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Abstract:
Typical tracking scenarios rely on the assumption that there is a constant time lapse between observations. In real

life applications, this assumption is often untrue. In Space Situational Awareness (SSA) applications accurate target

estimation is of importance to obtain orbital information. This paper presents recent developments in multi target

detection and tracking techniques, exploiting the Single Cluster Probability Hypothesis Density (SC-PHD) �lter, in

order to jointly estimate the dynamic objects and the time lapse between images.

Résumé:
Les scénarios de suivi typiques reposent sur l'hypothèse qu'il y a un laps de temps constant entre les observations.

Dans les applications réelles, cette hypothèse est souvent fausse. Dans les applications SSA, l'estimation précise de la

cible est importante pour obtenir des informations orbitales. Cet article présente les développements récents dans les

techniques de détection et de suivi de cibles multiples, en exploitant le �ltre SC-PHD, a�n d'estimer conjointement les

objets dynamiques et le laps de temps entre les images.

1 Introduction

The usage of low cost ground-based Complementary Metal Oxide Semiconductor (CMOS) optical sensors to
track objects in Low Earth Orbit (LEO) and Geostationary Earth Orbit (GEO) has dramatically increased in
popularity in the past decade, leading to a chance of integrating these sensors into the formal SSA environment.
These Consumer O�-The-Shelf (COTS) cameras and optics are inexpensive solutions and provide a relatively
wide Field of View (FoV). A central challenge in the exploitation of these sensors is the extraction of multiple
detections from a single image due to the wide FoV: some detections can stem from moving objects (e.g.
satellites, debris), some others from statics objects (e.g. stars), some of them may be artefacts from the
extraction process or false alarms. The association between the objects and the detections is unknown, as
are the number of objects, both static and moving, in the FoV. In these conditions, exploiting the output
of a sensor in order to estimate the number and trajectories of the detected objects becomes a multi-object
estimation problem.
The Probability Hypothesis Density (PHD) �lter [1] was designed as an inexpensive �ltering solution in the the
context of multi-object �ltering. Extensions to the PHD �lter such as the Second-Order Probability Hypothesis
Density (SO-PHD) [2] and the Cardinalized Probability Hypothesis Density (CPHD) [3] provide additional
information at the expense of computational complexity. Solving this multi-object scenario is crucial so that
methods such as Initial Orbit Determination (IOD) and astrometry can take place.
The multi-target tracking methods assume a constant time-lapse between observations e.g. a constant time
between image captures. However this is often not the case when operating on real datasets. This could be
due to a number of reasons: operator error, corrupted or missing metadata or even sensor failure. This paper
explores the exploitation of multi-object tracking algorithms developed from the Finite Set Statistics (FISST)
framework [1], known as the SC-PHD �lter [4, 5], in order to jointly estimate the time-lapse between the images
and the objects' states in a sequence of images produced from an optical sensor. Variations of this method have
been used to register microscopy [6] and astronomy [7] images.
This paper is organized as follows. Sec. 2 presents the principle of joint multi-object �ltering and sensor state
estimation, and introduces the two multi-object �lters exploited in the paper. Sec. 3 presents the details
employed for the implementation of the algorithms. Sec. 4 describes the simulation tests and Sec. 5 discusses
the results. Finally, the conclusions are provided in Sec. 6.

2 Joint Multi-Object Filtering and Sensor State Estimation

2.1 Single Cluster Probability Hypothesis Density (SC-PHD) �lter

The joint calibration and tracking method exploits a Simultaneous Localisation and Mapping (SLAM) based
approach [4] known as the Single Cluster Probability Hypothesis Density (SC-PHD) �lter. There are two sources
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of uncertainty to be estimated, represented by two di�erent processes:

• The sensor process Ψ estimates the sensor state: in this application, the time-lapse between subsequent
images,

• The object process Φ estimates the number and states of moving objects: in this application, the orbiting
objects moving through the image sequence.

Since the number and states of the objects is assumed unknown and possibly varying across the image sequence,
the object process Φ is estimated through multi-object �lters derived from the FISST framework: in the scope
of this paper, the PHD �lter [1] and the SO-PHD �lter [2] [8]. These two solutions are explained in more details
in Sec. 2.2.

2.2 Multi Object Filtering

This section focuses on the estimation of the object process Φ As seen in Sec. 2.1, the estimation of the object
process is conditioned upon the sensor state (i.e. time lapse between observations). In practical terms, a multi-
object �lter estimating the object process is maintained for each possible sensor state y. In this section, yk
denotes an arbitrary sensor state1 at time k (i.e., in the k-th image of the sequence). Each object is described
by its state x in the (single) target state space X ⊆ Rd, describing the physical characteristics of the object. An
object may enter or leave the sensor FoV at any time during the image sequence, and thus the number of objects
at any time is unknown and needs to be estimated. The multi-object state is represented by a Random Finite
Set (RFS) Φk, a random object whose size and elements are unknown, and whose realization is a set of target
states Xk = {x1, x2, ..., xnk

} represents a speci�c multi-object con�guration at time k [3]. The evolution of the
objects' state between time step k − 1 and k is described by a Markov transition function tk|k−1. The number
and states of newborn objects is described by a RFS Φb,k whose nature depends on the �lter; its �rst-order
moment density or intensity is denoted by µb,k(·).
An observation collected from the sensor is described by a state z in the observation space Z ⊆ Rd. The set of
collected observation is denoted by Zk, which contains observations of all the targets in the image at time k.
The observation process is plagued by observation noise, missed detections, and false alarms. The observation
noise associated to some collected observation z is characterized by the likelihood function `z,k(·|y), while the
probability of detection for each individual object in the sensor FoV is denoted by pd,k(·|y). The number and
states of false alarms is described by a RFS Φ,�k whose nature depends on the �lter; its intensity is denoted by
µ,�k(·|y), and its spatial distribution is denoted by s,�k(·|y). For the rest of the paper, the notation µ(X ) will be
used for various intensity functions µ to denote the integral

∫
X µ(x)dx.

2.2.1 Probability Hypothesis Density (PHD) Filter

The PHD �lter [1] was designed as an inexpensive �ltering solution in the the context of multi-object �ltering,
propagating only the intensity µk of the object process Φk. The key assumptions of the PHD �lter is that both
the predicted process Φk|k−1 and false alarm process Φ,�k are Poisson [1]. The prediction and update steps of
the PHD �lter are given by

µk|k−1(x|y) = µb,k(x) + µs,k|k−1(x|y), (1)

µk(x|y) = µφ,k(x|y) +
∑
z∈Zk

µz,k(x|y)

µ,�k(z|y) + µz,k(X|y)
, (2)

where the survival µs,k|k−1(x|y), missed detection µφ,k(x|y), and association µz,k(x|y) terms are de�ned as

µs,k|k−1(x|y) =

∫
ps,k(x̄)tk|k−1(x|x̄)µk−1(x̄|y)dx̄, (3)

µφ,k(x|y) = (1− pd,k(x|y))µk|k−1(x|y), (4)

µz,k(x|y) = pd,k(x|y)`z,k(x|y)µk|k−1(x|y). (5)

2.3 Second-Order Probability Hypothesis Density (SO-PHD) Filter

Recently, a second-order version of the PHD �lter was introduced in [2] that combats some of the issues posed
by the restrictive Poisson assumptions of the PHD �lter. It propagating not only the intensity µk of the object
process Φk, but also the variance vark(X ) of the number of objects in the whole target state space X .
The SO-PHD �lter substitutes Panjer assumptions to Poisson assumptions in the PHD �lter, thus providing
more �exibility in the description of the number of objects and false alarms. More speci�cally, the Panjer

1The estimator associated to the sensor state will be presented later in Sec. 2.4
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distribution [2] describes the Poisson, binomial and negative binomial distributions in a uni�ed formulation
involving two parameters α and β which stand in one-to-one correspondence with the mean and variance of the
distribution. Using this property, the SO-PHD �lter is able to propagate the variances in the number of objects
and number of false alarms via the Panjer parameters of the corresponding distributions.
Before stating the recursion of the SO-PHD �lter, some notations inspired by those introduced in [9] for the
CPHD �lter will be states. The Pochhammer symbol or rising factorial (ζ)n for any ζ ∈ R and n ∈ N is de�ned
with

(ζ)n := ζ(ζ + 1) · · · (ζ + n− 1), (ζ)0 := 1. (6)

Let αk|k−1, βk|k−1 and α,�k, β,�k be the parameters of the predicted object process and clutter process at time k,
respectively, and de�ne the expression

Y [u [Z] :=

|Z|∑
j=0

(αk|k−1)j+u

(βk|k−1)j+u
(α,�k)|Z|−j

(β,�k + 1)|Z|−j
F−j−ud e[j(Z) (7)

for any Z ⊆ Zk and for u = 1, 2, where Fd is the scalar

Fd :=

∫ [
1 +

pd,k(x|y)

βk|k−1

]
µk|k−1(x|y)dx, (8)

and the so-called elementary symmetric functions [10] e[j are given by

e[j(Z) :=
∑
Z′⊆Z
|Z′|=j

∏
z∈Z′

µz,k(X|y)

s,�k(z|y)
. (9)

Where sc,k denotes the spatial clutter distribution at time k. With the help of Eq. (7), de�ne the corrective
terms via

l[u(φ|y) :=
Y [u [Zk]

Y0[Zk]
and l[u(z|y) :=

Y [u [Zk\{z}]
Y [0 [Zk]

(10)

for u = 1, 2, and

l[2(z, z′|y) :=


Y [2 [Zk\{z, z′}]

Y [0 [Zk]
if z 6= z′,

0 otherwise.

(11)

Assuming that ps,k(x) = ps,k is constant for all x ∈ X at time k, the prediction step of the SO-PHD �lter is
then given by

µk|k−1(x|y) = µb,k(x) + µs,k|k−1(x|y), (12)

vark|k−1(X|y) = varb,k(X ) + vars,k|k−1(X|y), (13)

where the survival term for the variance vars,k|k−1 is given by

vars,k|k−1(X|y) = (ps,k)2vark−1(X|y) + ps,k[1− ps,k]µk−1(X|y). (14)

The variance in the number of newborn objects varb,k is a parameter of the �lter, and allows the operator to
describe situations where the information on the number of objects entering the image frame.
The Panjer parameters of the predicted object process Φk|k−1 are then given by [2]

αk|k−1 =
µk|k−1(X|y)2

vark|k−1(X|y)− µk|k−1(X|y)
, (15)

βk|k−1 =
µk|k−1(X|y)

vark|k−1(X|y)− µk|k−1(X|y)
. (16)

With these, the corrective terms l[u (10), (11) can be computed, and the update step of the SO-PHD follows:

µk(x|y) = µφ,k(x|y)l[1(φ|y) +
∑
z∈Zk

µz,k(x|y)

s,�k(z|y)
l[1(z|y). (17)

vark(X|y) = µk(X|y) + µφ,k(X|y)2
[
l[2(φ|y)− l[1(φ|y)2

]
+ 2µφ,k(X|y)

∑
z∈Zk

µz,k(X|y)

s,�k(z|y)

[
l[2(z|y)− l[1(φ)l[1(z|y)

]
+

∑
z,z′∈Zk

µz,k(X|y)

s,�k(z|y)

µz′,k(X|y)

s,�k(z′|y)

[
l[2(z, z′|y)− l[1(z|y)l[1(z′|y)

]
. (18)
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2.4 Sensor State Estimation

This section focuses on the estimation of the sensor process Ψ. The state of the sensor is denoted by y ∈ Y,
the sensor space Y describing the relative time di�erence of an image frame with respect to the previous frame
in the image sequence. Following the Sequential Monte Carlo (SMC) implementation in [11], the information
regarding the state of the sensor at time k is described by a probability distribution pk approximated through
a set of weighted particles {wik, yik}Ni=1, i.e.

pk(·) '
N∑
i=1

wikδyik(·). (19)

Note that the number of particles, N , is maintained constant throughout the scenario. Selecting an appropriate
number of particles is a key consideration of the implementation of the �lter. A large number of sensor particles
provides a more robust estimator, but increases signi�cantly the computational cost of the overall algorithm:
recall from the hierarchical structure (see Sec. 2.2) that a multi-object �lter, either a PHD or SO-PHD �lter is
maintained for each possible sensor state, i.e., for each particle state yik.
By construction, the initial states of yi0 are uniformly distributed between some lower and upper parameters.
At each time step, the prediction step of the sensor state follows a Markov transition model hk|k−1 denoting
the operator's knowledge in the nature of the sensor movement (i.e. linear drift). Each particle state is thus
resampled according to the transition model, i.e.

yik ∼ hk|k−1(·|yik−1). (20)

The update step of the sensor state works as follows. Since the likelihood function `z,k(x|y) associating a
collected observation z to an object with state x is dependent on the sensor state therefore the estimation of the
object process Φ is also conditioned on the sensor state y and is exploited to update the sensor state distribution
as follows:

wik ∝
L(Zk|Φ, yik)wik−1∑N

i=1 w
i
k−1

, (21)

where the multi-object likelihood L(Zk|Φ, yik) quanti�es the match between the set of collected observations Zk
and the estimation of the object process Φ conditioned on yik. These multi-object likelihoods can be seen below
in Sec.2.4.1 and 2.4.2
After the updated weights wik are calculated, the highest weighted particle is found. The resampling step then
occurs by uniformly distributing between some minimum and maximum parameters using the highest weighted
particle.

2.4.1 PHD Multi-Object Likelihood

If the object process is estimated through a PHD �lter (see Sec.2.2.1), the multi-object likelihood is given by
[12]:

L(Zk|Φ, yik) =

∏
z∈Zk

[
µ,�k(z|yik) +

∫
pd,k(x|yik)`k(z|x, yik)µk|k−1(x|yik)dx

]
exp

[∫
µ,�k(z|yik)dz +

∫
pd,k(x|yik)µk|k−1(x|yik)dx

] . (22)

2.4.2 SO-PHD Multi-Object Likelihood

If the object process is estimated through a SO-PHD �lter (see Sec.2.3), the multi-object likelihood is given by

L(Zk|Φ, yik) =

|Zk|∑
j=0

(αk|k−1)j

(βk|k−1)j
(αc,k)|Z|−j

(βc,k + 1)|Z|−j
F̃−α−jd F

−αc,k−|Z|−j
c

∑
Z′⊆Zk

|Z′|=j

∏
z∈Z′

µz,k(X|yik)
∏

z′∈Zk\Z′

µc,k(z|yik), (23)

where

F̃d = 1− 1

βk|k−1

∫
pd,k(x|yik)sk|k−1(x|yik)dx, (24)

Fc = 1 +
1

βc
, (25)

where sk|k−1(x|yik) =
µk|k−1(x|yik)∫
µk|k−1(x̄|yik)dx̄

is the spatial distribution associated to the intensity µk|k−1.
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3 Implementation

All of the multi-object �lters used in the experiments are implemented using a Gaussian Mixture (GM) approach
following [13], [2] and [9]. Measurement driven birth is also used. Since the parent process is implemented using
a SMC particle �lter approach, a preset number of particles shall be used.
The motion of the sensor state , herein referred to as the time lapse ∆k, (20) shall be modelled using two
motion models, Brownian motion and static motion, each accounting for a di�erent drift observed in common
scenarios. The Brownian motion model, or random walk, describes a scenario where the images are perhaps
taken manually by the operator at random intervals. The static model describes a �xed o�set with some zero
mean Gaussian noise possibly due to a control software error. The time lapse state space is characterised by a
simple one dimensional space x = ∆k. When satellites and debris are observed using telescope, a �streak� is left
behind in the image due to the long exposure times needed. The length of this streak can provide an estimate
of the target's velocity v, given by:

v =
l

T
(26)

Where l and T are the measured streak length and camera exposure time respectively. The inclination (or
heading) θ of the streak can also be measured.
This motion using the Nearly Constant Heading (NCH) motion model [14]. It provides a better representation
of the target dynamics than a regular Nearly Constant Velocity (NCV) motion model since the targets move
along a fairly �xed line. Dynamic targets are described via their x and y position, the speed v and the inclination
θ using a four-dimensional state space X ⊆ R4, where speci�c states at time k are of the form

xk =
[
xk, yk, vk, θk

]T
(27)

The motion model for the dynamic objects is non-linear so an Extended Kalman Filter (EKF) [15] is used to
propagate through the time steps. It is given as follows:

tk(xk|xk−1) = N (xk; x̂k, Qk), (28)

where the intermediate state x̂k is obtained with

x̂k = xk−1 + ∆kvk−1
[
cos(θk−1), sin(θk−1), 0, 0

]T
, (29)

and where Qk is a covariance matrix of the form:

Qk = ∆k


0 0 0 0
0 0 0 0
0 0 σ2

v,k 0

0 0 0 σ2
θ,k

 , (30)

where σv,k and σθ,k are the standard deviations of the velocity and inclination, respectively.

4 Simulations

In order to test the algorithm, several scenarios shall be simulated, each using a di�erent time lapse motion
model. This simulated data will be generated as follows. Firstly a number of initial targets are generated Nt,
the targets' states are then initialised following the NCH model stated above. The generated xk, yk positions
are limited to within the sensor's FoV, the velocities vk are drawn from a uniform distribution between some
minimum vmink and maximum vmaxk velocity parameters and the inclinations are drawn from a uniform distri-
bution such that 0 ≤ θk ≤ 360. As stated before the target transition model follows the NCH model Eq.28.
Spontaneous target birth may occur at each time step k and is modelled using a Poisson process with rate λb.
Target death and detection rates are other factors and they are modelled using Bernoulli processes with prob-
abilities of survival ps and detection pd. False alarms may also occur at each time step k, in these simulations
a Poisson process with rate λfa is used to represent these clutter process. The clutter process is also assumed
to be uniformly distributed over the entire sensor FoV. At each time step measurements zk are obtained from
the simulated targets' states xk using the observation model:

zk = Hkxk +N (0, Rk), (31)

Where Hk is given by

Hk =

1 0 0 0
0 1 0 0
0 0 0 1

 , (32)

5



And Rk is given by

Rk =

σ2
x,k 0 0

0 σ2
y,k 0

0 0 σ2
θ,k

 , (33)

For ease of simulation, the exposure time of the camera T is �xed to 1 second. The measured velocity is only
used for initialising new targets. The simulation of the time lapse between successive images ∆k is dependent
upon the scenario. It shall be done in one of two ways:

• Static ∆k : A value of ∆k is generated at the start of the scenario. This remains constant throughout.

• Random ∆k : A value of ∆k is generated at each time step k, drawn from a uniform distribution between
some minimum ∆min

k and maximum ∆max
k parameters

The two simulated scenarios share the same parameters with the exception of how the time lapse ∆k evolves.
These parameters are shown below in Table.1

Number of Monte Carlo (MC) Runs 40 Number of MC Particles 50

Number of Time Steps 30 Initial Number of Targets M 10

Rate of Target Birth λb 0.2 births / frame Minimum Target Velocity vmin
k 5 pixels/image

Maximum Target Velocity vmax
k 15 pixels/image Survival Probability ps 0.95

Detection Probability pd 0.9 False Alarm Rate λfa 5 / frame

State Space Dimensions (X × Y ) 1000 pixels × 1000 pixels Minimum Time Lapse ∆min
k 0.1 seconds

Maximum Time Lapse ∆max
k 4 seconds

Table 1 � Simulation parameters

The accuracy of the time lapse estimation shall be measured using the Root Mean Square Error (RMSE) between
the estimate obtained from the particle �lter and the ground truth. Also the presented results are the averaged
results over the MC runs. The estimates used in the results are obtained using a Maximum A Posteriori (MAP)
estimate of the posterior likelihood distribution.
The output from the highest weighted particle's PHD or SO-PHD �lter, at each time step, shall be compared to
the simulated ground truths using the Optimal SubPattern Assignment (OSPA) metric [16]. The OSPA metric
introduces the concept of a miss distance for multi-target �lters, which jointly weights the accuracy of a �lter's
spatial estimates and its estimated target cardinality to produce a single value. For the OSPA results shown, a
cut-o� parameter of c = 100m and order parameter p = 2 is used. The estimated number of targets alongside
the ground truth shall also be shown.

5 Results

The execution times of the methods can be seen in Table.2, as expected the SO-PHD implementation is more
computationally expensive by a factor of approximately 1.5. Fig.1 shows the acrmse of the ∆k estimates. These
show that for both scenarios the Single Cluster Probability Hypothesis Density (SC-PHD) method performs
incredibly well (0.086 peak RMSE), regardless of the multi-object �lter used. Note that the ∆k estimate is
highly dependent on the number of particles as more particles will allow a more accurate estiamte to occur.
The OSPA (Fig.2) and estimated cardinality (Fig.3) results show that the estimation of the multi-object state
is also accurate, with the �lters often being less than 50 for both scenarios. As expected the SO-PHD �lter
performs better than the PHD �lter. Note that the variance estimated by the SO-PHD �lter is not shown
here.

Method Random Static

PHD 0.592 0.612

SO-PHD 0.928 1.095

Table 2 � Execution time results in seconds per time step
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(a) Random ∆k Scenario (b) Static ∆k Scenario

Figure 1 � RMSE results of the ∆k estimates

(a) Random ∆k Scenario (b) Static ∆k Scenario

Figure 2 � OSPA results of the ∆k estimates

(a) Random ∆k Scenario (b) Static ∆k Scenario

Figure 3 � Cardinality results of the ∆k estimates

6 Conclusions

From the results shown above, it is clear that the Single Cluster Probability Hypothesis Density (SC-PHD)
�lter can accurately estimate the time lapse that occurs between images whilst also simultaneously tracking the
dynamic objects in the image sequence. It has also been shown to work on real data although that is outside
the scope of this paper. This method is not just limited to this application, it can be extended to almost any
sensor calibration problem.
The main limitation of this implementation is that it requires some measurable information about the targets'
velocity or that the targets all move at roughly the same speed. A possible extension to this method can be seen
in [4], where a joint update step for the PHD �lter is used to discriminate better between the di�erent target
populations. the method could be extended to the physical spherical plane (right ascension α and declination
δ). This would allow a more meaningful physical interpretation of the results to occur and an easier integration
with common orbital determination methods.
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