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Abstract
This article proposes to use C++ template metaprogram-
ming techniques to decide at compile-time which parts of a
code sequence in a loop can be parallelized. The approach
focuses on characterizing the way a variable is accessed in
a loop (reading or writing), first to decide how the loop
should be split to enable the analysis for parallelization on
each part, and then to decide if the iterations inside each
loop are independent so that they can be run in parallel.
The conditions that enable the parallelization of a loop are
first explained to justify the proposed decision algorithm
exposed. Then, a C++ library-based solution is presented
that uses expression templates to get the relevant informa-
tion necessary for the parallelization decision of a loop, and
metaprograms to decide whether to parallelize the loop
and generate a parallel code.

Keywords – code parallelization; metaprogramming;
C++ expression templates; parallelization decision

1 Introduction
Today’s computers are capable of executing multiple in-
structions in parallel, and developers must adapt their code
to get benefits from that. There are now many tools to
make this task easier, allowing developers to indicate which
pieces of their code will be executed in parallel. Among
these tools, there are MPI, POSIX Threads, OpenMP, In-
tel Threading Building Blocks (TBB). With such tools,
developers still have to decide whether the code can actu-
ally be parallelized or not. This decision depends mainly
on which data is accessed and how it is accessed (read-
ing and/or writing), which would require a dependence
analysis. However, a wrong decision from the developer
will lead to incorrect code, meaning a parallel code that
produces a result different from its sequential counterpart.
In this article, we focus on detecting if a loop can be paral-
lelized (if parallelized, does the loop produce the expected
result?), but we do not consider the performance aspect

(if parallelized, does the loop run faster?).
The data dependency information can be processed by

some code analyser that must be executed before the com-
pilation (optionally requiring annotations to make the pro-
cessing easier) by the way of meta-compilation or compiler
plugin. The former is rather complex to implement and
implies redoing nearly the compiler work. With a compiler
plugin, users will be tied to the compilers for which it has
been designed.

Our research is focused on identifying whether program
segments are parallelizable or not with C++ Template
Metaprogramming (TMP) independently from the under-
lying C++ compiler. TMP is part of the C++ compilation
process, thus it is standard and is available independently
of the compiler, and it permits code re-writing in a syntax-
checked way by allowing us to intervene in the compilation
process (without being a plugin). The solution presented
in this article uses Expression Templates (ET) [16] to re-
trieve relevant information for parallelization from the code
sequence of a loop, and common TMP techniques [1] to de-
sign metaprograms to analyse this information to possibly
split the loop, to decide the parallelization and to produce
the parallel code. This solution, that operates mainly at
compile-time, attempts to avoid, as possible, any execution
time overhead.

Section 2 introduces related work. In section 3, we
present the conditions required to detect parallelizable
loops and to run them without altering the results. From
these conditions, we present a two-step decision algorithm
that first identifies the parts of the code sequence inside
the loop that are independent, in order to possibly split
the loop, and then, on each part of the loop, detects if the
iterations are independent so the part can be parallelized.
Then, section 4 shows how we can implement this detec-
tion at language level with C++ TMP, based on ET for
information retrieval and metaprograms for analysis and
parallel code generation. Examples are also presented to
demonstrate the automatic parallelization of loops with
our library-based solution. Section 5 presents performance
results of our proposed design.
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2 Related work
Automatic parallelization tools are studied since many
years [12, 8]. They usually work as meta-compilers [20, 2],
producing a parallel source code from a sequential source
code, or as compilers [6], producing directly an executable.
More recently, we can find complete infrastructure dedi-
cated to automatic parallelization [15] and also advanced
graph and operation research tools enabling a better paral-
lelization [7]. If we focus on recent C++ oriented solutions,
there are dynamic and static propositions.

A tool proposed by Bauer et al., Legion [4], helps devel-
oping parallel programs by defining logical regions. Those
regions make it possible for Legion to do run-time depen-
dence analysis. Then dynamic task scheduling is done,
considering all acquired information about data dependen-
cies. However, we think running all dependence analysis
during run-time generates an overhead that could possibly
be reduced by doing some of the work during compile-time.

Barve’s sequential to parallel C++ code converter [3]
is an example of metaprogramming used to enable paral-
lelism from a sequential code. It runs dependence analysis,
based of Banerjee’s test [19], and generates a suitable par-
allelized version of the sequential input code. This solution
demonstrates the possibility to process data dependencies
statically. It requires a first pass on a sequential C++ code
before compiling it.

MetaPASS [10] is a library allowing implicit task-based
parallelism from a sequential C++ code. Its dependence
properties are acquired statically using C++ TMP. It then
relies on a run-time dependence analyser, making that tool
both static and dynamic.

Our solution makes use of C++ TMP for the full depen-
dence analysis and parallel code generation. This way, we
can aim to very little execution time overhead, like it has
already been achieved in similar contexts [13].

3 Conditions for parallel loops
In this section, we will see what conditions allow us to
execute a loop in parallel, meaning running iterations of
the loop in parallel, without changing the final result of
the code. As parallelizing a loop induces performing the
iterations in an undefined order, we focus here on producing
a parallel code only if its correctness can be preserved. The
performance aspects are not discussed here.

In the listing 1, as it is, the iterations of the program
segment at lines 3 to 6 cannot be executed in parallel
because of line 4. This instruction requires each iteration
of the loop to be executed in the correct order. The
instruction at line 4 accesses the same array element of 𝑐
as in the instruction at line 6, first for writing and then for
reading, so we should not separate them. However the two
other lines, 3 and 5, are dependent on each other but not
with lines 4 and 6. That means the program in listing 2 is
equivalent.

1 /* a, b, c are arrays */
2 for(int i = 0; i < n; ++i) {
3 a[i] = a[i] * b[i];
4 c[i] = c[i+1] + d[i];
5 b[i] = b[i] + 1;
6 d[i] = c[i];
7 }

Listing 1: Loop example

1 /* a, b, c are arrays */
2 for(int i = 0; i < n; ++i) {
3 a[i] = a[i] * b[i];
4 b[i] = b[i] + 1;
5 }
6 for(int i = 0; i < n; ++i) {
7 c[i] = c[i+1] + d[i];
8 d[i] = c[i];
9 }

Listing 2: Example of loop splitting

Now, the second loop still cannot be run in parallel,
whereas the first loop can. This section will explain first
how to decide whenever a program segment can be split,
in order to separate a loop in several loops that will be
analysed independently for parallelization. This section
will then present how we can determine if a loop can be
run in parallel.

3.1 Conditions for permutation
Three conditions are sufficient to allow the permutation of
two program segments 𝑃𝑎 and 𝑃𝑏, with 𝑊𝑖 the set of the
output variables of 𝑃𝑖 and 𝑅𝑖 the set of the input variables
of 𝑃𝑖. These are the conditions given by Bernstein [5].

𝑊𝑏 ∩ 𝑅𝑎 = ∅ (1)
𝑅𝑏 ∩𝑊𝑎 = ∅ (2)
𝑊𝑎 ∩𝑊𝑏 = ∅ (3)

A program segment 𝑃 = {𝐼1, ..., 𝐼𝑛} can be composed of
one or more instructions 𝐼1 to 𝐼𝑛. Algorithm 1 presents a
process to identify independent instructions of 𝑃, and to
group dependent ones. This algorithm relies on Bernstein’s
conditions. We assume that function BernsteinTest(𝑥,
𝑦) returns true if the conditions are met for the program
segments 𝑥 and 𝑦.

To identify the instructions of 𝑃 that cannot be per-
muted, a set 𝐺 of independent program segments can be
progressively built as follows. Starting with an empty set
𝐺, each instruction 𝐼𝑘 , considered as a program segment
𝑃𝑎 = {𝐼𝑘 }, is tested for Bernstein’s conditions with each
program segment 𝑃𝑏 of 𝐺. If 𝑃𝑎 and 𝑃𝑏 invalidate the
conditions, 𝑃𝑏 is removed from 𝐺 and 𝑃𝑏 is added into
𝑃𝑎. When no more program segment 𝑃𝑏 ∈ 𝐺 dependent
from 𝑃𝑎 can be found, 𝑃𝑎 is added to 𝐺. At any step of
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Algorithm 1 Grouping dependent instructions
input: a list of instructions 𝑃 = {𝐼1, ..., 𝐼𝑛}
output: sets of dependent instructions
function GroupDependentInstructions(𝑃)

𝐺 ← ∅
for all 𝐼𝑘 ∈ 𝑃 do

𝑃𝑎 ← {𝐼𝑘 }
for all 𝑃𝑏 ∈ 𝐺 do

if not BernsteinTest(𝑃𝑎, 𝑃𝑏) then
𝐺 ← 𝐺 \ {𝑃𝑏}
𝑃𝑎 ← 𝑃𝑎 ∪ 𝑃𝑏

end if
end for
𝐺 ← 𝐺 ∪ {𝑃𝑎}

end for
return 𝐺

end function

the process, 𝐺 contains independent program segments,
and after considering all the instructions of segment 𝑃, 𝐺
contains the program segments of 𝑃 that can be permuted.

3.2 Loop-level parallelism

In loop-level parallelism, we will only consider loop-carried
dependencies. These are between two distinct iterations
of the loop. Loop iterations can be seen as 𝑘 consecutive
program segments, with 𝑘 the number of iterations, so
we can use Bernstein’s conditions to decide if the loop
iterations are independent.

To achieve this, we must define how the program segment
executed in the loop accesses its variables. There are two
types of variables accessed in loops: regular variables and
elements of arrays (identified by an index). We can see
arrays as multiple regular variables, one per array element:
one-dimensional array 𝑎 is noted as vector 𝑎 = (𝑎 𝑗 ) 𝑗=0..𝑛𝑎−1,
where each element 𝑎 𝑗 corresponds to a regular variable
that is the element of the array 𝑎 at index 𝑗 .

For all iterations of the loop, regular variables are ac-
cessed as defined in section 3.1, so we can define 𝑊𝑟𝑒𝑔

and 𝑅𝑟𝑒𝑔 the sets of written and read regular variables
of the program segment. Arrays require a more complex
construction. For each array 𝑎, we will note 𝐹𝑎 the set
of functions 𝑓 : N → N that are used to calculate actual
indices to access the array in the program segment. 𝐹𝑊

𝑎

is the subset of 𝐹𝑎 that contains functions used to write
into 𝑎, and 𝐹𝑅

𝑎 is the subset of 𝐹𝑎 that contains functions
used to read 𝑎. As an example, for the array c in listing 1,
𝐹𝑊
𝑐 = {𝑖 ↦→ 𝑖} and 𝐹𝑅

𝑐 = {𝑖 ↦→ 𝑖, 𝑖 ↦→ 𝑖 + 1}. Then, if 𝑊𝑎𝑟𝑟

and 𝑅𝑎𝑟𝑟 are the sets of written, resp. read, arrays of the
program segment, we can construct 𝑊𝑎𝑟𝑟

𝑖
and 𝑅𝑎𝑟𝑟

𝑖
, the

sets of elements written, resp. read, at iteration 𝑖 of the

program segment:

𝑊𝑎𝑟𝑟
𝑖 =

⋃
𝑎∈𝑊 𝑎𝑟𝑟

{𝑎 𝑗 | 𝑗 ∈ N, ∃ 𝑓 ∈ 𝐹𝑊
𝑎 , 𝑓 (𝑖) = 𝑗} (4)

𝑅𝑎𝑟𝑟
𝑖 =

⋃
𝑎∈𝑅𝑎𝑟𝑟

{𝑎 𝑗 | 𝑗 ∈ N, ∃ 𝑓 ∈ 𝐹𝑅
𝑎 , 𝑓 (𝑖) = 𝑗} (5)

Using that, we can define the full sets of written and
read variables for each iteration 𝑖, 𝑊𝑖 and 𝑅𝑖:

𝑊𝑖 = 𝑊𝑟𝑒𝑔 ∪𝑊𝑎𝑟𝑟
𝑖

𝑅𝑖 = 𝑅𝑟𝑒𝑔 ∪ 𝑅𝑎𝑟𝑟
𝑖

In order to know if iterations are independent, we can
use Bernstein’s conditions over all iterations:

∀𝑖 = 1..𝑘, 𝑊𝑖 ∩ (
⋃
𝑗≠𝑖

𝑅 𝑗 ) = ∅ (6)

∀𝑖 = 1..𝑘, 𝑅𝑖 ∩ (
⋃
𝑗≠𝑖

𝑊 𝑗 ) = ∅ (7)

𝑘⋂
𝑖=1

𝑊𝑖 = ∅ (8)

For regular variables, the implications are immediate:

• reading does not break any condition

• writing always breaks the condition (8)

For arrays, we need to focus on indices. We can convert
the conditions (6), (7) and (8) for each array 𝑎 to:

∀𝑖 = 1..𝑘, � 𝑓 ∈ 𝐹𝑊
𝑎 /∃ 𝑗 ≠ 𝑖, 𝑔 ∈ 𝐹𝑅

𝑎 , 𝑓 (𝑖) = 𝑔( 𝑗) (6′)
∀𝑖 = 1..𝑘, � 𝑓 ∈ 𝐹𝑅

𝑎 /∃ 𝑗 ≠ 𝑖, 𝑔 ∈ 𝐹𝑊
𝑎 , 𝑓 (𝑖) = 𝑔( 𝑗) (7′)

∀𝑖 = 1..𝑘, � 𝑓 ∈ 𝐹𝑊
𝑎 /∃ 𝑗 ≠ 𝑖, 𝑔 ∈ 𝐹𝑊

𝑎 , 𝑓 (𝑖) = 𝑔( 𝑗) (8′)

To meet condition (8′), an array must not be written at
a same index in different iterations. To meet conditions
(6′) and (7′), if an array is written at an index 𝑛 at iter-
ation 𝑖, it must not be read at the same index 𝑛 in any
distinct iteration 𝑗 . Expressed this way, one would need
to enumerate all iterations to check Bernstein’s conditions.
This approach is not possible at compile-time if the loop
range is dynamic (set at run-time), so we propose a sim-
plified condition that can detect only a subset of possible
parallelization cases. Future work will be to define better
conditions to detect more possible parallelization cases.

Our proposed condition is, for each array 𝑎 in the loop:

𝐹𝑊
𝑎 = ∅ ∨ |𝐹𝑎 | = 1 (9)

If the first part of condition (9) (𝐹𝑊
𝑎 = ∅) is met, there

are only reading accesses to the array so it will meet all
three Bernstein’s conditions. If the second part of condition
(9) (|𝐹𝑎 | = 1) is met, there is only one function to calculate
the effective index to access the array, so, provided that
this function is injective, even if accesses are readings and
writings, there is no overlap between two distinct iterations.
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This condition is always satisfied in the cases where indices
calculations are linear. If not we will consider here that
Bernstein’s conditions are not satisfied.

For a loop with a program segment, its body, we can first
use Bernstein’s conditions to separate it in multiple inde-
pendent program sub-segments. There are two advantages
in doing that. First, these sub-segments could be executed
in parallel. But, more important, we can decide for each
sub-segment independently if its loop can be parallelized.
To do that, we can use the rules determined previously in
the section, which require that, in a sub-segment, a regular
variable must only be read, not written, and an array must
be accessed with indices such that an index is used in two
distinct iterations for either at most one write, or only read
access.

4 Detection with Metaprogram-
ming

4.1 Expression Templates

We propose here to use ET to get the Abstract Syntax Tree
(AST) of the program segment of a loop, first to identify the
dependent sub-segments and possibly split the loop, and
then, to identify the dependency between loop iterations
and decide to make it parallel or not. We use common
template metaprogramming techniques to analyse the AST
at compile-time, run the decision algorithms, and finally
produce or not a parallel code. Template metaprogram-
ming, notably formalized through the notions of metafunc-
tions [1] enables running full programs (C++ templates
are considered Turing-Complete [18]) at compile-time.

Expression templates are a technique introduced by Veld-
huizen [16] and Vandevoorde [14] to represent an expression
as an object, using templates to build the type of this object.
The first goal of expression templates was to tackle perfor-
mance problems that may occur with operator overloading:
instead of performing the effective operation, an opera-
tor builds an object representing the intended operation,
the purpose being to delay the evaluation of intermediate
operations to avoid unnecessary temporary objects, and
evaluate the expression at once [17]. When an expression
is executed, we get an object that represents the structure
of this expression by a recursive composition of types that
models its AST: an expression is an operation on operands
that are expressions [16].

With our library, ET are enabled when an object is
marked as "operand" in an expression. For the detection
of parallelism in loops, we focus on arrays that must be
declared to be operands as shown in the listing 3 below.

1 int aData[] = {1, 2, 3, 4, 5};
2 Operand<int[5], 1> a(aData);

Listing 3: C++ example of operand creation

The first line simply defines an array of integers that
contains the values 1, 2, 3, 4, 5. The second line encapsu-
lates the array as an operand, which will enable the ET
mechanism for all the expressions that contain the operand.
The Operand generic class takes two parameters: the un-
derlying type and a unique identifier. The purpose of the
unique identifier is to differentiate two operands statically
(to avoid the aliasing of variables in ET [9]). Information
on the underlying data could be used for that (like its
memory address), but only dynamically as it is unknown
at compile-time.

The operands support C++ arithmetic operations
(thanks to operator overloading) and dedicated functions
(meaning functions with operands as arguments, in order
to make it extendable to potentially any kind of operation).
These operations construct an expression template that
the metaprogram will use to analyse the program segment
structure at data access level. The result of any operation
between instances of the Operand class is an instance of
the Expression generic class. The Expression generic
class handles the same operations as the Operand generic
class, and represents a complete instruction. The listing 4
shows a simple expression.

1 int aData[] = {1, 2, 3, 4, 5},
2 bData[] = {5, 4, 3, 2, 1};
3 Operand<int[5], 1> a(aData);
4 Operand<int[5], 2> b(bData);
5 auto e = a + b;

Listing 4: C++ example of ET

In this example, e is an instance of the Expression
generic class. Since C++11, the auto keyword lets
the compiler deduce the type of a variable based
on the value assigned to it during its definition.
Thus, the deduced type of e is, in a simplified form,
Expression<OAddition, Operand<1>, Operand<2>>,
where OAddition is a type used to keep the information
of which operation must be done between two operands.
We can represent the instance e with the tree in figure 1.

+
a b

Figure 1: Tree generated from expression "a + b"

The underlying type of operands is not relevant to deter-
mine whether it is possible or not to execute it in parallel.
The relevant information here is which variables are ac-
cessed, and how (read or write). The first information
is provided by the unique identifier of the operand. The
second one is deduced from the semantics of the operators.

In further examples, operand definition will be eluded
in order to minimize code snippets. We will now consider
a more complex example in listing 5. In C++, the comma
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operator is overloadable, thus we can use it to build ex-
pression templates, whereas it is not possible with the
semicolon punctuator.

1 // a, b, c, d are operands
2 auto e = (
3 a = b + c,
4 d = d + 1,
5 b = 2 * b
6 );

Listing 5: 2𝑛𝑑 C++ example of ET

The tree in figure 2, generated from listing 5, can be
explored at compile-time to determine for each instruction
which variables are read and which are written. For exam-
ple, in assignment operations, we know that left operands
are written and right operands are read.

,

= =

a + b *

b c 2 b

=

d +

d 1

Figure 2: Tree generated from expression of listing 5

Eventually, we will see a last example that contains array
accesses in listing 6. Note here that expressions concerning
indices are also captured using ET: the Iterator generic
class has the same function as the Operand generic class,
which is to enable ET construction. Then, metaprogram-
ming will allow for an array 𝑎 to get its set of functions
𝐹𝑎.

1 // a, b, c, are operands
2 Iterator i;
3 auto e = (
4 a[i] = a[i] * b[i],
5 c[i] = c[i+1],
6 );

Listing 6: C++ example of ET with arrays

With this last tree, in figure 3, generated from listing 6,
we can execute the algorithm 1 presented in section 3 to
split the program segment into independent sub-segments,
and then over each sub-segment we can check condition
(9) to decide whether it must be executed in parallel or

not. For this specific tree, we will have two independent
sub-segments, each one containing only one instruction.

,

= =

a[i] * c[i] c[i+1]

a[i] b[i]

Figure 3: Tree generated from expression in listing 6

The first instruction (left branch of the tree) can be
executed in parallel: two arrays are accessed, 𝑎 and 𝑏. For
each one, we have only one function on the iterators, the
identity, so we have |𝐹𝑎 | = 1 and |𝐹𝑏 | = 1.

However, the second instruction (right branch of the
tree) accesses the array 𝑐 with two distinct functions (the
identity, and 𝑖 ↦→ 𝑖 + 1), so |𝐹𝑐 | = 2, plus we have 𝐹𝑊

𝑐 ≠ ∅,
so this instruction will be considered not parallelizable
(in this case, the instruction really cannot be executed in
parallel).

4.2 Working examples
This section presents examples using the parallel_for
function of our library. This function acts as an index-
based for loop: it will iterate from a begin index to an end
index. The following examples will call the parallel_for
function, whose prototype is shown in listing 7. We use @n
to hide small parts of C++ code that are too technical to
be presented here.

1 template<
2 typename F,
3 typename E = @1,
4 typename = @2>
5 std::size_t parallel_for(
6 std::size_t first,
7 std::size_t last,
8 F &&f
9 );

Listing 7: parallel_for prototype

This function takes three arguments, a first index and a
past last index that indicate the range of the loop, and a
function (precisely a "callable", i.e., a function pointer, a
functor or a lambda) returning the expression template of
the program segment inside the loop to execute. F is the
type of the function, it is used by expression @1 to infer
the type E of the expression returned by the function. The
last and unnamed type is necessary to block the function
instantiation if E is an invalid expression type thanks to
expression @2 (which relies on SFINAE [11]).
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The current implementation of parallel_for is to split
the given expression into independent sub-expressions,
then to test each sub-expression for parallelization. If
a sub-expression is parallelizable, it produces a code using
OpenMP to run it in parallel; else it produces a sequential
code. The example in listing 8 demonstrates the automatic
parallelization of a simple loop with one instruction.

1 /* a, b, c are operands
2 based on arrays of N values */
3 parallel_for(0, N,
4 [&](Iterator i) {
5 return(
6 a[i] = b[i] * c[i]
7 );
8 }
9 );

Listing 8: Basic parallel_for example

Listing 8 uses a C++ lambda for the last argument of
parallel_for to simplify the code. This lambda captures
declared operands (the [&] part). Its argument (i) that
represents the value of the index at a given iteration is in
fact an iterator (as defined in section 4.1) for arrays in the
lambda body.

In this example, the expression given to parallel_for
contains only one parallelizable instruction. The generated
source code will be as in listing 9.

1 # pragma omp parallel for
2 for(int i = 0; i < N; ++i)
3 a[i] = b[i] * c[i];

Listing 9: Code generated by listing 8

The example in listing 10 demonstrates the same point
with a more complex program segment, the example of
listing 1 from section 3. It is quite similar to listing 8.
In line 2 of the program segment, ct<1> is used to make
value 1 a compile-time data that can be manipulated by
metaprograms.

1 /* a, b, c, d are operands
2 based on arrays of N values */
3 parallel_for(0, N,
4 [&](Iterator i) {
5 return(
6 a[i] = a[i] * b[i],
7 c[i] = c[i+ct<1>] + d[i],
8 b[i] = b[i] + 1,
9 d[i] = c[i]

10 );
11 }
12 );

Listing 10: Advanced parallel_for example

As explained before, parallel_for function first groups
dependent instructions together to get independent pro-
gram segments, then, for each program segment, checks
condition (9). The result is the compile-time generated
source code shown in listing 11.

1 # pragma omp parallel for
2 for(int i = 0; i < N; ++i) {
3 a[i] = a[i] * b[i];
4 b[i] = b[i] + 1;
5 }
6 // not parallelized:
7 for(int i = 0; i < N; ++i) {
8 c[i] = c[i+1] + d[i];
9 d[i] = c[i];

10 }

Listing 11: Code generated by listing 10

In the code snippets above (listings 3 and 11) we have
presented the functioning of our library-based solution.
The codes explain the syntax used and also give the code
generated by the metaprogram. The latter splits the loop
into independent chunks of code and has setup parallel
directives for code sections identified as parallelizable.

5 Performance results
While the TMP techniques used in our solution operate
mainly at compile-time, there is still some additional code
that is generated for execution at run-time. We present here
performance tests to evaluate the execution time overhead
induced with our solution.

Two scenarios are considered: (i) a loop that is not paral-
lelizable (no instruction is parallelizable); (ii) a loop that is
partially parallelizable (with two independent instruction
sets, one is parallelizable, the other is not, like example in
listing 10). For each scenario, the instructions of the loop
are arithmetical operations on arrays of integers. The tests
have been performed on an Intel Xeon CPU E7-8890 v3,
using g++ 6.3.0 with the optimization O2 flag activated.
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Figure 5: TMP overhead in a mixed parallel-sequential
situation

Figure 4 shows scenario (i) where the number of itera-
tions of the loop varies form 102 to 106. It compares the
execution times of the handwritten sequential code and
the sequential code generated by our solution. No signif-
icant overhead is noticeable. Slight differences could be
explained by the possible reordering of instructions induced
by our solution.

Figures 5a and 5b show scenario (ii) where the number
of physical cores used to parallelize the loop varies from
2 to 16 and the range of the loop varies from 102 to 106

iterations, respectively. In this scenario, the loop must
be split into a sequential and a parallel loop. This code
written by hand is compared with the equivalent code
generated by our solution. Again, no significant overhead
is noticeable between the parallel versions.

In those tests, OpenMP is used for parallelization, but
any other library can be used, as long as the user provides
the recipe for a parallel loop. Our solution has also been
tested with standard threads of C++ and provides similar
results.

6 Conclusion
In this paper, we show how the detection of parallelization
can be achieved within a high-level programming language.
The proof of concept is designed with C++ Template
Metaprogramming (TMP), that gives us the hand on the

underlying compiler to enable code re-writing in a syntax-
checked way. We have used Expression Templates (ET) to
get relevant information for parallelization on the code se-
quence of a loop. TMP enables the execution of algorithms
at compile-time, in our case to analyse the information
retrieved with ET, and we have presented in this article
the conditions needed to decide which parts of a code se-
quence in a loop are parallelizable. After a theoretical
explanation, we have presented an algorithm able to decide
whether program segments are parallelizable or not. This
was followed by the presentation of our C++ library-based
solution, with code snippets showing the use of TMP to
detect data dependencies between instructions at compile-
time. Our library decides whether to parallelize a loop
before generating a parallel code (after splitting the loop if
necessary). One can choose to generate the parallel code
with any regular parallel library (OpenMP, MPI, POSIX
Threads, ...). This proof of concept enables the automatic
writing of parallel programs even if we do not have a C++
parallel compiler at our disposal. Indeed, with TMP, we
are able to lay out code that the programming system
executes to generate new code that implements the desired
parallelism at instruction level. Performance tests show
that our proposal with TMP induces a negligible execution
time overhead.
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