm,
typically producing an over-segmentation. The resulting regions are often called superpixels [18],
with the region adjacency information kept in a region-adjacency graph (RAG) [19] or combinatorial
maps [20]. Different approaches include normalized cuts [21], graph-based segmentation by
Felzenszwalb and Huttenlocher [22] and watershed segmentation [23,24], with a comparison in [18].
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The reduced number of regions based on interpreting image information keeps the representational
accuracy [2], but further unions of regions need to be considered to detect semantic structures [25].

• Hierarchical representations propose those most likely unions of regions on different scales
of the image, from fine to coarse [25]. They enrich the horizontal relations between regions
present in (partial) segmentations [26,27] with vertical inclusion information between regions at
different scales. Initially, they were used for image filtering [2,28,29], segmentation [30–32] and
boundary detection [33] but have since been applied to a vast amount of domains and applications
(cf. Table 3).

We focus on the hierarchical representations of image in this work, and refer to them as
component trees due to their aim to propose complex regions corresponding to “meaningful” image
objects [28,29]. While hierarchical image representations have been receiving increasing amounts
of attention [34–36] in image processing community, the structure, properties and construction
of such hierarchies are the focus of study of Mathematical Morphology. Quad-trees [32,33] were
amongst the first developed hierarchical image representations. However, they are regular hierarchies
with predefined image division which is not dependent on the image content, and are in the
same relation to the hierarchies considered in this paper as the block-based to the region-based
representations. Recently, many different such hierarchical representations have been developed:
Trees of Shapes [37–39], Binary Partition Trees (BPT) [2,25] and trees based on them (e.g., BPT by
Altitude Ordering [40], Hierarchies of Minimum Spanning Forests [41]), α-trees [42,43] and constrained
connectivity hierarchies, such as (ω)-trees [42,44] which merit a structured study and comparison.

Contributions. The “building blocks” of hierarchical image representations were thoroughly
investigated by Serra [26] and Ronse [27], who study the (partial) segmentations and partitions, and
further the lattices of those (partial) partitions forming hierarchies [45–47]. In contrast to these and
other theoretical works from Mathematical Morphology presented in a more general framework
(e.g., [48]) and appropriated for different domains, we examine the component trees built directly from
monochannel images represented by vertex-valued graphs and equipped with a 4-connectivity.

This paper formalizes the general characteristics of hierarchical representations, and introduces
two distinct superclasses based on the common properties of the currently used representations
(inclusion and partitioning trees, briefly introduced in [49]). While hierarchies provide the information
relating to the image structure in terms of object relations, they need to be indexed in order to
study the scale of image content. We present a consistent way of indexing the hierarchies based
on dendrograms [50], and additionally propose a mapping from indexed inclusion hierarchies onto
partitioning hierarchies on a doubled domain. Different hierarchies are compared in terms of structure,
duality, parameterization, their ability to represent objects, and representation completeness.

Existing surveys covering several hierarchical informations are presented in the next section,
followed by the basic notions used throughout the article in Section 3. Section 4 formalizes the
hierarchies and proposes a unifying hierarchy classification and indexing, while Section 5 is dedicated
to a detailed analysis of different hierarchies and their characteristics. A comparison between the
current construction algorithms, including references, serving as user guidelines when making
an implementation choice is given in Section 6. Finally, Section 7 offers a summary and comparison of
different characteristics presented in Sections 5 and 6, as well as identifies the open challenges based
on the presented concepts, while the work will be concluded in Section 8.

2. Related Work

Despite the recent popularity of hierarchical image representations, the published works
summarizing and comparing their characteristics tend to be limited to either a specific domain
or hierarchy type. In contrast, we aim to explain the general properties of popular hierarchical
representations and their behavior in different domains such as filtering, segmentation and
object detection.
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Hierarchies are often used to select a specific or optimal image (partial) partition for further
processing [51]. Partitions and partial partitions are constituent parts of hierarchical representations,
studied in the unifying papers by Serra [26] and Ronse [27] which present the theory of (partial)
partitions and study the lattices they make and their relations. The hierarchies are studied and formally
defined in [45] as an erosion from the lattice of levels to that of partial partitions. In contrast to our
proposition to study the hierarchy structure and scale separately, the definition of a hierarchy offered
by Ronse [45] refers directly to indexed hierarchy. We offer both definitions for each studied hierarchy
in order to facilitate their use in the theoretical framework of Ronse [45], further expanded to study
the ordering between partitions forming hierarchies [46,47].

Soille [42] examined multiple approaches to hierarchical image partitioning, focusing on the
problems caused by the chaining effect in the α-hierarchy and proposing constrained connectivity
solutions. The studied hierarchies are compared in the context of image simplification, comparing
the number of regions based on simplification strength (level) as well as visually comparing the
segmentation results. Although the paper proposes many potential modifications to α-connectivity,
presently, only the global range constraints are widely used, forming a hierarchy known as (ω)-tree.

An exhaustive survey of filtering tools called connected operators was offered by Salembier and
Wilkinson [52], focusing on their characteristics and techniques used to create them, and encompassing
both the “classical” filtering approaches based on pixel-based representations as well as the approaches
based on component trees. Approaches based on simplifying component trees with pruning and
non-pruning strategies act on the connected components where the image is constant, bridging the
gap between filtering and segmentation. Several hierarchies are presented in the strong context of
filtering. It deals with extrema-oriented filtering based on inclusion trees, complemented only by
a Binary Partition Tree for regions of intermediate level and without focusing on the implications of
replacing an inclusion hierarchy with a partitioning one.

In contrast, the paper by Najman and Soille [44] formalizes the structure of hierarchical partitioning
representations in the context of image segmentations, extending on the definitions of hierarchical
clustering while taking spatial relations between the image elements into account. The ultrametric
property of hierarchical clustering is explained in the context of hierarchical segmentations, emphasizing
the importance of object scale. Hierarchies are represented by dendrograms [50], and the ultrametric
watershed is introduced as a new visualization and computation scheme for partitioning hierarchies.
We extend the framework to inclusion hierarchies, but regard the structural information of a component
tree separately from the scale information in an indexed hierarchy.

One of most recent surveys, by Cousty et al. [40], is presented in the framework of edge-weighted
graphs (i.e., operating on the dissimilarities between image pixels, as opposed to working directly with
pixel values). It is accompanied by a paper which presents efficient quasi-linear algorithms based on
the Kruskal Minimum Spanning Tree algorithm for computing these hierarchies [53], and establishes
the relations between the α-tree of an image with other Mathematical Morphology hierarchies and
segmentation from markers. Recently, these links were studied further in [54] and put additionally
in relation with saliency maps, images which can be interpreted as characteristic maps of hierarchies
used for visualization, accompanied by example applications both from the field of image analysis and
outside of it.

An application independent survey paper was presented by Najman and Cousty [55] covering
a larger scope of morphological image processing techniques. It presents the basic concepts in modern
Mathematical Morphology, offering introductory discussions on several topics. They discuss in detail
different connectivities which can be used to define the image graph as well as the basic morphological
operators. Image segmentation and connected filtering techniques leading to hierarchies of partitions
are also presented through examples linking the α-tree hierarchy, minimum spanning forests and
watersheds on edge-valued graphs, offering an intuitive insight into various image processing tasks
performed on hierarchies. Contrary to this work, which presents the reader with different choices
of connectivity relations and filtering criteria but only provides a general idea of the capabilities of
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hierarchical image processing, our work uses a straightforward framework of 4-connectivity in order
to better emphasize the differences and properties of hierarchies under examination.

The published surveys are mostly application-dependent, deal with a limited range of hierarchical
representations and do not contrast well the hierarchies of partitions and partial partitions. The goal
of this paper will thus be to provide an application independent reference about the structure and
characteristics of commonly used hierarchical representations, decoupling the structure of the hierarchy
from the scale of the represented regions. It is aimed at a general image processing audience, as a guide
in comparing a large range of different hierarchical representations and aid when making a choice of
representation.

3. Image Representation

This section describes the primary definitions from graph theory following [56], explains the
interpretation of images as graphs and finally defines the terminology used in Mathematical
Morphology to refer to image components. Firstly, in Section 3.1, we revise how images, partitions and
regions are represented on a graph. Secondly, in Section 3.2, we define further terminology for handling
image regions, as well as some characteristic image regions.

3.1. Images as Graphs

A graph comprises points and arrows which join one point to another. More formally, a graph G
is an ordered pair (V, U), where V denotes a set of points, called vertices (or nodes) and U a family of
arrows between those points (i.e., duplicate elements are allowed), called arcs. Two vertices joined
by an arc are said to be adjacent. An edge is obtained from an arc by discarding the direction
of said arc. If the directions of arcs between the vertices are not specified, it is more convenient to
represent the graph as a pair G = (V, E), where E stands for the set of edges, and such a graph is then
referred to as an undirected graph. An undirected graph is a simple graph if it has no loops (edges
from a vertex to itself) and has no more than one edge between any two vertices. While all results
applicable to undirected and directed graphs can be applied to both types of graphs indiscriminately,
for convenience, it is easier to distinguish between the two types depending on the application.
Further, let I be a grayscale digital image which comprises a set of pixels, and f I : I → N0, where
N0 = {0, 1, 2, . . . } is the set of natural numbers including 0. A function that assigns to each pixel p ∈ I
its intensity value. The dual image, denoted by −I, comprises the same set of pixels while the intensity
function is changed: f−I(p) = lMax− f I(p), where lMax is the maximum allowed gray level.

When representing an image I as a graph, the image pixels correspond to the set of vertices V,
and choosing an adjacency relation or connectivity (cf. [1] for more details on connectivity and [57–60]
for examples of advanced connectivities) determines the set of edges E connecting those pixels and
associates an undirected graph G = (V, E) to the image. An edge between two adjacent pixels p and q
is denoted by ep,q or eq,p. When using regular 4-connectivity, we can distinguish the image boundary
pixels as those pixels p ∈ I that do not have the full set of 4 neighbors. For a theoretical analysis of
connectivity and connections, the theory of connective segmentation [26] and its extension to partial
connections [27] permit combining different connections.

A path P in G from p1 to pn is defined by a sequence of vertices (pixels) (p1, . . . , pn) such that for
all 1 ≤ i < n the pixels pi and pi+1 are adjacent. A path from p1 to pn is a cycle if p1 = pn and has no
duplicate edges. SP(p, q) denotes the set of all possible paths in G between any p and q. Pixels p and q
are connected in G if and only if there is a path P in G from p to q or if p = q.

We next define the concepts involved into image segmentation based tasks. A subgraph of G
generated by a set of vertices VX ⊆ V is defined asX = (VX , EX ), where EX = {ep,q|p, q ∈ V, ep,q ∈ E}.
A partial graph of G is generated by a set of edges EX and defined as X = (V, EX ) (i.e., all the vertices
and a selected set of edges from the original graph.) Finally, we denote a partial subgraph of G by
X ⊆ G, and define it as a subgraph of a partial graph, X = (VX , EX ). Such X ⊆ G is said to be
connected if all p, q ∈ VX are connected in X .
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A region R = (VR, ER) of I generated by a nonempty X ⊆ G is defined by VR = VX , ER =

{ep,q|ep,q ∈ G ∧ p, q are connected in X}. A connected region or a connected component of the image
I is a regionR ⊆ G which is connected and of maximal extent, i.e., @R′ ⊆ G s.t. R ⊂ R′. For a region
R, one can similarly define connected components as connected regionsR′ ⊂ R of maximal extent.
We denote the set of all connected components of the image as CC(I), or a region R as CC(R).
Unless explicitly specified, all the partial subgraphs and regions in the remainder of the article will
be connected.

A set of regions π = {R1, . . . ,Rk}, k ≥ 1 is said to partition the image if it covers the entire image
domain and the elements of the set are mutually disjoint:( ⋃

Ri∈π

VRi

)
= V = I

and (1)

∀Ri,Rj ∈ π, i 6= j, VRi ∩VRj = ∅

It can be also defined through an equivalence relation or by associating each point to
a class [26,61]. The intensity function f (·) is partitioned using one of many existing image segmentation
algorithms [26]. The regions need not be connected (i.e., segmentation to foreground and background,
into predetermined classes [62–64], second generation connectivity [57,65]). However, in case of simple
4-connectivity, one would typically work with connected components of the regions for the purpose of
building the component trees from the regions.

A segmentation can also determine boundaries between the regions, or contain a residual.
If the region set returned by an algorithm does then not cover the entire image domain and is not
a partition, it can be handled in the framework of partial partitions introduced by Ronse [27]. Similar
to Equation (1), the elements of the set π∗ = {R1, . . . ,Rk}, k ≥ 1 partially partition the image if they
are disjoint, but need not cover the image domain. In fact, the set:

supp(π∗) = (
⋃
Ri∈π∗

VRi ) (2)

is called the support of the partial partition, and π∗ partitions the image on its support supp(π∗).
Both the family of partitions and family of partial partitions of a set form a complete lattice, with the
ordering between partitions given by:

π1 ≤ π2 ⇐⇒ ∀Ri ∈ π1, ∃Rj ∈ π2,Ri ⊆ Rj. (3)

This relation defines the refinement order on partitions, and an equivalent relation defined
between any two partial partitions π∗1 and π∗2 gives the standard order. The greatest element of the
lattices is the partition into one region containing the whole set, while the smallest element is the
empty partition for the lattice of partial partitions, and a partition into singleton elements for the lattice
of partitions. The lattices are studied in detail in [26,27].

3.2. Manipulating Image Components

A region boundary of a regionR = (VR, ER) is defined as the set of edges Ebound(R) given by:

Ebound(R) = {ep,q ∈ E|p ∈ VR, q 6∈ VR}. (4)

The sets of pixels of the inner and outer boundary are then made out of all the end-points of the
boundary edges that belong (resp. do not belong) to the regionR:
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Vinbound(R) = {p ∈ VR|ep,q ∈ Ebound(R)} (5)

Voutbound(R) = {p ∈ V|p 6∈ VR, ep,q ∈ Ebound(R)}. (6)

All the image pixels not belonging to a connected regionR (p ∈ V but p 6∈ VR) make a set of 0 or
more connected regions of maximal size in the image domain I,R = {R1, . . . ,Rk}, k ≥ 0. If aRi does
not contain any image boundary pixels, it is called a hole of the regionR (cavity in case of 3D images).
The operation of filling all the holes of a connected region, H(·), adds all the pixels contained in all the
holes of a regionR to that regionR:

H(R) = R
⋃ (⋃

i
Ri

)
, i ≥ 0 (7)

such that ∀i,Ri is a hole inR.

Flat zones of the image are connected components of the image I on the partial subgraph of
G = (V, E) generated by the set of edges E0 such that ep,q ∈ E0 ⇐⇒ f (p) = f (q) ∧ ep,q ∈ E, that is
connected regions of maximal size comprised only of pixels at the same gray level [66,67]. Flat zone Fk
at a gray level k can be described as:

Fk = {p1, . . . , pl}, l ≥ 1

such that ∀pi ∈ Fk, f (pi) = k (8)

and ∀pj 6∈ Fk, if epi ,pj ∈ E then f (pj) 6= k.

We call a flat zone of the image a local maximum Fk if it is surrounded by pixels of strictly lower
gray level:

∀p ∈ V,
(
ep,q ∈ E, q ∈ Fk, p /∈ Fk

)
=⇒ f (p) < k. (9)

Local minima are flat zones surrounded by pixels of strictly higher gray level. Local minima and
local maxima together make the local extrema of the image.

The upper and lower level sets (Lk and Lk, respectively) of an image are sets of image pixels with
gray level values higher or lower than k:

Lk = {p ∈ I| f (p) ≥ k} (10)

Lk = {p ∈ I| f (p) ≤ k} (11)

We additionally define Fk,Lk, and Lk as subgraphs generated by Fk, Lk, Lk, respectively, while
still referring to them as flat zones or level sets of the image, and note that they each comprise several
connected components.

4. Component Trees

This section provides a framework for the definition and indexing of hierarchies as well as
highlights the construction differences between two types of hierarchies. First, Section 4.1 recalls the
definitions of hierarchies on partitions and partial partitions following the formalization in [45,46].
Then, Section 4.2 highlights practical construction differences and region evolution within typical
hierarchies, classifying them into partitioning and inclusion hierarchies. Finally, we describe the
framework for indexing such hierarchies in Section 4.3 according to the specificities of the two classes.

4.1. Hierarchies of Partitions and Partial Partitions

Partitions and partial partitions form lattices, defined by the refinement order for partitions, or the
standard order (containing the merging, inflating and inclusion orders) for partial partitions (cf. [46] for
a detailed study on these orders). Thus, in morphological image segmentation a hierarchy is typically
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defined as an increasing sequence of (partial) partitions going from the least to the greatest element
of the lattice: π0 ≤ ... ≤ πn = 1E, where the least element is π0 = 0E (partition to singletons) for
partitions and π0 = ∅ (empty partition) for partial partitions [46,68]. In practice, all the non-singleton
regions at the hierarchy bottom can be treated as singleton elements.

However, the definition through a sequence of (partial) partitions does not decouple the shape
and inclusion information from the scale inposed on the regions by indexing (i.e., assigning levels to)
the hierarchy. We define a hierarchy without indexing it, similarly to [69]:

1. G ∈ H,
2. for each two elementsR1,R2 ∈ H the following holds: R1 ∩R2 6= ∅⇒ R1 ⊂ R2 orR2 ⊂ R1.

Elementary regions do not need to be included, which allows the support of the partial partition
to grow through the hierarchy. This definition imposes the partial ordering on the regions only,
contrary to the one through a sequence of (partial) partitions imposing an order on the partitions
building the hierarchy. In fact, any set of regions for which these rules hold defines a hierarchy, as we
are only interested in the unique hierarchy components. We further justify it by the fact that in case
of selecting optimal image segmentation from a hierarchy, one needs to consider the regions of the
hierarchy separately rather than the (partial) partitions building it (studied in [2,70,71] with the most
recent unifying theory by Kiran and Serra [51,72]). It corresponds to selecting optimal cuts in the
hierarchies based either on externally imposed criteria (i.e., energy imposed to partitions) [51,70] or
ground truth images [72,73].

To model the structure of a hierarchy, we deal with what berge [56] called arborescences or rooted
trees, which are defined on directed graphs. In directed graphs, the arcs are ordered pairs of elements
and an arc an,m from n to m does not imply the existence of am,n. A quasi-strongly connected graph
G is such a graph where for every pair of vertices p, q there exists a vertice r such that there is a path
from r to p and from r to q, and a rooted tree T = (M, P) is a quasi-strongly connected acyclic graph.
The definition of a path P in a tree T and a graph G is similar, except that the arcs have to be directed
api ,pi+1 for all consecutive elements pi, pi+1. If there exists an arc am,n in a tree, m is called the parent of
n and n a child of m. The vertex m is called an ancestor of n if there exists a path P in T from m to n.
The only node which has no children in T is called the root of the tree, while the nodes that have no
children are called leaf nodes. Let C = {n1, . . . , nk} be a set of nodes. C is a cut of the tree if every path
P from the root to any leaf passes through exactly one node nj ∈ C.

In a tree TH = (M, P) which is a component tree, the nodes of the tree model the regions of the
hierarchy and the arcs model their inclusion. The region represented by a node n ∈ M is denoted by
R(n) = (V(n), E(n)). The root node r ∈ M corresponds to the whole image, while leaf nodes n ∈ M
are such nodes for which @m ∈ M s.t. V(m) ⊂ V(n). A hierarchy shown in Figure 1a is modeled by
the component tree in Figure 1b.

The relation between the parent region and the regions represented by its children can be
formalized as follows. If m is a parent node in the tree and n1, . . . , nk are all the children of m,
the following rules describe how to construct m from its children:

V(m) = V(n1) ∪ . . . ∪V(nk) ∪ S(m), (12)

where

S(m) = {p0, . . . , pl}, l ≥ 0

such that ∀i ∈ {0, . . . , l}, pi ∈ I (13)

∀j ∈ {1, . . . , k}, pi 6∈ V(nj).

The edge set of the parent can be represented as:
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E(m) = {ep,q ∈ E|p ∈ V(m), q ∈ V(m)}, (14)

and the pixel set S(m) has to be such that the following holds:

R(m) = (V(m), E(m)) is a connected region of I. (15)

Equation (12) states that a pixel set of the parent can be written as a union of the pixel sets of all
its children, and optionally a set of additional pixels S(m). Equation (15) ensures the connectedness
of the resulting union, and Equation (14) that R(m) is indeed a region with the vertex set V(m).
This describes the rules one needs to follow when constructing tree regions in a bottom-up approach.

To reconstruct an image from the associated component tree, an altitude or model needs to be
assigned to each node n which introduces new pixels into the hierarchy, i.e., which is a leaf, or for
which S(n) 6= ∅. When forming an image, gray level is assigned to all pixels as they are introduced to
the hierarchy, at the altitude of the corresponding node. Scale information is imposed by indexing
the hierarchy, discussed in Section 4.3. an indexed hierarchy corresponds to the definition through
a sequence of (partial) partitions.

We also note that an extension to the framework of hierarchies of (partial) partitions has been
proposed by Kiran and Serra [74] through introducing braids of partitions. A braid is a family of
partitions larger than a hierarchy, such that the pairwise supremum of any two partitions of the
braid B forms a cut in some monitoring hierarchyH. A single braid can posses multiple monitoring
hierarchies, while any hierarchy is a braid with itself as a monitor. By definition, dynamic programming
properties valid on hierarchies are still valid on braids of partitions. Braids of partitions are a tool
allowing to combine and fuse multiple hierarchies calculated on different modes of a multimodal image.
This structure however lies outside of the framework of partitions and partial partitions [46] (and in
fact extends it), as it is more than a hierarchy. As such, further discussion exceeds the scope of this
paper and the interested reader is referred to [74,75] for the theory of braids of partitions, and to [76]
for their application to multimodal image segmentation. We also direct the reader interested in
combining different hierarchies of the same image into a new hierarchy (rather than a braid or some
other structure) to [54] where such a method was proposed for the hierarchies of partitions.

(a)

R0 R1

R2 R3

R4 R5

R6

(b)

Figure 1. A hierarchy (a); and the corresponding component tree (b). The colors used to enclose the
connected regionsRi in the hierarchy are utilized in the tree as the colors of the corresponding nodes.

4.2. Construction Differences between Inclusion and Partitioning Hierarchies

Equations (12)–(15) are general relations formalizing the hierarchy through a component tree.
While the hierarchies are naturally divided into hierarchies of partitions and those of partial partitions,
in current literature the hierarchies of partial partitions tend to be further restricted. We propose the
names of partitioning trees for the hierarchies on the lattice of partitions, and inclusion trees for the subset
of the hierarchies on the lattice of partial partitions, based on the nature of parent–child relations in
the representations. Such a categorization was previously proposed in [49] and is explored here in
more detail with added illustrations and explanations Any hybrid superclasses would necessarily be
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hierarchies of partial partitions. an example would be hierarchies of quasi-flat-zones or α-connected
components constrained by minimal area threshold (the authors thank one of the reviewers for this
example.) However, to the best of our knowledge, all the currently studied and used hierarchies can
be assigned into one of the two proposed superclasses. This difference between the classes is shown
in Figure 2.

Inclusion trees. The leaf nodes of inclusion trees hold small regions or points, such as local image
maxima or minima [28,29,37], or markers on the image [77]. In a typical bottom-up construction,
nodes are formed by a region growing process starting from the leaves by adding one or more pixels
(in Mathematical Morphology, this commonly means the image flat zones) to the existing regions.
The new node becomes a parent of the nodes merged by this action and this continues until the root
node is obtained covering the whole image domain. As the regions are only formed by adding new
pixels to existing region(s), we constrain Equation (13) to a strict inequality, l > 0.

Basic image simplification or filtering [52] using an inclusion tree includes cutting branches from
the leaves up to a region satisfying a desired criterion and collapsing all the removed regions into their
closest surviving ancestor. Inclusion trees in literature are based on gray level or contrast between
regions, and as such model dark and bright image structures. In this case, the filtering removes small
contrasted structures in the image without changing the larger structures.

Partitioning trees. The principal difference with inclusion trees is that the leaves, as well
as any cut, of a partitioning tree forms an image partition [70]. The initial partition can be any
oversegmentation of the image such as image pixels, flat zones [25,42] or watershed segmentation [78].
New regions of the inner nodes are formed as unions of two or more existing adjacent regions. To reflect
this, a constraint k > 1 is added to Equation (12) and l = 0 to Equation (13).

  leaf 

nodes

middle 

 nodes

 root 

node

TREEPARTITIONING INCLUSION

Figure 2. This image demonstrates the difference between the superclasses of partitioning and inclusion
trees. Cuts of the partitioning tree near its bottom and the middle, as well as the root node are displayed
on the left. A set of nodes from the inclusion tree close to the bottom and middle of the tree, and the
root of the tree are displayed on the right.

At the core of the partitioning tree construction are the notions defining iterative merging [2],
introduced by Garrido et al. [30]:

1. Region model defines how regions and their unions are represented. It reflects the characteristics
of the regions used in the construction process.

2. Merging criterion or similarity (or dissimilarity) measure describes the interest of possible merges.
It is based on the region model.

3. Merging order defines the rules used to merge the regions and which merge to perform next based
on the merging criterion.

Simplifying or filtering an image using a corresponding partitioning tree corresponds to selecting
a cut in the tree based on some criterion and assigning a model (or altitude) to each node in the selected
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cut to be used in image reconstruction. As partitioning trees are not typically extrema-oriented and
can represent regions of intermediate gray levels, filtering the tree removes the small variations in the
gray levels of regions perceived as uniform.

4.3. Indexing the Hierarchy

A component tree defines any hierarchy through its structure. To fully exploit the scale and
semantic information provided by the different construction algorithms, the hierarchy is indexed by
assigning an attribute λ, called the level (of aggregation), to each node of the component tree. It is
always a non-negative function of the nodes, increasing along each branch from the leaves towards the
root, meaning that if m is an ancestor of n, then λ(n) < λ(m). An indexed hierarchy corresponds to
the definition [46] through an increasing sequence of (partial) partitions. It can be equivalently defined
as an erosion from the lattice of levels to the lattice of (partial) partitions, with an adjoint dilation
assigning a level to each region of the hierarchy. This definition is given alongside the definition
through an indexed component tree for each presented hierarchy in Section 5 for comparison.

A distance on a set of elements Ω is a function satisfying the conditions of non-negativity,
d(v1, v2) ≥ 0, identity, d(v1, v1) = 0, symetry, d(v1, v2) = d(v2, v1) and triangular inequality,
d(v1, v2) ≤ d(v1, v3) + d(v3, v2) for any elements v1, v2, v3 ∈ Ω of the set. A distance is an ultrametric
distance if it obeys an ultratriangular inequality, a constraint stronger than the triangular inequality:
for any three elements of a set, v1, v2, v3 ∈ Ω, it is true that d(v1, v2) ≤ max(d(v1, v3), d(v2, v3)).
A bijection between indexed partitioning trees and ultrametric distances [69,79,80] on the same set is
established for the case where λ(n) = 0 if and only if n is a leaf node. This is in accordance with the
construction algorithms of different partitioning trees, which tend to assign the same attribute value
(usually λ = 0) to all the leaf nodes. The levels induce an ultrametric distance on all the vertices of
an image graph G = (V, E) with a corresponding partitioning tree T , which can be expressed as:

d(v1, v2) = min{λ(n)|n ∈ T , v1 ∈ V(n), v2 ∈ V(n)} (16)

A distance between any two image elements from I is given by the smallest level of a node n in the
hierarchy representing a region containing both image elements. Such indexed trees are represented in
a form of a dendrogram [50] (introduced under the name taxonomic tree [81] for hierarchical clustering),
with node height corresponding to the level assigned to it (cf. Figure 3).
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Figure 3. A possible partitioning tree constructed for the image in (a) is shown in (b), and one possible
indexing of the tree is displayed as a dendrogram in (c).

For inclusion trees and hierarchies of partial partitions in general the identity and non-negativity
constraints become d(v1, v2) ≥ d(v1, v1) ≥ 0. The dendrogram of an inclusion tree is more complicated
as points can enter the support of the partial partition at levels above 0 [46], which needs to be
indicated even when they are entering the support by the process of growing (inflating) an existing
region. An example of such dendrogram is shown in Figure 4c.
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Figure 4. A possible inclusion tree for the image displayed in (a) is shown in (b), with one possible
dendrogram shown in (c). In this dendrogram, the gray nodes with4 represent new image elements
entering the hierarchy, and do not belong to the support before then as indicated by the gray dotted line.
The image extended by ghost pixels is shown in (d), with the links between original pixels shown in red
and the links between the ghost and corresponding original pixels in violet. The extended tree shown
in (e) is a partitioning tree for (d), with the auxiliary nodes (in green) identifiable as the singletons in
the hierarchy.

Adding the corresponding sets S(n) as nodes at the lowest level of the hierarchy will allow us
to construct a partitioning tree from an inclusion tree, however we will be unable to distinguish the
original from the added singletons or reconstruct the original inclusion hierarchy. This is similar to the
problem encountered in [27] when trying to represent an output of a segmentation algorithm producing
a residual in the framework of connective segmentations and partitions: adding the residual to the
representation by supplementing the partial partition with singletons does produce a full partition,
but makes the residual indistinguishable from the original partition components, promoting the
introduction of the framework of partial partitions [27]. To avoid the loss of information, we propose to
uniquely map an inclusion tree onto a partitioning tree with a double image domain. We extend every
pixel with a ghost pixel at the same gray level, connected only to the original pixel in the image. All the
pixels and their ghost pixels form the leaves of the tree and partition the new domain. A ghost pixel
merges into the hierarchy at the same level (in the same node) as its original pixel does, ensuring that
every node in the tree is formed by merging two or more nodes. The singletons in the hierarchy
correspond to the auxilary nodes present due to the ghost regions, making it possible to distinguish
between them and the nodes of the original hierarchy. We can now impose an ultrametric distance on
the nodes of this new hierarchy if we assign all the auxiliary nodes the level 0. To ensure λ(n) > 0
for all other nodes, we add an arbitrary constant to the level assigned by the construction algorithm,
and then Equation (16) also holds for indexed inclusion hierarchies. This mapping is of general
interest as it allows applying techniques developed for partitioning trees with inclusion trees, e.g.,
the technique of [82] on combining several hierarchies of the same image, and in general processing
the inclusion trees in the more common framework of multiscale segmentations.
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5. Analysis of Tree Characteristics

This section reviews the tree representations frequently used in current literature, offering their
definitions as well as examining, summarizing and comparing their characteristics. First, the trees from
the inclusion tree superclass are listed, followed by partitioning trees. The most efficient algorithms
suited for implementation will be mentioned in Section 6.

5.1. Min and Max-Trees

We first explain the concept and give examples for the Min-tree, followed by explaining the
implications of the duality relation with the Max-tree. The Min-tree is an inclusion tree representing the
dark structures in the image, based on lower level sets with the leaves corresponding to local image
minima. A connected component of the level set Lk not present in the level set Lk−1 makes a new node
nk with a regionR(nk) = (V(nk), E(nk)), which either becomes:

• a parent node to all the previously constructed nodes at lower levels which are included in the
region of the new node: R(nk′) ⊂ R(nk), k′ < k; or

• a leaf node if it does not include the regions of any previous nodes.

At the highest gray level, there is only one connected component covering the whole domain and
forming the root of the tree. The hierarchy corresponds to distinct connected components of the lower
level sets: Hmin = {CC(Lk)|k ≤ lMax}, shown in Figure 5b. The local minima of the dual image −I
correspond to the local maxima of the original. Thus, considering the upper level sets of I or the lower
level sets of the dual−I we obtain the dual Max-tree hierarchy, defined asHmax = {CC(Lk)|k ≤ lMax}.
The Min-tree is suitable for manipulation of dark image structures, and the Max-tree of the bright ones.
However, keeping both representations to handle both types of object simultaneously as the trees are
redundant and ensuring consistency between them is difficult [83].
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Figure 5. (a) The original image; (b) corresponding Min-tree; (c) the dendrogram; and (d,e) Max-tree
and its dendrogram. Corresponding regions are shown next to the nodes.

The connected components of Lk form a partial partition of the image, CC(Lk), thus the map
k 7→ CC(Lk) is an erosion from the lattice of levels to the lattice of partial partitions on the image
defining the Min-tree. It assigns the level k to the connected component of Lk forming a node in the
hierarchy. The level k is also used as the altitude, carrying the information about the darkest region
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pixel. To index the Max-tree, the erosion and levels are defined using the dual image −I instead,
example of which is shown in Figure 5d,e. The altitude of a node nk at level k is calculated as lMax− k.

The structure was introduced by Salembier et al. [29] as a Max-tree and by Jones [28] as
a component tree, which only differ in how the representation is stored [84]. More complex hierarchies
based on these trees were developed to use with advanced connectivity relations, such as the
Dual-Input Max-Tree for mask-based connectivity [57,65] and hierarchies for hyperconnectivity [59].
Min-trees have also been calculated on inclusion hierarchies instead of images, to perform filtering
operations in shape spaces [85].

5.2. Tree of Shapes

The Tree of Shapes (ToS) is an inclusion tree combining the Min and Max-tree [37,86] to represent
both bright and dark structures simultaneously. The leaves correspond to all the local extrema,
while the node regions hold shapes, obtained by applying the hole filling operator H(·) on all connected
components of the lower and upper level sets. We can thus define the ToS hierarchy as HToS =

{H(R)|R ∈ Hmin} ∪ {H(R)|R ∈ Hmax}. These shapes are either nested or disjoint [38,87]. A node
n is the parent of node m if there is no shapeR′ such thatR(m) ⊂ R′ ⊂ R(n). For the original image
in Figure 5a, the 5 distinct shapes obtained from upper and lower sets in Figure 6a,b is shown in
Figure 6c, with the final hierarchy in Figure 6d. The ToS is a self-dual structure, as the sets of local
minima and maxima as well as the upper and lower level sets are inverted in the dual image −I,
which then produces the same ToS. The redundancy is eliminated by using the modified connected
components (i.e., shapes) when combining the trees.

≥0 ≥1 ≥2 ≥3 ≥4

(a)

≤4 ≤3 ≤2 ≤1 ≤0

(b)

(c)

(d)

 �

 

�0 = 0

 

3

(e)

Figure 6. Upper and lower level sets of the image in Figure 5a (a,b); regions acquired by filling the
holes of the level sets and forming the hierarchy (c); the Tree of Shapes (d); and the dendrogram (e).

To index the Tree of Shapes and obtain the dendrogram in Figure 6e, we rely on the notion of
dynamics along a path (introduced as a contrast measure [88]) and the notion of region dynamics.
The dynamics along the path PD(·) is defined as the sum of intensity differences of adjacent pixels
along the path:

PD(P) =
n

∑
i=2
| f (pi)− f (pi−1)| (17)

Region dynamics RD(·) of a regionR(n) is chosen between all minimal dynamics along the paths
between pixels in the same branch of the tree, as the largest such path dynamic:

RD(R(n)) = max{min{PD(P)|P ∈ SP(p, q)}|p ∈ S(n), q ∈ R(n)}. (18)
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It can also be defined recursively:

RD(R(n)) = max{|p− q|+ RD(R(m))|∀m child of n, p ∈ S(n), q ∈ S(m)}

RD(R(n)) = 0 if n is a leaf node, (19)

which allows for easy level calculation in a bottom-up tree construction. The level of the node n
associated to the region R(n) is then equal to the region dynamics of the region. To define the
hierarchy as an erosion, we define the dynamic shapes at level k:

Dk = {p ∈ V|R = (V, E) ∈ HToS, RD(R) ≤ k}. (20)

We also define Dk as the subgraph generated by Dk, and obtain the map k 7→ CC(Dk) as the
erosion from the lattice of levels to the lattice of partial partitions indexing the ToS hierarchy. The ToS
is a complete image representation, where the node altitudes correspond to the level h of the region
from the upper or lower level set (resp. Lh or Lh) which formed the shapeR(n), assigned to the node
n. The altitude can be calculated from the levels if the gray levels of the leaves and the sign of the
region dynamic for the inner nodes in Equation (19) are stored.

This type of structure was independently presented by Monasse and Guichard [86] for
a combination of 4- and 8-connectivity, and by Song and Zhang [38] for 6-connectivity (proven
equivalent in [89]). A reduced version of this hierarchy was also proposed by Song and Zhang [38,89],
aiming to represent only the changes in the topology of the image. The name “Tree of Shapes”, used
here, was chosen because it prevails in recent literature [39,83].

5.3. Binary Partition Tree

Binary Partition Tree (BPT) is a partitioning tree and is not extrema oriented [2], making it suited
for representing objects with low, high and intermediate gray levels. The construction starts with
assigning a node to each region from the initial partition which is based on pixels, flat zones or
precomputed partitions [2,30]. The hierarchy depends on the choice of region model and merging
criterion. The region model can be as simple as the average or median gray level of a region, and is
typically assumed to be constant within a single region. A merging criterion is defined as a dissimilarity
measure between the region models. The merging order used for the BPT is that of iterative region
merging, and dictates the merging of the two regions most similar according to the merging criterion
in each step (the order is not defined in the case of more than one pair of most similar regions). The
merging sequence and the resulting tree for a BPT using a simple region model and criterion are shown
in Figure 7.

The tree is not usually well balanced (cf. [2,25]) and can contain simple regions very close to the
tree root. Thus, without any assumptions to the similarity measure used in merging, we propose
an indexing in such a manner that the similarity measure of each merging step can always be recovered:

• if a node m of T is a leaf node, then λ(m) = 0,
• if a node m is created as a union of regions corresponding to the nodes n1 and n2 (i.e., R(m) =

R(n1) ∪ R(n2)), and the dissimilarity between the regions in the moment of merging was
D(R(n1),R(n2)), the level of the new node m is calculated according to:

λ(m) = max(λ(n1), λ(n2)) + D(R(n1),R(n2)). (21)

A corresponding dendrogram for the tree in Figure 7e is shown in Figure 7f. The most precise
reconstruction of the original image equals to the precision provided by the initial partition. While the
self-duality of the BPT depends on the used region model and merging criterion (if based on gray
or color level), it is typically desirable (the merging criterion used in Figure 7 is one such example).
As the BPT is the most generic out of all the presented trees and does not pose any restrictions to the
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merging criterion, we only define the indexing of the nodes recursively due to the complexity of the
closed-form solution as an erosion from the lattice of levels to the lattice of partitions.
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Figure 7. Creation of Binary Partition Tree on the flat zones of the original image in (a), using a constant
gray level as the region model. The model is updated as the gray level of the larger of the child regions
after a merge, or average in case of a tie. The merging criterion defines the dissimilarity as the difference
between the region models. Merging order merges the region pair with the smallest dissimilarity first.
Three merging steps are represented in (b–d). The constructed BPT is displayed in (e) and the numbers
in the nodes indicate the merging order, with the indexed hierarchy dendrogram in (f).

The BPT is the most versatile hierarchy presented in this article, indroduced in Mathematical
Morphology by Salembier and Garrido [2] by keeping track of the merging steps of iterative
merging [30]. This work was continued in [25] by proposing a more suitable merging criterion
and applying it to object detection, while the BPT and appropriate simplification methods were studied
in [78]. Many developed extensions [41,53,90,91] highlight the relations to other component trees
and morphological techniques, and specialize it according to the application domain. Additionally,
many hierarchical representations outside of the morphological community fit well into the BPT
framework, using segmentation methods such as watershed variants and Felzenszwalb-Huttenlocher
segmentation to determine the initial partition, and defining the region models and similarity measures
based on region boundary, color, texture, size and depth information [34–36]. We mention here the
two notable specializations of the BPT, which have been used to produce hierarchies over images
represented by edge-weighted rather than vertex-weighted graphs considered in this work.

Binary Partitioning Trees by Altitude Ordering establish the relation between min-trees (cf. Section 5.1)
calculated on the edge graph of the image and α-trees (cf. Section 5.4). They are an intermediate step
in the calculation of the α-tree (or quasi-flat-zone) hierarchy and other hierarchies when the edge
values are calculated as the intensity differences between neighboring pixels, including additionally
an imposed order between the edges of equal value, typically defined through Kruskal’s Minimum
Spanning Tree algorithm [92]. Such a hierarchy was first explored by [93] where different segmentation
methods based on the principal hierarchy were also proposed, as well as a possibility of different
valuations of the graph edges. The concept was reintroduced to the community and formalized under
the name of BPT by Altitude Ordering by Najman et al. [53] and Cousty et al. [54] where the relations
to other hierarchies were established.

The Hierarchies of Minimum Spanning Forests establish the links with watersheds and segmentation
from markers. They are also primarily defined on an edge-weighted graph of the image, but additionally
require a set of markers ordered by importance. The markers are typically chosen as local minima of the
weight map, when the MSF hierarchies correspond to watershed segmentation defined through the drop
of water principle [24]. If the minima are additionally ordered by their extinction values [29,94] based
on attributes such as area, depth or volume, the resulting Hierarchies of MSF are called hierarchical
watersheds [41,54,77]. Hierarchies of MSF allow reordering of the hierarchy according to the calculated
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or perceived importance of minima, and have as such been used as 2D and 3D segmentation tools as
well as for processing of geographical data [54].

5.4. α-Tree

The second presented partitioning tree is the α-tree. Unlike for the BPT, which relies on
a predefined merging order but can be customized by the choice of initial partition, region model
and merging criterion, all of these parameters are strictly defined for the α-tree. We examine here the
α-tree for gray level images in detail, while the proposed adaptations for multichannel images will be
discussed briefly in Section 7.2, along with other open challenges.

The initial partition in the α-tree is always the partition to image flat zones. Using the notions
introduced in Section 4.2 to describe the α-tree, the region model, merging criterion and merging order
are defined as follows:

1. The region model for each regionR is the boundary of that region, Ebound(R).
2. The merging criterion defines the similarity between two neighboring regions as the lowest edge

(valued by gray level difference) common to models of both regions: D(R,R′) = min{| f (p)−
f (q)| |ep,q ∈ Ebound(R), ep,q ∈ Ebound(R′)}.

3. The merging order dictates that, in the i-th step, all regions with the similarity equal to i should
be merged.

We also give a more natural definition through α-connected components (also called quasi-flat
zones). Image flat zones are considered as 0-connected components. To define the α-connected
components for some α > 0, the connected components are considered on the image graph where the
neighboring pixels are connected if their gray level difference is less than or equal to α. For increasing
values of α, these regions form a hierarchy represented by a tree. If we denote an α-connected
component to which a pixel p belongs to by α -CC(p), the hierarchical relation between the regions can
be expressed as:

α -CC(p) ⊆ α′ -CC(p) ∀ α ≤ α′ (22)

The α-connected components for an image in Figure 8a are shown in Figures 8b–e, with the α-tree
shown in Figure 8f. To index the α-tree (cf. example in Figure 8g) we define the quasi-flat-zone partition
at level t as QZFPt =

⋃{α -CC(p)|∀p ∈ I, α ≤ t}, and the map t 7→ QZFPt as the corresponding erosion
from the lattice of levels to the lattice of partitions.

The locality of the similarity metric which considers only the neighboring pixels can cause gray
level variations within a single region to be higher than expected for a certain α. An example is shown
in Figure 8f, where the level α = 2 contains both a region with 18 and 2 pixels. This is referred to as the
chaining effect and the extreme case is shown in Figure 9. Different approaches have been proposed to
address this issue [42,44,95–97].

This tree is self-dual as the contrast information between neighboring pixels does not change in
the dual image −I, and a complete image representation. Simplifying the images by approximating
the regions in a partition formed by respecting a local range parameter was introduced in [98], studied
further in [99], while the term α-connected component was first used by Soille in [42,100] where the
hierarchical properties of such regions were asserted.

5.5. (ω)-Tree

For the ease of understanding, we first provide the usual definitions of the (ω)-tree through
the α-connected components of maximal size, followed by the more complex definition through the
region model, merging criterion and merging order. The (ω)-tree is a partitioning tree aiming to
solve the problems with chaining effect present with α-trees. If the parameter α restricts the maximal
range between locally connected pixels, ω corresponds to the maximal global gray level range inside
a connected component. The global gray level range of a component is denoted by GR(·) and is
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defined as the value difference between the highest and lowest pixel gray level value in the component.
The notion of (α, ω)-connected components was introduced together with the notion of α-connected
components by Soille [100], denoted by (α, ω) -CC(p) for a pixel p, and defined as the α′ -CC(p) with
the maximal possible α′ ≤ α such that the global range is still lower or equal to ω:

(α, ω) -CC(p) = α′ -CC(p), (23)

where α′ = max{α′′ | α′′ ≤ α and GR(α′′ -CC(p)) ≤ ω}.

Even though the following relation holds for every pixel p:

(α, ω) -CC(p) ⊆ (α′, ω′) -CC(p) for α ≤ α′ and ω ≤ ω′, (24)

the set of all (α, ω)-connected components can not form a hierarchy due to the unknown order between
(α, ω) -CC(p) and (α′, ω′) -CC(p) for α ≥ α′ and ω ≤ ω′.
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Figure 8. The original image (a); and partitions for α = 0 –3 (b)–(e), respectively, with edges between
connected pixels shown in thin green lines and region borders in thick red; the α-tree (f); and the
dendrogram (g).
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Figure 9. An example for the chaining effect for the image (a). The hierarchy of α-connected components
has only two different levels (b,c). Although all pixel gray levels differ, the decomposition has no
intermediate steps.
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For α ≥ ω, the local range parameter α does not play a role, as the (α, ω)-connected components
are equivalent to those for α = ω [42]. The (ω) -CC are considered the largest α -CC(p) with the global
range less or equal to ω:

(ω) -CC(p) = (α ≥ ω, ω) -CC(p) = max{α′ -CC(p)|GR(α′ -CC(p)) ≤ ω}. (25)

Unlike the components defined by Equation (23), the (ω) -CC define a hierarchy, called the
(ω)-tree. an example of this hierarchy for the image in Figure 8a is depicted in Figure 10.
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Figure 10. The partitions by levels of the (ω)-tree, for the original image from Figure 8a. Partitions for
ω = 0–5 are shown in (a)–(e), respectively. The tree is displayed in (f), with the indexed tree displayed
in (g).

To define the (ω)-tree through region model, region criterion and merging order, there are the
following changes as when compared to the α-tree:

1. The region model for R is the boundary of that region, Ebound(R), and minimal and maximal
pixel values: min{| f (p)− f (q)||ep,q ∈ R}, max{| f (p)− f (q)||ep,q ∈ R}.

2. The merging criterion defines the similarity between all allowed sets of regions N =

{R1, . . . ,Rn}, n ≤ 2 such that the subgraph of I generated by the union of all the region vertice
sets:

⋃n
i=1 VRi is connected. The weight of such a merge between a set of regions N is:

W(N ) = max(min{| f (p)− f (q)| |
ep,q ∈ Ebound(Ri), ep,q ∈ Ebound(Rj), ∀i, j, i 6= j}, (26)

max{ f (p)|p ∈ Ri∀i} −min{ f (p)|p ∈ Ri∀i}).

3. The merging order dictates that in the i-th step, all the sets of regions of maximal extent with the
similarity equal to i should be merged.
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Indexing the (ω)-tree is similar to indexing the α-tree since they are both constrained connectivity
hierarchies [42]: we define global range partitions as GRPt =

⋃{(ω) -CC(p)|∀p ∈ I, ω ≤ t} and
t 7→ GRPt as the corresponding erosion (cf. Figure 10g for dendrogram). The problems with the
chaining effect are not completely solved since the (ω)-decomposition of the image can not contain
regions not already present in the α-decomposition, however the (ω)-indexing better reflects the region
complexity (compare ω = 8 with α = 1 for the full image in Figure 9c).

Since it is based on the α-tree, the (ω)-tree retains its self-dual property and other characteristics.
The (ω)-tree of the same image always has more levels, and the number of regions decreases more
slowly from the leaf levels towards the root. However, as both trees represent only the unique regions,
the (ω)-tree representation always has fewer nodes than the α-tree since regions are removed from the
α-tree when forming an (ω)-tree. Both of these effects can be observed by comparing the dendrograms
from Figures 8g and 10g.

6. Construction Algorithms

We discuss here the approaches to construct various trees, explain the main idea behind each
algorithm and provide the references to the original approaches. The complexity is expressed in
relation to the number of image pixels N, depending on quantization defined by the number of bits
used to code pixel values q and the range of those values k = 2q.

Min- and Max-tree construction. a recent comparison of Min-tree and Max-tree construction
algorithms was offered by Carlinet and Géraud [101], dividing the construction algorithms into
immersion algorithms, flooding algorithms and merge-based algorithms. The merge-based approaches
are mainly used for parallelism, and are not further discussed here (for a recent parallel implementation
of Max-tree combining the merge-based and flooding approach, cf. e.g., [102]).

The first efficient Min-tree computation algorithm by Salembier et al. [29] is a flooding algorithm.
It begins with the pixel at the gray level lMax which constitutes a root pixel, from which the depth-first
propagation through image elements is performed, recursively [29] or using a hierarchical queue [103].
For low quantization (q ≤ 16 bit) a linear complexity of O(kN) ∼ O(N) is achieved since k is small,
but for larger q, the complexity becomes quadratic, O(N2), making them unsuitable for generic
pixel (e.g., float) values. To overcome this, Wilkinson [65] replaces the hierarchical queue with
a priority-queue, resulting in a flooding algorithm running in O(N log N) complexity for any pixel
type with a total order (e.g., high dynamic range integers and float values).

The first step of immersion algorithms is sorting all the N image elements according to the
appropriate order (i.e., the intensity ordering), which then form N disjoint singleton sets. Those sets
are then merged to form a tree in the second step, using Tarjan’s union-find algorithm [104].
The complexity of the sorting step is bounded to O(N + k) for small integers (typically q ≤ 12 bits
or q ≤ 16 bits), but increases to O(N log N) for generic data types. For low quantized data,
i.e., q ≤ 12 bit, the union-find implementations with lowest complexity by Berger et al. [84]
and Najman and Couprie [105] use techniques such as root path compression, union-by-rank and
level compression (to the detriment of memory usage) to achieve a quasi-linear time complexity of
O(N × α(N)) (α(N)—very slow growing inverse of the diagonal Ackermann’s function, α(1080) ' 4).
For arbitrarily quantized data, the sorting step binds the complexity to O(N log N).

Tree of Shapes construction. Early approaches to ToS construction operated with worst-case time
complexity of O(N2) [83,89] and were not easily extendible to multidimensional (nD) images [37].
A recent algorithm by Géraud et al. [39] overcomes these drawbacks by using the immersion algorithms
for Min-tree construction as a canvas, and replacing the sorting step.

The sorting step in an immersion algorithm should place the image elements from the external
shapes before the elements from the internal shapes. For the ToS computation, representing the image
as a set-valued map on a Kahlimsky grid [106] materializes the inter-pixel spaces and enables the
computation of the correct shape order. The sorting step depends on a hierarchical queue, so can
only handle quantized data, and runs in O(kN) considered linear for low quantized data (authors
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recommend q ≤ 12 bits). The immersion step has the same O(N× α(N)) complexity as for the Min-tree,
resulting in the quasi-linear complexity of O(N × α(N) + kN) ∼ O(kN) for the whole algorithm.

Binary Partition Tree construction. The BPT computation starts with an initial partition,
then merges the two most similar regions in each step (until reaching a single region), iteratively
updating the similarity. We present here the complexity estimation of the construction algorithm for
the case when updating the region model and calculating similarity between the models can be done
in constant time, as studied by Guigues [107].

When no specific connectivity is imposed on the image, the iterative construction algorithm
corresponds to hierarchical (agglomerative) clustering [108]. The detailed analysis of the algorithm
identifies the advantages of using a hierarchical queue to keep the similarity information [30].
The initial partition is a segmentation into N separate pixels or regions. The similarities of the initial
over-segmentation are sorted after calculation, which is bounded by O(N2 log(N2)) ∼ O(N2 log N)

for up to to N2 similarities. The construction proceeds by iteratively finding the pair of most similar
regions, removing the similarity information related to those regions, merging them and re-calculating
the similarity information for the new region. Determining the smallest similarity is a constant
operation in a hierarchical queue, while the similarities are updated in O(N log N), with the number of
iterations equal to the number of regions. Based on this, the construction complexity of BPT is bounded
by O(N2 + N2 log N + N × (N + N log N)) ∼ O(N2 log N). In the case of a specific connectivity,
the speed of calculating and updating the similarity information can significantly decrease depending
on the merging criterion used (4-connectivity analyzed in [109] approximates an upper bound to
O( 2

3 N2) ∼ O(N2)). The special cases of BPT based on the α-tree [40,53] can be constructed even faster,
relying on their properties achieved by specializing the BPT parameters.

α-tree construction. The α-tree construction algorithm relies on its equivalence with a Min-tree
defined on the edges valued with pixel intensity differences [44,69], and can use any Min-tree algorithm.
Extending the idea, Havel et al. [110,111] calculate the α-tree directly using a modification of Tarjan’s
union-find [104], presenting an algorithm suited for multithreading applications.

The algorithm by Najman et al. [53], inspired by Kruskal’s Minimum Spanning Tree algorithm
[92] and using Tarjan’s union-find [104], first constructs a BPT by Altitude Ordering, from which
the α-tree can be obtained with a linear post-processing step [40,53]. The complexity of the α-tree
construction algorithms is the same as for the Min-trees, and is quasi-linear in the number of image
pixels for low quantization, O(N × α(N)).

(ω)-tree construction. The first step in calculating the (ω)-tree and other constrained connectivity
hierarchies is calculating the α-tree they are based on. The ultrametric watersheds by Najman [69]
enable visualizing these hierarchies and calculating them from the α-tree based on the Lowest Common
Ancestor (LCA) [112] in constant time for every pair of neighboring elements in the ultrametric
watershed. The transformation into the (ω)-tree is itself linear.

The (ω)-tree can be interpreted as an α-tree where the global component range is used as a region
complexity measure according to Bosilj et al. [49], which proposes a filtering approach removing the
nodes from the α-tree and indexing the hierarchy by assigning the complexity measure as the level
(of aggregation) to the nodes. This is realized by a bottom-up traversal of the tree, linear in the number of
nodes of the tree and the number of image elements. Using any of the proposed approaches, the (ω)-tree
can be constructed in the same complexity as the α-tree, O(N × α(N)) for low quantized image data.

7. Applications and Future Directions

This survey offers a comparison of component trees which is inclusive, not application-dependent
and in the widespread image processing framework on vertex-valued graphs equipped with
4-connectivity. After the structure and the basic idea behind the construction algorithms of the
trees were presented, this section focuses on current applications, interesting research directions and
application domains for component trees. Section 7.1 offers an overview and comparison of the
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presented trees in terms of image processing applications, while the open challenges are outlined
in Section 7.2.

7.1. Comparative Summary

For each tree, the characteristics such as duality, completeness and types of regions held in
the representation were determined. The most basic choice is the one between inclusion trees
and partitioning trees. While both types of hierarchies are well suited for image simplification,
filtering and object detection, the structure of inclusion trees resulted in their common usage when
selecting prominent image regions (such as discriminating keypoints) while the partitioning trees
lend themselves better to producing segmentations of the image according to given criteria. As all the
presented trees are complete representations, they can be either used directly as a search space, or their
filtered versions or reduced hierarchies can be used if a smaller search space is needed.

The region types of different trees are closely examined as content representation has a direct
influence on the type of objects and scenes each representation is well suited for. When working with
extremal regions of the image, one should choose an inclusion tree representation. A choice between
the different inclusion trees will depend on whether the contrast of the object related to the background
is known in advance (for processing bright or dark objects, one would choose a Max-tree or a Min-tree
respectively, but if this information is not known the ToS can be used to process both types of objects at
the expense of slightly higher construction times). On the other hand, partitioning trees can contain
regions at intermediate gray levels and are better suited for processing complex scenes (e.g., a satellite
image of a whole city) and identifying composite objects. The most flexibility is offered by the BPT
and its many specializations, where the construction parameters can be determined with a specific
application in mind.

The construction complexity is another important factor to consider, and was examined for
different quantization and data types in Section 6. All these characteristics are summarized for
inclusion trees in Table 1 and partitioning trees in Table 2.

Table 1. Summary of characteristics for inclusion trees.

Tree Max Tree Min Tree Tree of Shapes

Dual tree Min tree Max tree self-dual
Type of objects dark objects bright objects shapes
Complete representation? Yes Yes Yes
Construction complexity O(N × α(N)) O(N × α(N)) O(kN)
Additionalparameters No No No

Table 2. Summary of characteristics for partitioning trees.

Tree Binary Partition Tree α-Tree (ω)-Tree

Dual tree self-dual a self-dual self-dual

Type of objects unions of initial partition α-CC (quasi flat zones) (ω)-CC

Complete representation? Yes b Yes Yes

Construction complexity O(N2 log N) O(N × α(N)) O(N × α(N))

Additional parameters
Initial partition,

No Noregion model,
similarity measure

a Depends on region model and similarity measure, but usually desirable. b depends on the initial partition.

To provide a practical example of using these trees in image processing, a result of simple
level-based filtering is shown in Figure 11. It shows the way different trees interact with image
components, with the extrema-oriented inclusion trees processing the regions according to inclusion
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and gray-level order, and the partitioning hierarchies working on similarity-based regions with
intermediate gray levels. On the one hand, a list of various application domains given in Table 3 shows
that simplification, description of whole images (for remote and hyperspectral imaging) and, naturally,
segmentation, are prevalent applications with partitioning trees. On the other hand, dealing with
isolated image features (and applying them to image retrieval), as well as filtering out small details and
noise, or segmenting and detecting specific objects on a contrasted background (e.g., in astronomical
imaging) was mostly done using inclusion trees.

(a) (8379) (b) 3333 (c) 12191 (d) 6048

(e) 2685 (f) 638 (g) weak (h) strong

(i) 27553 (j) 12219 (k) 10764 (l) 5104

Figure 11. Filtering the standard 256 × 256 grayscale Lena image using different trees. For all the trees
except the BPT, the filtering was done by choosing a threshold level and keeping only the nodes above
that level, using the library made by the authors1. The images for the BPT were generated by the
tool presented in [109], which uses a different indexing method and filtering strategy. For every tree,
a weaker and stronger filtering were performed, with the number of remaining nodes displayed in
the sub-caption (except for BPT). Weak and strong filtering of the Min-tree (originally 15652 nodes)
is shown in (a,b) respectively; and for the Max-tree (originally 15048) in (c,d). Filtering using the ToS
(starting with 23796 nodes) correspond to: (e) weak; and (f) strong. The images resulting from BPT
are shown: (g) weak filtering; and (h) strong filtering. The α-tree (76710 nodes) filtering results are
displayed: (i) weak; and strong (j). Finally, filtering using the (ω)-tree (75185 nodes before filtering) is
depicted: (k) weak; and (l) strong.
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Table 3. Some applications of the presented trees from the literature.

Application Domain
Inclusion Partitioning

Min/Max ToS BPT α-Tree (ω)-Tree

filtering/simplification [28,52,85,105,113–115] [37,65,116–118] [52] [42,95] [42,119]

image/video segmentation [28,29,114,120] [117,118,121–124] [2,109,125–128] [42,44,129,130] [42,44,119]

image compression [131] [124,132]

object detection & tracking [133,134] [25,135–137]

feature/edge detection [103] [83,138–140]

pixel/feature description [62,141–144] [63,144,145] [146] [146]

image comparison [37]

change detection [147]

image retrieval [103,142,148,149] [140] [150]

classification [64,151,152] [153–155] [156]

time series processing [157]

astronomical imaging [84,114,134,158]

remote sensing (inc.
hyperspectral imaging) [62,64,141,143,144,147,

149,152,159,160]
[63,144,145,155] [126–128,135,

136,161]
[153] [119,156]

7.2. Open Challenges

Hereafter, we identify some open challenges not discussed herein, which would provide viable
directions for future research.

This article focuses mainly on monochannel images, but as the examined hierarchical structures
have a primary goal of providing good estimated locations of objects contained in the image, the color
(and any other kind of) information contained in multichannel images has to be considered. For
a general partitioning tree, working with vectorial instead of scalar image element values is fairly easy,
as the total order between the values of image elements is not required. As such, the BPT was originally
defined with color in mind [2], and the trend of including color information has persisted in current
literature [25,78]. For the α-tree, several adaptations for multichannel images exist [42,95,119,129,162]
(https://github.com/pbosilj/trees-lib).

However, for the inclusion trees, due to a wide range of available total orderings on image element
values [163] for multivariate data, this extension is not straightforward. Max-trees and Min-trees for
multivariate data were first investigated for general applications [158]. The study of relations between
these hierarchies and multivariate data in the context of connected filtering conducted by Passat and
Naegel [164] and Kurtz et al. [159] define a more general structure called a component graph for
multivalued images, as well as specific constraints under which a component graph preserves the
tree structure and is instead referred to as multivalued component tree. An algorithm for extracting
distinguished features from color images [165] also indirectly defines a Max-tree and Min-tree structure
for color images. Extension of the Tree of Shapes to color images has been only very recently tackled
by Carlinet and Géraud [166]. Let us note that when the tree is used solely for image description,
processing multichannel data (e.g., hyperspectral images) can be simply achieved with a marginal
strategy, i.e., building a tree for each image channel (see [141] for Max-trees and Min-trees, [63] for the
Tree of Shapes), or by an hybrid marginal/vectorial strategy [152].

We also note advances in the application domain of image filtering where the Max-tree hierarchy
was used to implement connected operators [29]. A whole variety of connected operators can be
realized by replacing the Max-tree with other component trees, and this fundamental extension to
the framework of connected operators was studied in [52]. Recently, Xu and co-authors [85,139] have
proposed defining the filtering in shape space, an image whose adjacency relation is given by the
parental relations in its original Max-tree. A novel way of filtering and node selection is also proposed

https://github.com/pbosilj/trees-lib
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by Perret and Collet [114], which puts Mathematical Morphology in relation with stochastic models,
relying on a Markovian algorithm to classify the nodes of a tree.

Other open problems include finding the solution to the chaining effect present in α-trees
(cf. Subsec 5.4). This first led to defining logical predicate connectivity [100] and constrained
connectivity [42,44,95–97,153] and establishing the (ω)-tree (explained in Section 5.5). More recently,
mask-based connectivity, hyperconnectivity and directed connectivity, as well as the advanced
hierarchies based on them [59,65,167], were introduced as a way to handle both visually disconnected
objects, overlapping or weakly connected objects in images.

An interesting challenge would also be to formalize the theoretical relations between the
hierarchies. They are only mentioned here as implied by the construction algorithms in Section 6.
Examples include building the α-trees as the Min-tree of the edges [69,110], representing the α-tree
as a BPT by imposing the order on its edges, and using the Max-tree algorithm as the canvas for the
Tree of Shapes construction algorithm [39]. Relations between some other hierarchies have also been
explicated in [40], but relations between all the hierarchies examined herein are still unknown and
merit further examination.

8. Conclusions

We present a unifying survey of hierarchies of partitions and partial partitions used in practice,
and propose a framework which decouples the structural shape information from the scale information
added by indexing. The paper further offers a unifying view on the taxonomy and indexing of
image hierarchies through component trees, which correspond naturally to the way the hierarchies
are constructed and explicitly define the parent–child (inclusion) information between the regions.
We propose two distinct categories of image hierarchies: inclusion and partitioning trees, and
identify the restrictions to the general component tree formalization implied by the categories. The
formalization through component trees can also be applied to potential new hybrid classes of trees by
imposing different restrictions to the general definition. An established framework for indexing the
hierarchies by dendrograms was described, which allows enriching the structural representation of
the hierarchy with scale information. We propose a mapping from indexed inclusion trees to indexed
partitioning trees, allowing us to recover the original inclusion tree.

We have presented the details, characteristics and construction algorithms of a large number
of component trees, offering an application-independent way of comparing them, which makes it
the most comprehensive such study thus far. The current growing interest in processing techniques
interacting with image regions or superpixels rather than individual image elements and requiring
a representation extending through multiple scales, often modeled as a hierarchy, make such a paper
of particular interest.
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