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Introduction 21

Coral reefs host 25% of the marine biodiversity but are increasingly subject to global 22 ocean-climate changes and local anthropogenic activities [START_REF] Bellwood | Confronting the coral reef 14 crisis[END_REF]). Fine-scale 23 monitoring of coral reef ecosystems and associated ecosystem services is needed for 24 their management and spatial planning. Coral reef mapping usually relies on remote [START_REF] Madin | Ecological consequences of major hydrodynamic 26 disturbances on coral reefs[END_REF] sensing for cost-effectively identifying their structural complexity, benthic 
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Neurons n i are hereinafter based on hyperbolic tangents. ANN constrained by a 3 single hidden layer provided with two neurons so the number of neurons to be in 4 synergy with the number of inputs (predictors, Fig. 3). Trained by the 275 calibration 5 samples, the ANN will be validated by the remaining 135 validation samples. 6 Figure 3 7

Performance analysis 8

The agreement between validation and classified pixels in the five ecological states was 9 quantified using the confusion matrix, from which overall, producer's and user's 10 accuracies (OA, PA and UA, respectively) were computed [START_REF] Congalton | Assessing the accuracy of remotely sensed data: 45 principles and practices[END_REF]. 11

PA and UA were calculated as the correctly classified pixels in each coral state divided 12 by the number of calibration pixels of the corresponding state, and the total number of 13 pixels that were classified in that state, respectively. OA was reckoned as the correctly 14 classified pixels in all states divided by the total number of pixels. 15

Results 16

Local coral reef state at very high resolution 17

The OA of the ANN classification reached a satisfactory performance (OA=0.75), [START_REF] Collin | Enhancing coral health detection using spectral diversity 19 indices from worldview-2 imagery and machine learners[END_REF] showing that the dual combination of LiDAR surface and intensity variables had a 19 robust explanatory power of the variability of coral reef states ( 

Moorea coral reef state at very high resolution 29

Insofar as the ANN prediction was adequate enough to be extended, the digital 30 ecological classification was mapped at the island scale. Moorea LiDAR DSM and DIM 31

were first rasterized at 0.5 m spatial resolution (Fig. 5a and5b) and then entered as 32 inputs to the ANN classification, which produced a digital model of coral reef 33 ecological state over the whole island (Fig. 5c 

Very high resolution mapping of coral reef state using airborne 1 bathymetric

 1 Very high resolution mapping of coral reef state using airborne bathymetric LiDAR surface-intensity and drone imagery LiDAR surface-intensity and drone imagery 2 Very high resolution (VHR) airborne data enable detection and physical 3 measurements of individual coral reef colonies. The bathymetric LiDAR system, 4 as an active remote sensing technique, accurately computes the coral reef 5 ecosystem's surface and reflectance using a single green wavelength at the 6 decimetre scale over 1-to-100 km 2 areas. A passive multispectral camera 7 mounted on an airborne drone can build a blue-green-red (BGR) orthorectified 8 mosaic at the centimetre scale over 0.01-to-0.1 km 2 areas. A combination of these 9 technologies is used for the first time here to map coral reef ecological state at the 10 submeter scale. Airborne drone BGR values (0.03 m pixel size) serve to calibrate 11 airborne bathymetric LiDAR surface and intensity data (0.5 m pixel size). A 12 classification of five ecological states is then mapped through an artificial neural 13 network (ANN). The classification was developed over a small area (0.01 km 2 ) in 14 the lagoon of Moorea Island (French Polynesia) at VHR (0.5 m pixel size) and
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  review and synthesis." Marine pollution bulletin 50(2): 125-146. 5 Goodman, J.A., J.P. Samuel, and R.P. Stuart. 2013. Coral reef remote sensing. A guide for 6 mapping, monitoring and management. Springer: Netherlands. 7 Hedley, J.D., C.M. Roelfsema, I. Chollett, A.R. Harborne, S.F. Heron, S. Weeks, W.J. Skirving, 8 A.E. Strong, C.M. Eakin, T.R.L. Christensen, V. Ticzon, S. Bejarano, and P.J. Mumby.
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 917234 Figure 1. (a) Moorea Island (French Polynesia) was surveyed by bathymetric LiDAR at island

Figure 5 .

 5 Figure 5. Digital (a) surface, (b) intensity (532 nm wavelength), and (c) coral reef state

2. Materials and methods 31 2.1. Study site 32

  

	1 1	reef bathymetry and derived terrain roughness at very high resolution (VHR) using the 2.2. Drone visible response
	2 2	photogrammetry approach (Leon et al. 2015; Casella et al. 2017). The 3D point cloud, A drone-based spectral survey (Fig. 1b) was carried out on 17 August 2015 using a
	26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 23 24 25 26 27 28 29 30 33 34 35 36 37 38 39 40 41 42 43 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 13 14 15 16 12 13 14 15 17 18 19 21 22 20	composition, and regime surrogates over large areas (Goodman, Samuel and Stuart 2013; Hedley et al. 2016). Spaceborne multispectral imagery demonstrates great spatial potential to accurately map coral reef colonies (Collin, Hench, and Planes 2012), habitats (Collin et al. 2016), health (Collin and Planes 2012; Collin, Archambault, and Planes 2014) and resilience (Rowlands et al. 2012; Knudby et al. 2013; Collin, Nadaoka, and Bernardo 2015). Airborne passive hyperspectral imagery, provided with dozens of spectral bands, enables coral reef benthos, substrates and bathymetry to be significantly improved (Leiper et al. 2014). Airborne (usually on manned aircraft) active light detection and ranging (LiDAR) is now the reference system for measuring bathymetry, outperforming waterborne sound detection and ranging (SoNAR) devices, which are strongly impeded by shallow features, specifically in the coastal realm where coral reefs thrive (Costa, Battista, and Pittman 2009). LiDAR-derived morphometry indices can reveal efficient proxies for ecosystem characteristics, for example, estimates of reef fish assemblages (Wedding et al. 2008). Yet despite the increase in discrimination power showed over benthic habitats bathed with turbid waters, LiDAR indices have not been used to date to exploit the spectral information associated with water-penetrating green LiDAR wavelength for coral reef monitoring (Collin, Archambault, and Long 2008; Collin, R e v i e w O n l y future states of the social-ecological system in support of scenario-based planning (Davies et al. 2016). We follow a drone-based assessment of ecological state (coral reef state classification; Table 1) and combine it with LiDAR-based data to spatially classify the coral reef state at VHR over a small area and then extend this to the whole island. Findings are discussed with a view to how this approach could advance an automated workflow for coral reef mapping. Figure 1 Table 1 The study site is located in the northern lagoon of Moorea Island (17°33′S, 149°50′W) in the Society Archipelago (French Polynesia, Fig. 1a). Moorea demonstrates a highly resilient coral reefs (Adjeroud et al. 2009), especially its outer slope, which following the extremely low coral cover (2%) due to 2007-2010 outbreak of corallivore crown-of-thorne sea star (Acanthaster planci) and 2010 Oli cyclone strike, is recovering to record rates close to 70% (Chancerelle, pers. comm.). Located inside the 46.83 km 2 Moorea lagoon, the study site covers 11 710 m 2 with maximum depth of 2 m. It is bathed in oligotrophic, thus clear, seawater including various taxa of reef building corals (Porites, Acropora, Pocillopora, Montipora), red calcareous algae (Lithothamnium), fleshy algae (red, brown and green) and a diversity of geomorphic features (rubble, sand and pavement). R e v i e w O n l y Archambault, F o r P e e r permitting 2D orthorectified BGR mosaics and 2.5D digital surface models (DSM), results from the multi-angle information of a single scene made possible by spatially-BGR camera (GoPro Hero 4) mounted on a consumer-grade drone (DJI Phantom 2). even acquisition of BGR imagery from a moving airborne drone flying at low altitude Calm sea and low sun elevation angle were optimal conditions for this survey. A series (from 30 to 150 m): so-called "structure-from-motion". The images and by-products of 360 geolocated BGR photographs, acquired at 30 m altitude at nadir, were mosaicked yield spatial resolution at centimetre scale (i.e., 0.03 m pixel size). Coral reef states can then processed using the photogrammetry software Agisoft Photoscan be significantly distinguished using the resulting 0.03 m BGR orthomosaic drone (http://www.agisoft.ru). Constrained by nine ground control points and three scale bars, dataset, enabling classification of reef ecological states. the resulting orthorectified mosaic (WGS 84 datum and UTM 6S projection) has 0.03 m Here we describe methodology for creating the first coral reef ecological state resolution (see Casella et al. 2017 for further details) and was therefore deemed as map at VHR based solely on regional airborne LiDAR "predictors" trained with local precise enough to be used as air-truth (Fig. 1c, Collin, Lambert, and Etienne 2018). A "response" imagery from drone. The bathymetric LiDAR Riegl VQ-820-G, mounted on total of 410 sampling points over the BGR orthomosaic, corresponding to as many a small plane or helicopter, serves as the remotely-sensed 1-to-100 km 2 predictors with four measurements of surface and intensity (green) per m 2 . The BGR GoPro, mounted on a consumer-grade airborne drone (DJI phantom 2), is used as the remotely-sensed 0.01-to-0.1 km 2 response. Spearheading machine learners in satellite-based coastal prediction (Collin, Etienne, and Feunteun 2017), an artificial neural network (ANN) LiDAR soundings, were visually interpreted by an expert and classified into five ecological states (Fig. 2a and Table 1), each one composed of 55 training and 27 F validation sub-datasets. o Figure 2 r classifier is developed to provide a robust, yet simple, algorithm linking the two datasets. Our study takes place on one of the best-studied islands in the world (Cressey 2015): Moorea (French Polynesia, Fig. 1), a volcanic island with fringing, barrier and outer coral reefs in the central South Pacific Ocean. It contributes to efforts to build a 4D model -an Island Digital Ecosystem Avatar (IDEA) -of Moorea and to simulate of r e e P 2.3
		3 4

and Long 2011; Collin, Long, and Archambault 2011). 44 Unmanned airborne vehicles (UAVs, or simply 'drones') are becoming an 45 integral component of the scientific toolbox for coral reef research and management. 46 Equipped with blue-green-red (BGR) spectral cameras, drones are able to measure coral 47

. LiDAR surface and intensity predictors 16

  , functions called neurons, n i (Heermann and Khazenie 1992): 1

		weighted, w i
		F o r
		P e
		e r
	24 25 26 27 28 29	fly for each sounding by converting the time between sea surface and bottom green echoes R e v into distance (knowing the light speed into water), and by recording the peak of bottom green echo, respectively. Maximum depth ever recorded by bathymetric LiDAR i e reached 76.1 m in Moorea Island during the studied survey (Pastol, Chamberlain, and Sinclair 2016) given the water clarity due to oligotrophic waters. Since our Moorea w
	30 31 32 33 34 35	study limits to the shallow waters (< 10 m depth), LiDAR intensity has been directly processed with no water correction. As each LiDAR surface and intensity sounding is duly located by the combination of HR global navigation satellite system and inertial O measurement unit, digital surface and intensity models (DSM and DIM, Fig. 2b and 2c) can be calculated using ordinary kriging method applied to LiDAR sounding clouds. n l LiDAR points and rasters were geographically referenced to WGS84 UTM 6S and y
	36	altimetrically zeroed as the mean sea level (SHOM 2016). Drone-derived imagery was
	37	registered with LiDAR data using a 1 st degree polynom function and resampled with
	38	cubic convolution.
	39	2.4. Artificial neural network classification
	40	Given their performance in a comparative analysis (Collin, Etienne, and Feunteun
	41	2017), we use an ANN approach as a classification procedure binding the drone-based
		air-truth and LiDAR-based variables.
		5

The airborne LiDAR campaign was conducted from 10 to 26 June 2015 (one month 17 before the drone flight) using a Riegl VQ-820-G hydrographic laser scanner mounted 18 on a small plane. The sensor was operated at 251 kHz, providing minimum sounding 19 density of four points per m 2 (0.5 m) and vertical accuracy of 0.15 m, computed from 20 43798 comparisons (Pastol, Chamberlain, and Sinclair 2016). This bathymetric LiDAR 21 pulses an electromagnetic radiation (532 nm wavelength, namely green) from the 22 aircraft and records its travel time in air and water by means of a waveform (Collin, 23 Archambault, and Long 2008). LiDAR surface and intensity are computed on-the-42 The ANN builds non-linear classifications by minimizing least squares using a 43 multi-layer perceptron classifying ecological state response, h(X), (Table 1) with the 44 LiDAR surface and intensity predictors, X, through a constant, k, and intermediate 45
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	1 1	4. Discussion nm, as the third harmonic of the 1064-nm laser), likely to detect the coral fluorescence C.
	2	as well as intermediate states (Sasano et al. 2012).
	2	4.1. Airborne drone as "air-truth"
	3 3 5	The five coral reef ecological states were based on VHR BGR orthorectified mosaic 4.3. Moorea coral reef states' spatial patterns Moorea Coral Reef LTER (OCE-1236905 and 1637396) and Physical Oceanography (OCE-
	4 4 6	derived from a consumer-grade multispectral camera driven by an airborne drone. This The coral reef state classification, spatially-classified at VHR, is a strong asset to outline 143133) programs. Two valuable referees and the editor are deeply acknowledged for the
	5 5 7	innovative procedure is supported by our knowledge of in situ coral reef features that hotspots of health coral reefs, thus of associated biodiversity and ecosystem services. manuscript improvement.
	F o r can be discriminated at the centimetre scale. Insofar as both ecological composition and structural complexity are easily deduced from the BGR dataset, relatively inexpensive drone deployment can be used to obtain air-truth data directly even in places with little technical capacity. The geolocated photographs can be remotely processed and analysed in the cloud, given a suitable internet connection. With an easy-to-implement flight planning mobile application, rapid surveys could be conducted at even very remote locations with little infrastructure/capacity after short-terms events such as cyclone/storm and bleaching. The number of states could be increased by either flying at lower altitude (to gain in spatial resolution) or using drone-mounted LiDAR that can enhance the vertical accuracy, for example, to differentiate coral from macroalgae F o r The centimetre and decimetre scales targeted in this study greatly enhance the spatial resolution of coral reefs' diagnoses and prognoses, surpassing other recent studies using object-based image analysis, which bottom at 2 m or 10 m (Phinn, Roelfsema, Mumby 2012; Roelfsema et al. 2013). LiDAR-based spatially-explicit classification, provided with decimetre sounding density over 100 km 2 , offers an unpublished map of Moorea coral reefs' health. Two main spatial patterns emerged from the spatially-explicit classification: westward polarization of healthy fringing reefs and northward polarization of healthy barrier reefs. Wide healthy fringing reefs along west shorelines strongly contrast with thin ones along eastern coast. This outstanding geographic difference is very susceptible to F o r 8 F 6 7 8 9 10 11 12 13 14 15 6 7 8 9 10 11 12 13 14 15 o r
	16 17 18 19 20 21 16 17 18 19 20 21	P e e r The use of this air-truth, in the form of a cost-efficient UAV-borne BGR (Leiper et al. 2014). orthomosaic, has a strong potential to be applicable to other worldwide coral lagoons and even to a large panel of coastal and aquatic areas, provided with relatively clear waters. This air-truth leverages a high ratio of covered space unit per time unit while collecting centimetre-scale data, considerably outperforming submerged acquisitions, P e e r be the consequence of the dominant easterly winds (i.e., Southeast trade winds), which entail significantly greater amounts of rain then carried sediment, which, in turn, deposit onto and stress coral colonies (Fabricius 2005), impeding development of eastern fringing coral reefs. P e P e More extended barrier reefs are obvious in the northern compared to southern lagoon. This patterning might be explained by the two dominant swell systems e r e r
	22 23 24 22 23 24 25 26 25 26 27 28 29 27 28 29	R e v i e w hindered by the very high viscosity of water. 4.2. Airborne LiDAR surface and intensity The gradient of ecological states (from 1, well-developed hard coral, to 5, sand) was positively correlated with both surface (r=0.93) and intensity (r=0.93), showing that R e v originating from South: 40% SE and 25% SSW (Etienne 2012). Swell average height tends to be higher than 4 m during Austral winter, what creates, at the reef, significant wave height greater than 8 m (e.g. Teahupoo spot in Southern Tahiti Iti, Etienne 2012). The exposure to this high to very high energy flow hinders the efficient settlement of R e R e coral larvae and breaks the coral assemblage structure (Madin and Connolly 2006). This v v coral coverage decreases with depth and LiDAR green reflectance. The coral shrinkage with depth can be explained by the coral growth and structural complexification towards the surface (as a photosynthetic symbiont), what corroborates results derived from a spaceborne reef health proxy (Collin, Hench, and Planes 2012). The negative i e w interpretation is corroborated by the third dominant swell system (22% NE, Etienne 2012), which constrains NE lagoon to exhibit slightly less extended barrier reefs compared to NW. i e i e w w
	30 31 32 33 34 35 36 30 31 32 33 34 35	O n l y trend between coral state and green reflectance coincides with in situ spectral measurements, making explicit a greater reflectance of increasingly depigmented blue-and brown-mode coral reefs in the coral health chart (Leiper et al. 2009). This increase in green reflectance (decrease in green absorbance) is linked to the loss of peridinin pigments contained in symbiotic zooxanthellae living in coral tissues (Collin and Planes 2012). Even if most bathymetric LiDAR systems use the single green wavelength, this electromagnetic radiation is relevant to distinguish coral reef state as highlighted in the O n l y 5. Conclusion This original research has demonstrated that airborne bathymetric LiDAR data are able to reliably map five ecological states in coral reef systems at VHR over shallow, clear O O waters. Reef state information can be gleaned from an airborne drone equipped with a multispectral imaging sensor. Novel findings can be summarized as follows: n l n l (1) Coral reef state at the colony-scale (pixel size = 0.03 m) can be sourced from a y y
	37 36	elaboration of both the green-purple and the "red edge"-green normalized difference BGR camera mounted on an airborne low-altitude drone;
	38 37	ratios (Collin, Hench, and Planes 2012; Collin, Archambault, Planes 2014, (2) LiDAR surface and intensity are powerful predictors of coral reef ecological
	39 38	respectively). state at the colony-scale (pixel size = 0.03 m);
	40 39 34 41 40 35 42 41 36 43 42 37 44 43 38 40 46 39 45 44	, 40364 × 34588 pixels). Moorea classes Inner classification results (UA) revealed that coral-and sand-dominant states (3) ANN is an efficient classification approach to predict ecological state based only are dominated by sand on pavement (56.8%), followed by Porites stony corals (14.1%) (1, 3 and 5) were successfully recognized, contrary to both assemblages of corals and LiDAR surface and intensity (OA=0.75); and Microalgae on rubble (13.8%), then Acropora/Pocillopora/Montipora stony corals rubble colonized by calcareous and micro-algae (2 and 4), respectively. We could (4) LiDAR surface and intensity are powerful predictors of ecological state at the with red calcareous algae (10.9%), and finally Acropora/Pocillopora/Montipora stony assume that the spectral mixing due to the presence of algae on relatively "pure" states landscape scale (pixel size = 0.5 m); corals (4.4%). Overall, the coverage of hard corals (from state 1 to 3) appears was not very effectively resolved by the ANN classifier built from only LiDAR surface (5) Healthy fringing and barrier coral reefs in Moorea are located on the western significantly greater in the leeward side than the windward side. Figure 5 innovative bathymetric LiDAR, augmented by an added spectral wavelength (i.e. 355 and intensity. We advocate the experiment of a coral reef state classification using an and northern parts of the lagoon, respectively.
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Table 1 .

 1 Ecological description of the five coral reefscape states identified on airborne drone 1 blue-green-red imagery (0.03 m spatial resolution) enabling a coral reef state classification to be 2 created and colour-coded.

	3					
	Drone-					
	based state					
			Acropora/			
	Ecological compositio n	Acropora/ Pocillopora/ Montipora stony corals	Pocillopora/ calcareous Montipora stony corals with red	Porites stony corals	Microalgae on rubble	Sand on pavement
			algae			
	Structural	Very High	High	Medium	Low	Very low
	complexity	roughness	roughness	roughness	roughness	roughness
	Coral reef state	1	2	3	4	5
	Colour					
	class					
	4					

Table 2 .

 2 Confusion matrix synthesizing the quality of the artificial neural network classification 5 applied to the independent 135 validation pixels (27 pixels per coral reef state). Page 15 of 14 http://mc.manuscriptcentral.com/tres Email: IJRS-Administrator@Dundee.ac.uk International Journal of Remote Sensing and Remote Sensing Letters

	6								
					Reference class				
		STATE	1	2	3	4	5	Total	UA
		1	21	2	2	0	0	25	0.84
	Classified class	2 3 4	4 1 0	17 3 1	3 20 1	1 2 19	0 1 7	25 27 28	0.68 0.74 0.68
		5	0	1	2	3	24	30	0.80
		Total	26	24	28	25	32	135	
		PA	0.80	0.71	0.71	0.76	0.75		
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	8								
	9								
	10								
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