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Abstract 

In the 20th century many advances in biological knowledge and evidence-based 
medicine were supported by p-values and accompanying methods. In the beginning 21st 
century, ambitions towards precision medicine put a premium on detailed predictions for 
single individuals. The shift causes tension between traditional methods used to infer 
statistically significant group differences and burgeoning machine-learning tools suited to 
forecast an individual’s future. This comparison applies the linear model for identifying 
significant contributing variables and for finding the most predictive variable sets. In 
systematic data simulations and common medical datasets, we explored how statistical 
inference and pattern recognition can agree and diverge. Across analysis scenarios, even 
small predictive performances typically coincided with finding underlying significant 
statistical relationships. However, even statistically strong findings with very low p-values 
shed little light on their value for achieving accurate prediction in the same dataset. More 
complete understanding of different ways to define ‘important’ associations is a prerequisite 
for reproducible research findings that can serve to personalize clinical care.  
 
 
Keywords: scientific discovery | data science | variable importance | intelligent algorithms | 
reproducibility 
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‘Change your statistical philosophy and all of a sudden different things become important’ 
Steven Goodman 

 

Introduction 

Inference and prediction are two sides of a coin when inquiring human health and 
disease (1-3). Let’s take diabetes mellitus as a motivating example. The inference paradigm is 
effective to establish biological effects that provide some insight into what leads to 
disturbed blood sugar levels. Diabetes in children can be a result of insufficient production of 
insulin hormone in the pancreas (type 1). Diabetes in adults may also reflect deficient insulin 
receptor response in body cells (type 2). Diabetes can moreover affect previously healthy 
pregnant women (gestational type). The clinical manifestation of disturbed blood sugar 
probably underlies partly diverging pathophysiology, which may encourage other 
therapeutic interventions that have been shown to yield statistically significant benefits for a 
particular patient group. Classical inferential statistics can also substantiate clinical 
observations that most patients with type 1 diabetes profit from injecting missing insulin, 
while obese patients with type 2 diabetes are more likely to profit from surgical intervention 
and symptoms in pregnant patients usually resolve after delivery. 

Instead of substantiating the presence of group effects in disease biology and clinical 
treatment, the prediction paradigm aims to detect statistical regularities that generalize to 
the future. Diabetes can be diagnosed “superficially” by pattern-recognition algorithms 
based on frequent urination or increased thirst, possibly combined with age and gender, or 
its later consequences like retina damage or kidney impairment. Recognizing such symptom 
constellations is possible without detailed understanding of the biological processes that led 
to or maintain the disease. In treatment, predictive pattern-extraction algorithms can make 
it possible to engineer an insulin pump for accurate forecasting of the sugar response 
regularities that characterize a patient’s metabolism. Similar individualized predictive 
monitoring may enable risk prognosis and early intervention before onset of symptoms or 
longer-term consequences to improve medical care, without requiring understanding the 
metabolic mechanisms at play. In this way, inference and prediction have important but 
different contributions to make to biomedical research: We want to extent scientific 
knowledge of disease and we want to know what may happen next to an individual. 

Classical inference has been intimately linked to statistical null-hypothesis testing and 
drawing conclusions from data guided by p-values. This framework emerged in the first half 
of the 20th century (4, 5) for use with tools like linear regression, t-tests, and ANOVA. 
Electrical calculators not yet widely available (6, 7), this was a time when data were rare and 
expensive to acquire (6, 8). Hence, research experiments were often carefully designed in 
advance and well-controlled. The historical context also explains why classical inference was 
originally intended for answering research questions in subjects recruited to the local 
laboratory that can be addressed by transparent statistical models with few knobs to tweak 
(i.e., model parameters) (8, 9). Many early statistical inventions were intended to yield 
understanding of the relationship between a few candidate measures that were handpicked 
guided by the scientific question and prior research. Many of today’s medical doctors and 
biomedical investigators have been “raised” with this statistical culture at the university. If 
the scientific goal is to examine whether an effect exists or which specific input variables 
have most impact on an outcome, classical null-hypothesis testing remains the gold standard 
(10). However, a few authors, including John Ioannidis, have cast doubt that computing only 
p-values to draw statistical inference will continue to play an invariably important role for 
biomedical research (11): "With the advent of big data, statistical significance will 
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increasingly mean very little because extremely low p-values are routinely obtained for 
signals that are too small to be useful even if true." 

Around the turn of the century, the rapidly increasing availability of whole-genome 
sequencing and high-resolution imaging ushered biomedical research into the era of “big 
data” (9, 12, 13). There is growing momentum for the creation, curation, and collaboration 
of massive datasets. For instance, the UK Biobank has gathered genetic, behavioral, 
environmental, and lifestyle data for extensive phenotyping of 500,000 volunteers - the 
currently largest biomedical data resource of its kind (www.ukbiobank.org). Due to the 
parallel improvements in data availability, computing power, and data storage (14, 15), the 
realm of data-analysis has potentially expanded faster in the last two decades than ever 
before (9, 12). Flexible prediction algorithms are particularly well suited for searching 
through rich data to extract subtle patterns (8). Such predictive modeling approaches can be 
less transparent but promise improved clinical translation of single-patient prediction in a 
fast, cost-effective, and pragmatic manner. This goal of empirically justified predictive 
success is sometimes viewed as a less noble science (16). Nevertheless, pioneering studies 
have now demonstrated the potential of "deep learning" algorithms in medicine (17) to 1) 
predict the cardiovascular risk, blood pressure, and smoking behavior from retina scans 
using medical data from almost 300,000 patients (18), 2) detect different heart arrhythmia 
as well as cardiologists in electrocardiograms from 30,000 patients (19), and 3) diagnose 
malignant skin cancer as well as dermatologists using almost 130,000 pictures (20). 

 There is tremendous potential in the practical goal to exploit predictive relationships 
for clinical endpoints in complex medical data. Needless to say, such empirical success does 
not fully satisfy the scientific curiosity to understand the primary biology of diseases like 
diabetes. Carefully planned and expensive experiments to confirm or reject a-priori 
verbalized research hypotheses in animals and humans will surely remain a cornerstone to 
generate biomedical knowledge. In this computational investigation, we therefore try to 
bring widespread approaches to classical inference and pattern prediction to the same table 
to illuminate their characteristic commonalities and differences. 
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Methods 
What do we mean by ‘inference’? 

The term has been used by several quantitative fields with varying, sometimes 
conflicting definitions (8). Here we adopt the technical meaning common in the statistical 
null-hypothesis testing context (21). Classical inference is aimed at scientific discovery by 
trying to reveal “true” properties of the studied phenomenon. Quantifying whether an effect 
exists in the world is especially suited to ask scientific questions like ‘Does a genetic 
polymorphism contribute to or have an effect on a disease?’ Providing such insight as a 
service to science is typically achieved by making probabilistic assumptions about how the 
observed data arose (e.g., the bell-shaped Gaussian distribution). The underlying structure of 
a scientific process is typically explored by trying to understand the way a set of input 
measures affect an outcome. The inference paradigm is especially useful to judge the 
individual relevance of each quantitative measure in impacting the response of interest. The 
investigator wishes to draw inference by quantitatively isolating the more important 
measures among the set of candidate variables, which were often hand-chosen based on 
existing knowledge. This intention explains why, historically, many empirical sciences have 
long relied on linear model approaches, even if the “true” relationship in nature is thought 
to be more complicated (21). Modeling for inference is self-consistent in assuming that the 
‘fitted’ specified model is a sufficient summary of the studied phenomena, where each 
variable and its units have an immediate semantic interpretation. Often combined with 
careful experimental control and formally backed up by mathematical theory, the inference 
agenda is how traditional academic statistics has routinely dealt with small to medium 
datasets from planned data acquisition (8). 
 
What do we mean by ‘prediction’? 

Describing aspects of the inner workings of the studied phenomenon is conceptually 
distinct from empirical research for the sake of prediction. To accurately model the world in 
this way, the investigator wants to extract knowledge of regularities searching through 
possibly meaningful candidate patterns (22, 23). This modeling goal is for instance especially 
suited to ask ‘Is there a set of genetic polymorphisms useful to detect whether an individual 
has a disease or not?’ Compared to modeling for inference, there tends to be smaller 
concern for the data-generating process. Prediction accuracy is the core metric to capture 
how well the quantitative model can emulate a high-level description of mechanisms in 
nature; that is, how well the built model can reproduce the studied phenomenon that has 
been quantitatively measured in the data. In the extreme case, the quantitative model may 
embody the discovered statistical relationship in a way that is opaque to the investigator 
(e.g., many “deep” neural-network algorithms). The prediction paradigm strives for highly 
accurate guesses by explicitly checking the fitted model by external validation. The ‘trained’ 
quantitative model is built for prediction in new individuals whose outcome information we 
would only obtain in the future. Typically, the predicted outcomes cannot be easily obtained, 
are expansive, or hard to come by (24). This aspect of automatically “filling in” missing 
information also explains why mere correlation between two variables, such as in Pearson’s 
correlation, may represent a more limited notion of foretelling yet-to-be measured 
observations (25). Out-of-sample prediction has been an important focus of activity in the 
more recent machine-learning community (2) and corresponds to how data analysis is often 
practiced in data-intensive industries (26). 
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Using the linear model for inference 
To assess which variables have a statistically significant relation to the outcome, we 

evaluated the strength of evidence using ordinary linear regression. Many statisticians have 
a preference for assessing significance by considering all candidate measures in the same 
model (cf. 27, 28), rather than carrying out simple linear regression on one independent 
variable at a time. A single input variable can turn out to be insignificant by itself, but 
become significant when part of a model with other input variables (29). The common 
approach to perform least-squares regression optimizes the following objective: 
 

𝑚𝑖𝑛𝛽∈ℝ𝑝  {
1

𝑛
 ∑(𝑦𝑖 − 𝑥1𝛽1  −  𝑥2𝛽2  −  … − 𝑥𝑝𝛽𝑝)

2
 

𝑛

𝑖=1

}, 

 
where 𝑛 is the number of individuals who contributed to the dataset, 𝑝 is the number of 
input variables 𝑥𝑖 (called independent, explanatory or predictor variables) measured for each 
individual, and 𝑦 is the outcome measure (called dependent or explained variable) that is to 

be expressed as a weighted sum of the variables 𝑥. The data 𝑥  were standardized by mean 
centering to zero and variance scaling to one. This linear combination is estimated by fitting 
the 𝛽 coefficients to all observations in the dataset. Given that the other variables are also 
present in the model, the approach can answer questions about the relative contributions of 
each of the input variables in explaining the output y. The probability model assumed that 
the data are sufficiently described by means and variances (21). The fitted model is assumed 
to encapsulate a description of how the particular input measures increased or decreased in 
parallel with each other to jointly explain variability in the response of interest. 

After model estimation, statistical inference was drawn to decide whether the 
contribution of input variable 𝑥𝑖 in explaining the response 𝑦 is sufficient to be deemed 
statistically significant. The relevance of the effects is computed based on the confidence 
intervals of the beta coefficients (30). Inferential conclusions are drawn by formally testing 
for deviance of the observed effects from the null-hypothesis (e.g., a gene is not associated 
with diabetes) in line with the alternative hypothesis (e.g., a gene is associated with 
diabetes). The ensuing p-values for the input variables indicated whether our data provides 
enough evidence against the null hypothesis of no relevant relationship. The approach 
attempts to reject the null hypothesis that the beta coefficients are truly zero, that is, bear 
no coherent relation to the response variable. A non-significant beta coefficient suggests 
that the variable can be dropped from the model with little or no impact on explaining the 
output variable, which is however not explicitly evaluated. In typical applications of null-
hypothesis testing, the p-value is computed on the entire data from all considered 
individuals. 
 
Using the linear model for prediction 

For comparison with traditional linear regression, we chose a minor extension to use 
the linear model as a predictive pattern-learning algorithm (31). LASSO also estimates a 
weighted combination of the input variables, but the goal revolves around prediction. It is 
arguably the simplest existing method with sparsity constraint, which enforces that not all 
input variables are relevant in the linear model. Each variable has the same chance to be left 
out in the final model tuned for prediction in new observations (29). We thus identified 
subsets of the input variables that allow for the strongest predictive effects. Automatic 
variable selection was achieved by minimizing the same optimization objective augmented 
with a penalty term during estimation: 

not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/327437doi: bioRxiv preprint first posted online May. 21, 2018; 

http://dx.doi.org/10.1101/327437


  7 
 

 

𝑚𝑖𝑛𝛽∈ℝ𝑝  {
1

𝑛
 ∑(𝑦𝑖 −  𝑥1𝛽1  −  𝑥2𝛽2  −  … −  𝑥𝑝𝛽𝑝)

2
 

𝑛

𝑖=1

+  𝜆‖𝛽‖1}, 

 
where 𝑛 is the number of individuals who are included in the dataset, 𝑝 is the number of 
input variables 𝑥 (in this context often called features) measured for each individual, and 𝑦 is 
the outcome to be predicted (called target variable) by expressing it as a weighted sum of 
the standardized variables 𝑥. The linear combination is estimated by fitting the 𝛽 coefficients 
to the observations in the dataset. The hyper-parameter 𝜆 controls the pressure for variable 
selection imposed during model fitting - the degree of sparsity constraint. The higher 𝜆, the 
stronger the tendency to set some coefficients 𝛽𝑖 to exactly zero, which effectively “silences” 
the corresponding measure’s influence on the output variable. An explicit probability model 
is not required - whether the confidence intervals exceeded a threshold or not is here often 
no optimality criterion for variable importance. This approach did also not assume that 
means and variances (i.e., purely linear effects) fully describe the probabilistic mechanism in 
the data, only that they are informative enough to make useful predictions about the future. 
Once fitted, the model was applied to other samples to predict unobserved outputs or 
”shipped” to other laboratories for repeated application. The selected model thus 
automatically chose the minimal subset of predictive variables necessary for classifying for 
instance healthy versus diagnosed individuals. At its extreme, many pattern-learning models 
use the coefficient estimates as an intermediate step to achieve prediction, and actually 
interpreting the parameter values is little priority. In other words, many predictive modeling 
approaches favor the correctness of the overall prediction on new data over the individual 
contributions of particular beta coefficients. 

Following model estimation, the practical performance of the candidate predictive 
model was therefore evaluated based on standard cross-validation (22). Explicit empirical 
guarantees are obtained to answer the question how much the predictive algorithm can be 
expected to generalize to data that we would see in the future. Model parameters were thus 
estimated on some data while the emerging model is explicitly put to the test in some 
independent data from unseen individuals (32): First, the linear model was built on a larger 
part of the dataset. Second, emerging candidate algorithms were evaluated and selected on 
unused data to avoid an overly optimistic evaluation of goodness-of-fit (22). Because all 
conditions for independent, identically distributed observations are usually met for the left-
out data, the out-of-sample prediction performance on the testing data samples can 
quantify how likely the same pattern could be detected in future, not yet seen patients. In 
this way, the cross-validation scheme quantified the out-of-sample performance as an 
estimate of a model's capacity to generalize to data samples acquired in the future. As the 
LASSO does not provide a full least-squares fit due to its shrinkage property, we computed 
debiased out-of-sample predictions using ordinary least-squares on the collection of active 
variables. This common modification allowed disentangling the influence of shrinking and 
variable selection in forming predictions with LASSO. As an important consequence, all 
prediction scores reported in this work were obtained from ordinary linear regression 
(without shrinkage bias) based on the full set or subset of input variables automatically 
selected from the preceding LASSO estimation. 

Such modeling for prediction, routinely practiced in many applications of pattern-
recognition algorithms, is centered around evaluating the capacity of already extracted 
models to derive quantities of interest from new, potentially later encountered individuals. 
This form of building models from data has been explicitly optimized for and is naturally 

not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/327437doi: bioRxiv preprint first posted online May. 21, 2018; 

http://dx.doi.org/10.1101/327437


  8 
 

applicable to a single data point, such as one whole-brain scan or one sequenced genome of 
a particular individual. Please appreciate that it is not adviced to compute the usual p-values 
on the automatically selected input variables (33, 34). This is because variable selection by 
the LASSO is itself a random process that is ignored by the theoretical guarantees of classical 
inference for statistical significance (35). Put differently, data-driven model selection is 
undermining hypothesis-driven statistical inference. The initial prediction-based filtering 
step alters the sampling distribution of the variable coefficient estimates for subsequent 
significance-based variable filtering. This incompatibility between statistical inference and 
variable selection invalidates classical null-hypothesis testing and optimistically biases 
computed p-values (35), which is an active area of research (33, 36, 37). 
 
Simulations 

It has been noted that formal guarantees for the expected model prediction 
performance are challenging to derive by mathematical theory (8, 32). In such settings, 
empirical simulation can come to the rescue for studying the properties of statistical 
methods in computational experiments (30). Here we directly confronted linear modeling for 
inference and for prediction in a series of synthesized datasets, columns of input variables 𝑋, 
each related or not related to the outcome 𝑦. Each dataset was generated from a set-up 
ground-truth model 𝑦 =  𝛽𝑋 + 𝜖, where 𝛽 are fixed random coefficients, 𝑋 is a data matrix 
containing 𝑛 samples and 𝑝 variables with random entries drawn from a standard Gaussian 
distribution 𝒩(𝜇=0,𝜎=1), and 𝜖 denotes the added Gaussian noise. Each dataset was fed into 

the linear model with the aim to identify significant input measures or to identify input 
measures most useful for accurate predictions on new observations (cf. above). 

To sharpen the distinction between explanatory and predictive modeling in general, 
we systematically varied distinct aspects of the data-generating process: 

i) Samples-to-variables ratio: To investigate the relation between the number of 
samples 𝑛 relative to the number of variables p, we systematically varied the number 
of available observations. We covered the lower range between 50 and 100 samples 
in steps of 10, which probably well reflects a majority of studies in biomedicine. 
Between 100 and 2,000 samples we increased the sample size in steps of 100. 
Moreover, we considered the extreme cases 10,000 and 100,000 samples, which 
acknowledges recent large-scale datasets such as the UK Biobank. The total number 
of input variables was kept constant to preclude secondary effects on the results due 
to changing model capacity. 

ii) Proportion of informative variables: To study how the fraction of relevant versus 
irrelevant variables modulate the inferential and predictive processes, we varied the 
proportion of non-zero 𝛽 coefficients in the ground-truth model used for generating 
𝑋. We considered 14 proportions ranging from only 1 to all 40 input variables 
carrying information about the response 𝑦. 

iii) Redundant versus unique sources of information: To elucidate how correlated input 
measures trade-off against each other with respect to the outcome, we introduced 
different degrees of pairwise covariation between the variable columns of 𝑋 (i.e., 
collinearity). Ground-truth models also generated data from a multivariate Gaussian 
distribution that exposed 50% or 90% percent of common variation between the 
relevant variables, complementing datasets that contain only mutually independent 
variables (i.e., 0% covariation). 

iv) Signal-to-noise ratio: To assess the role of nuisance variation in the data, such as 
induced by imperfect measurement techniques, we systematically manipulated the 
noise 𝜖 in how the real model relates to the response 𝑦. The nuisance term was 
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generated from 𝒩(𝜇=0,𝜎=1) and multiplied by 0.5, 1, 2, 5, 10, or 0 (i.e., generating data 

without any noise). 
v) Model violations: To examine more closely how inference and prediction behave 

when the linear model can not fully capture how the data came about, we introduced 
pathological alterations on 50% of the relevant variables in X.  In addition to datasets 
with exclusively linear effects (i.e., we can find the true model), deviations between 
the generating and fitting model were introduced by one of several data 
transformations: taking the absolute value, the natural logarithm, the exponential, 
the square root, the multiplicative inverse, or polynomial expansion of degree 2-5. 

The collection of simulated datasets realized 113,400 different data-analysis scenarios. 
For each case, we focused on the best (smallest) p-value among all input variables in the 
model and the highest prediction performance of the overall model as quantified by the 
(out-of-sample) R2 score. All simulations were carried out on a parallel computing server 
with 48 Intel Xeon CPUs (1,200 - 2,900 GHz) and 62 GB of working memory. The analyses 
required almost 4 weeks of computation time and produced 2 GB of modeling results. 
 
Scientific computing implementation 
 Python was selected as the scientific computing engine. Capitalizing on its open-source 
ecosystem helps enhance replicability, reusability, and provenance tracking. The statsmodels 
package was used to estimate ordinary least squares regression and corresponding p-values 
(http://statsmodels.github.io). The scikit-learn package (38) provided efficient, unit-tested 
implementations for handling state-of-the-art machine-learning procedures (http://scikit-
learn.org). All analysis scripts that reproduce the results of the present study are readily 
accessible and open for reuse (http://github.com/banilo/ 

https://github.com/banilo/inf_vs_pred_2018). The repository also provides extended 
Jupyter notebooks with additional analyses and an interactive WebApp. 
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Results 
 

Simulated datasets 

Across 113,400 constructed datasets (Fig. 1), we made several observations about 
the characteristic differences between seeking statistical inference and maximizing model 
prediction. Fitting linear models to series of datasets generated with increasing non-linear 
effects easily reached significance but distinctly varied in the predictability of the outcomes 
(Fig. 2F; Fig. 3). It was expected that even, as opposed to odd, polynomial data 
transformation (e.g., x2 or x4) incur larger violations to model validity because the direction 
of effects in the input variables is lost. As such, 4th-order polynomial expansion deteriorated 
model fit more than 5th-order expansion, entailing both worse p-values and worse R2 
prediction performance (out-of-sample). To emulate random variation such as from 
measurement error, we added gradually increased noise in the data. This additional 
challenge during model fitting decreased the predictability more systematically than the 
significance (Fig. 2D). Adding more random noise to the data was not observed to entail less 
models with statistically significant variables. To emulate the frequently encountered 
challenges when facing collinear data, we have increased the correlation shared between 
the input measures (Fig. 2C). More variation common to several input variables appeared to 
worsen the p-values more than the prediction performance. Covariance of 90% yielded p-
values (i.e., smallest in the model) closer to the typical p < 0.05 threshold and seldom very 
low p-values. Concurrently, many data-analysis scenarios that did not yield a single 
significant relation between an input variable and the response of interest were generated 
in this high-collinearity setting. To capture some implications of the ongoing trend to data 
aggregation in biomedicine, we gradually increased the available data points per generated 
dataset (Fig. 2A). At the highest sample size of n=100,000, low significance tended to more 
systematically agree with low predictability and extremely high significance also mostly 
concurred with perfect out-of-sample performance. That is, in datasets, bigger than is 
currently the norm, we observed more consistent correspondence between significance and 
prediction. Exploring different proportions of relevant measurements in the ground-truth 
model (Fig. 2B), we noted that fewer truly relevant inputs gave rise to strongly significant p-
values in the presence of poor predictive performance. Finally, applying linear models that 
deviate from the data-generating process of the input and output variables (Fig. 2E) led to 
results with high significance and predictability in many cases. However, using the valid 
(linear) model to fit the randomly generated (linear) data allowed for many of the best 
prediction performances (Fig. 3A). 
 

Real medical datasets 

To complement the simulated datasets, the same direct comparison between 
explanatory modeling and predictive modeling was carried out in common real-world 
datasets (Fig. 4). The quantitative re-evaluation is presented here for four medical datasets 
that are frequently used as examples in data-analysis teaching and textbooks (e.g., 22, 29). 

In the birthweight dataset, standard linear regression was used to evaluate the 
relation of 8 candidate measures to the body weight of 189 newborn babies (Fig. 4A). In this 
approach, the 3 effects that reached statistical significance at p < 0.05 comprised the 
mother's weight at the last menstrual period (p=0.018, lwt), existing history of hypertension 
(p=0.012, ht), and presence of uterine irritability (p=0.002, ui). The in-sample model fit 
amounted to R2=0.141. In the prediction setting, linear models were trained and evaluated 
involving the same data. The best estimate of the explained variance expected in babies that 

not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/327437doi: bioRxiv preprint first posted online May. 21, 2018; 

http://dx.doi.org/10.1101/327437


  11 
 

we would see in the future reached only R2=0.08 (as measured by unbiased out-of-sample 
prediction) based on the full set of 8 input measures. After predictive variable selection 
“silenced” the influence of the age of the mother and the number of physician visits during 
the first trimester (ftv), the remaining 6 active measures still allowed for a prediction 
performance of R2=0.06. These appeared to be a predictive core subset among the input 
measures because at 5 out of 8 coefficients the linear model prediction diminished to be 
worse than the average model. Comparing the strongest measures identified by classical 
inference and pattern prediction by explicit model checking on the birthweight data, a few 
input variables easily reached significance. However, relying on the same data, it was 
challenging to obtain a predictive model with convincing pattern generalization to new data 
points, despite the reasonable sample size. 

In the prostate cancer dataset, none of 8 input measures turned out to be statistically 
significantly associated with prostate-specific antigen (PSA) in 87 men (Fig. 4B). This 
molecule is widely used by medical doctors for cancer screening and monitoring to guide 
whether or not to surgically remove the prostate gland. Cancer volume (lcavol) was closest 
to being judged important with p=0.081. In contrast, the estimated prediction accuracy 
achieved R2=0.42 with 8/8 coefficients, R2=0.42 with 5/8 coefficients, R2=0.38 with 3/8 
coefficients, and still R2=0.35 with 2/8 coefficients. Notably, the single most useful measure 
to predict a man’s PSA concentration in these data was the cancer volume with an explained 
population variance of R2=0.25 with 1/8 coefficients (lcavol). That is, despite lacking 
statistical significance, we found coherent predictive patterns in the data that were reliably 
extracted. The combined information from several variables was required to achieve the 
higher prediction performances. The prediction approach also detailed that lcavol > svi > 
lweight carry the most relevant information to forecast a man’s PSA level. The ordered 
ranking coincided with the absolute beta coefficients obtained using linear regression. In the 
prostate cancer dataset, in-sample model estimation reverberated with (all three positive) 
variable importance in out-of-sample prediction performance but was in disagreement with 
the obtained insignificant p-values. 
 In the diabetes dataset, disease progression after one year was to be derived from 
10 measures in 442 patients (Fig. 4C). In modeling for inference, only the body mass index 
(bmi) was deemed significant at p=0.01 among all input variables. This single measure, 
however, only accounted for 3% of explained disease progression in the population when 
modeling for prediction. Adding another predictive variable - s5 - to the linear model with 
bmi, enhanced the prediction accuracy to R2=0.42. Adding more and ultimately all input 
variables into the model led to small additional improvements in prediction performance 
(R2=0.46). In fact, s5 showed the highest positive beta coefficient (at the beginning of the 
regularization path, where small sparsity constraint was imposed) but did not turn out as the 
final variable remaining in the model. Summing up the results on the diabetes data, the 
single significant variable carries negligible information to achieve reliable prediction in new 
data; only when s5 is incorporated in the predictive model, very good predictions was 
achieved in new patients not yet witnessed by the model. 
 Finally, in the FEV dataset, the lung capacity captured as forced expiratory volume 
(FEV) was to be derived from 4 measures in 654 healthy individuals (Fig. 4D). All input 
variables easily reached the statistical significance threshold. Yet, a predictive model built 
from the same data revealed that considering body height alone performed virtually on par 
with predictions based on all 4 coefficients (R2=0.74 versus R2=0.76). That is, age, gender and 
smoking habits all easily reached statistical significance, but offered little added value for the 
purpose of prediction. In the case of lung capacity prediction, the predictive variable 
selection concurred with the highest absolute coefficient in both approaches to determined 
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importance. Here the prediction regime has probably missed the mechanistically relevant 
influence of smoking on lung capacity by pragmatic predictions based on body height alone. 
The high significance of all input variables may have been facilitated by the comparably high 
sample sizes. 
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Discussion 

Exploring a battery of empirical simulations and several biomedical datasets offered 
insight into asymmetric tendencies between seeking accurate predictions in new individuals 
and identifying statistically significant effects across individuals. While prediction and 
inference share a first step of estimating linear-model coefficients, the difference arises in 
what the data analyst decides to do next with the fitted model. 

Charting a broad spectrum of data analysis scenarios possible in everyday research, 
statistically significant relationships were not always a guarantee to also achieve successful 
predictions when applying the model to other individuals. To restate, effects robust at the 
conventional significance level of p < 0.05 varied between virtually no and almost 100% 
explained variance in fresh data. By contrast, effects not significant at p < 0.05 mostly failed 
to deliver useful predictions in data from unseen individuals. In short, predictability appears 
to be a demanding criterion because even small predictive performances typically coincided 
with finding underlying significant statistical relationships in almost all cases. However, even 
statistically strong associations with very low p-values shed only modest light on their value 
for the goal of prediction based on the same data. 

Researchers in most empirical sciences face questions of data analysis. What does it 
mean that a measure is ‘important’ or not? Statistical significance identified important 
variables based on (in-sample) deviation from a theoretical non-effect that is unlikely 
explained by noise. Out-of-sample prediction, instead, discarded unimportant variables if the 
omission did not diminish the empirical model performance on unseen data. P-values were 
computed by whether an input measure would take the actually obtained value at most 1 in 
20 times if its impact on the outcome is not important. An official report of the American 
Statistical Association (ASA) emphasized that ‘Statistical significance is not equivalent to 
scientific, human, or economic significance’ (10). Hence, an association between a candidate 
gene and diabetes grounded in a statistically significant p-value may not necessarily imply 
that the same gene can be used to successfully predict whether a given individual is affected 
by that disease. On a related note, in psychology and other empirical sciences (39-42), there 
is accumulating evidence for a replication crisis. Significant results published in a scientific 
paper are in many cases not substantiated when the identical experiments and data analyses 
are conducted again at a later point in time. We used a predictive method considered 
variable ‘importance’ in a different way. A variable was considered relevant if leaving it out 
hurt the overall prediction accuracy when applying the previously built model was explicitly 
checked on fresh observations (2). Some authors believe that such empirical validation 
procedures to establish importance may increase in the future due to adoption of code and 
data sharing. These expanding practices can promote across-study and across-method 
confirmation (43). 

In fact, ‘importance’ in quantitative research has probably no uniform theoretical 
basis (2, 44); and can therefore take different forms and shapes even in the canonical linear 
model. A statistical method that produces importance assessments still requires the 
informed judgment of the investigator how far the conclusions should be trusted. The initial 
choice of analysis method may be more or less well aligned with the substantive research 
question. Put differently, using p-values or prediction accuracies for backing up research 
claims have both flaws and each is insufficient in some way (1, 27, 29). The ASA statement 
recommended: ‘No single index should substitute for scientific reasoning’ (10) - a viewpoint 
shared by other prominent investigators (45, 46). In particular, Ioannidis and colleagues 
recently stressed monocultural training of biomedical scientists in statistical null-hypothesis 
testing as one reason behind frequent misuses of statistical methods (47). 
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Conclusion 

Our quantitative investigation exposed how linear models - a workhorse in many 
areas of biomedical research - can be used with distinct and partly incompatible motivations. 
Using these tools for the purpose of inference is ideal to uncover characteristics of biological 
processes. Using linear modeling for the alternative purpose of prediction is particularly 
suited for pragmatic forecasting of biological processes, potentially including clinical 
endpoints in individual patients. Some statisticians therefore proposed that data-analysis 
applications should be primarily distinguished by the modeling goal, rather than strictly 
cataloguing each method under an umbrella term, such as ‘statistics’ versus ‘machine 
learning’, ‘hypothesis-based’ versus ‘data-driven’, or ‘confirmatory’ versus ‘exploratory’ (43, 
48). It is critical for investigators and practicing medical doctors to acknowledge the 
incongruent modeling philosophies of drawing statistical inference and seeking algorithmic 
prediction, as well as their non-identical scopes of interpretation (2, 49). Statistical literacy 
may become increasingly relevant for taking rigorous and reproducible steps on our journey 
to personalied medical care, with the prospect to benefit the well-being of suffering 
patients. 

More broadly, the prediction-inference dilemma may also remind us of some ideas of 
Claude Bernard - a pioneer of controlled experiments in biomedicine (50). Prediction may be 
closer to what he called ‘empirical medicine’ oriented towards practical patient care as an 
often theory-free endeavor, such as symptom monitoring, risk assessment, and choosing 
therapeutic intervention. Statistical inference may bear a more direct relationship to his 
conceptualization of ‘scientific medicine’ aimed at elucidating unknown principles underlying 
biological processes driven by theory, such as asking for the reasons why certain individuals 
are at risk for disease onset or illuminating why a certain drug works better in some 
individuals than others. 

In approaching a future of precision medicine, it may become central that 
mainstream statistics or machine learning are related but importantly different. We 
demonstrated that diverging conclusions can emerge even when the data are the same and 
widespread linear models are used (8). Awareness of the strengths and weaknesses of both 
"data-analysis cultures" is unavoidable to fully benefit from the accelerating data deluge in 
biology and medicine. 
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Figure Legends 

Figure 1 

 

Predictability versus significance of effects in simulated datasets. Based on 113,400 simulations, the 
discrepancy between predictive and explanatory modeling was quantified in a wide range of possible 
data-analysis cases. The generated variables and outcomes were analyzed by linear models with the 
goal to draw classical inference (smallest p-value among all model coefficients, x axis) and to 
evaluate model forecasting performance on never seen data (out-of-sample R2 score of the model, y 
axis). A) Hexagonal binning summarizes how many simulations led to a particular relation between 
prediction and inference in a 2D histogram. This area-by-area visualization was proposed for 
aggregating data with many observations (51). B) Predictive accuracy and statistical significance are 
juxtaposed with their relation to the commonly applied thresholds at p < 0.05, p < 0.01, and p < 
0.001 (bigger grey circle means bigger sample size). C) Prediction accuracy is compared to the effect 
size derived from the explained variance on the model fitting data (in-sample R2 score of the model). 
In the large majority of conducted data analyses, at least one input variable was significantly related 
to the response variable at p < 0.05 (red dashed vertical line). However, based on the same data, we 
observed considerable dispersion in how well such significant linear models were able to make useful 
predictions on fresh observations. 
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Figure 2 

 

Properties underlying analysis results of simulated data. Explore in more detail how linear modeling 
for significance testing (smallest p-value, x axis) and linear modeling for prediction (out-of-sample R2 

score, y axis) agreed and diverged across constructed datasets. A) Increasing the number of available 
data points eventually yielded co-occurrences of strong significance and prediction. B) Small numbers 
of relevant predictors allowed for scenarios with highly significant p-values in combination with poor 
predictive performance. C) Increasing correlation between the input measures, common in biological 
data, appeared to worsen the p-values more than the prediction performance. D) Increasing random 
variation in the data, which can be viewed as imitating measurement errors, appeared to decrease 
the predictability more systematically than the significance. E) Pathological settings, where the 
chosen model does not correspond to the data-generating process of the input and output variables, 
tended to enhance both significance and predictions. F) Fitting a linear model to data with increasing 
non-linear effects easily reached significance but distinctly varied in predictability of outcomes. 
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Figure 3 

 

Implications of different model violations in simulated data. Explores consequences of applying a 
linear model to datasets that are known to contain non-linear data mechanisms of different types 
and degrees (cf. Fig. 2A). Certain non-linear effects are likely to influence measurements of various 
real biological systems. That is, in everyday data analysis, some misalignment between the data and 
the commonly employed linear model is likely to be the rule rather than the exception. 
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Figure 4 

 

Predictability versus significance in four medical datasets. Integrative plots summarize the 
inferential importance of each linear model coefficients (p-values on x-axis, log-transformed) and the 
predictive importance of coefficient sets (out-of-sample R2 scores on y-axis, obtained from model 
application on data not used for model fitting). A) The body weight is to be derived from 8 measures 
in 189 newborns. 3 out of 8 measures are statistically significantly associated with birth weight at p < 
0.05 (red line). Yet, using the linear model for prediction explained only 8% of the variance in new 
babies (R2=0.08). B) Prostate specific antigen (PSA), a molecule for prostate carcinoma screening, is 
to be derived from 8 measures in 87 men. None of the 8 coefficients reached statistical significance 
based on common linear regression, although the fitted coefficients of the predictive model achieved 
42% explained variance in unseen men. C) Disease progression after one year is to be derived from 
10 measures in 442 diabetes patients. Body mass index (BMI) gave the only significant coefficient 
(p=0.01), which alone however explained only an estimated 3% of disease progression in future 
patients. The full coefficients of the predictive model achieve 46% explained variance in independent 
patients. D) Lung capacity as quantified by forced expiratory volume (FEV) is to be derived from 4 
measures in 654 healthy individuals. All measures easily exceeded the statistical significance 
threshold. However, a predictive model incorporating body height alone performed virtually on par 
with predictions based on all 4 coefficients (R2=0.74 versus R2=0.76). In sum, linear models can show 
all combinations of predictive vs. not and significant vs. not in biomedical data analysis. 
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