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Using laboratory experiments, we investigate the influence of water and sediment discharges on the morphology
of an alluvial fan. In our flume, a single-thread laminar river deposits corundum sand into a conical fan. We record
the fan progradation with top-view images and measure its shape using the deformation of a Moiré pattern. The fan
remains virtually self-affine as it grows, with a nearly constant slope. We find that, when the sediment discharge
is small, the longitudinal slope of the fan remains close to that of a river at the threshold for sediment transport.
Consequently the slope depends on the water discharge only. A higher sediment discharge causes the fan’s slope to
depart from the threshold value. Due to the downstream decrease of the sediment load, this slope gets shallower
towards the fan’s toe. This mechanism generates a concave fan profile. This suggests that we could infer the
sediment flux that feeds a fan based on its proximal slope.
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I. INTRODUCTION18

Alluvial fans are sedimentary deposits which form at the19

outlet of mountain ranges. When a river flows through a moun-20

tain range, the flow-induced shear stress entrains sediment21

particles and carries them downstream. As it reaches the plain,22

the river loses its lateral confinement, and its slope drops.23

These changes induce sediment deposition [1–5]. As the river24

deposits its load, its bed rises until it overflows to find a new25

path. This phenomenon, called avulsion, maintains the radial26

symmetry of the deposit through time [6–8]. The geometry of27

the fan thus depends on the conditions under which it was built.28

Three parameters are known to control the slope of an29

alluvial fan: the water discharge Qw, the sediment discharge30

Qs , and the sediment size ds [9]. Field observations show that,31

in most cases, the slope of the fan increases with ds and Qs ,32

whereas it decreases with Qw [10–12]. There is no consensus33

yet about the physical origin of these relations or about their34

mathematical formulation [12].35

Analogues of alluvial fans are easily produced in the lab-36

oratory, and they accord qualitatively with field observations37

[13–16]. Most authors represent the slope as a function of the38

discharge ratio Qs/Qw and find a positive correlation [17–21].39

This function, however, appears to vary from experiment to40

experiment, suggesting that we investigate the influence of the41

water and the sediment discharges independently [20].42

Guerit et al. [22] have produced an alluvial fan confined43

between two plexiglass plates. This experimental setup dictates44

the width of the river and precludes avulsion, thus simplifying45

the interpretation of the results. When the sediment discharge46

is vanishingly small, the fan adjusts its shape to keep the river’s47

bed near the threshold of motion. Its profile is then virtually48

linear, and its slope depends only on water discharge and49

sediment size. To the contrary, a finite sediment load affects the50
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fan’s shape—it steepens with sediment discharge. As sediment 51

gets deposited along the fan, the slope shallows downstream, 52

resulting in a concave upward profile [12,22]. 53

Building upon this study, we remove the plexiglass plates 54

that confine the flow and build a complete fan with a 55

more realistic geometry. By doing so, we allow the river to 56

(1) spontaneously select its own size and slope [23] and 57

(2) distribute sediment over a self-formed lobe [14,24]. 58

We design an experimental setup to generate an alluvial fan 59

fed by a single-thread channel. We first impose a low sediment 60

discharge, to remain near the threshold of sediment motion, 61

and use the work of Seizilles et al. [25] to express the slope of 62

our fan as a function of the water discharge (Sec. II). We then 63

increase the sediment discharge to investigate its impact on the 64

fan’s profile (Sec. III). Finally, we show that we can infer the 65

water and sediment discharges of a fan from its profile. 66

II. SINGLE-THREAD LABORATORY FAN 67

A. Experimental setup 68

We produce our experimental fan in a 80-cm-wide and 69

50-cm-long tank. At the back of the tank, a 15-cm-high vertical 70

wall simulates a mountain front. At the center of this wall, a 71

2.5-cm-wide tilted channel directs the sediment and fluid 72

mixture toward the tank. The opposite side of the tank is 73

bounded by a trench to evacuate the fluid. To prevent any 74

fluid accumulation at the outlet, the fan lies on a 60-cm-wide 75

and 30-cm-long shelf covered with a 200 μm sieve mesh. This 76

setup allows us to build a fan with an opening angle of 180◦
77

(Fig. 1). 78

We use a viscous mixture of water (40 %) and glycerol 79

(60 %) to maintain a laminar flow, at a Reynolds number 80

of about 50 (density ρ = 1150 kg m−3 and viscosity ν 81

= 7 × 10−6 m2 s). A header tank provides a constant fluid 82

discharge, which value we monitor using an electromagnetic 83

flowmeter (Kobold, MIK-5NA10AE34R). Water evaporation 84

concentrates the glycerol mixture. We measure its density 85
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FIG. 1. Experimental setup. Blue: water-glycerol mixture. Gold:
corundum sediment. Fluid and sediment discharges are Qw and Qs ,
respectively.

twice a day and compensate for evaporation with fresh water.86

As a result, the fluid discharge varies by less than 5% during87

an experiment, an indication that the viscosity of the fluid is88

also reasonably constant.89

At the experiment inlet, a tilted channel mixes the fluid90

with a well-sorted sediment composed of corundum grains91

(crystalline aluminium oxide). We measure the grain size92

using image analysis [d50 = 416 ± 45 μm; Fig. 2(a)] and its93

density using a pycnometer (ρs = 3900 ± 56 kg m−3). At the94

macroscopic scale, the physical properties of the grain translate95

into a friction coefficient (μ = 0.7) and a transport law relating96

the bedload intensity to the shear stress τ , namely,97

qs = q0(θ − θc), (1)

where θ = τ/[(ρs − ρ)gds] is the Shields parameter with g98

the acceleration of gravity [26]. We measure the transport law99

of our corundum sediment with an independent experimental100

setup [22,27,28]. We find a critical Shields number θc = 0.14101

± 0.005 and a prefactor q0 = 33.4 ± 0.7 g s−1 m−1 [Fig. 2(b)].102

To produce a single-thread laboratory fan, the sediment103

discharge has to be low and constant throughout the fan growth.104

To achieve this, we have designed a conveyor-belt sediment105

dispenser. Sediments are stored in a hopper placed over a106

3.5-cm-wide conveyor belt (Norcan). A stepper motor con-107

trolled by an Arduino motor shield drives the belt. To adjust the108

sediment discharge, we can adjust two parameters: the distance109

between the hopper and the belt, and the belt speed. To monitor110

the sediment discharge injected into the experiment, the entire111

device is placed on an electronic scale (Ohaus, Explorer 35),112

which measures the weight of the dispenser every minute.113

B. Radially symmetric alluvial fan114

At the beginning of an experiment, the surface of the115

experimental setup is bare. We start the fluid and sediment116

feed at the same time and keep them constant during the entire117

(a)

(b)

FIG. 2. (a) Sediment-size distribution. (b) Transport law. Blue
dots and error bars: measurements. Red dashed line: Eq. (1), with
q0 = 33.4 ± 0.7 g s−1 m−1 and θc = 0.14 ± 0.005.

experimental run. To monitor the fan evolution, we acquire 118

top-view pictures using a camera fixed above the tank center 119

(Canon EOS 100 D with a Canon 28-105 mm f /3.5–4.5 APO 120

macro 0.5 m/1.6 ft Ultrasonic lens). We record a picture every 121

10 min (Fig. 3). 122

The growth of our fan is similar to the ones of Van Dijk 123

et al. [19] and Reitz and Jerolmack [24]. The flow alternates 124

between a single channel and a thin sheet of fluid covering a 125

portion of the fan. In our case, however, the flow gets more and 126

more channelized as the fan grows. The channel migrates either 127

through the gradual erosion of its banks or through floodings 128

and abrupt avulsion. This series of avulsions allows the channel 129

to explore the entire fan surface, thus maintaining its radial 130

symmetry (Fig. 3). 131

Using the top-view pictures, we measure the evolution 132

of the fan radius. To do so, we develop an algorithm that 133

automatically locates the fan toe. Because the fan color is well 134

defined, we can detect its boundary by applying a threshold. We 135

then measure the average radius of the fan by approximating 136

its boundary by a half circle (red dashed lines on Fig. 3). We 137

find that, typically, the distance from the apex to the boundary 138

varies by less than 5% (Fig. 3). After a transient, which duration 139

depends on the sediment discharge, the fan radius increases like 140

the cubic root of time (Fig. 4). This experimental observation 141

accords with the self-similar evolution of a semiconical deposit 142

for which, based on mass balance, we expect R ∝ (Qst)1/3
143

[24,28]. 144

Because of its radial symmetry, the fan’s shape reduces to its 145

downstream profile. Consequently, to describe the growth and 146

shape of our laboratory fans, we need an accurate measurement 147

of their profiles. 148
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FIG. 3. Top-view pictures of an experimental fan during its growth, run 13 (Qw = 0.33 l min−1 and Qs = 1.68 g min−1). Fluid appears in
blue, sediment appears in white. Red dashed line indicates the measured radius of the fan.

C. Measurement of the fan elevation149

To measure the elevation of our experimental fan, we project150

a Moiré pattern onto its surface with a video projector [29,30].151

We then use the Light3D commercial software to calculate the152

digital elevation model (DEM) of the deposit [31] (Fig. 5).153

To evaluate the accuracy of our measurements, we scan154

the surface of a tray filled with milk and use it as horizontal155

reference. We find that the DEM of the milk surface is affected156

by lens distortion (raw data; Fig. 6). We thus measure the157

elevation of the milk surface at nine levels ranging from 7158

to 134 mm above the bottom of the tank.159

FIG. 4. Evolution of the fan radius (Qw = 0.33 l min−1, Qs from
0.13 to 13 g min−1).

The lens-induced deformation depends on the coordinates 160

of the pixel and on the distance from the lens (raw data; Fig. 6). 161

We thus fit each DEM of the milk surface with a second- 162

order, two-dimensional polynomial. We then evaluate the six 163

coefficients of this polynomial for each elevation. By applying 164

this correction to the measured DEM of the fan, we reduce the 165

uncertainty of its elevation by a factor of about 10 (Fig. 6). 166

After correction, the uncertainty on the measured elevation is 167

less than 400 μm, which corresponds approximately to the size 168

of a sediment grain. 169

D. Self-similar growth 170

The elevation contours of the DEM are well approximated 171

by concentric circles, thus confirming the radial symmetry of 172

the fan (Fig. 5). This property suggests that we can compute 173

the radially averaged profile of the fan with minimal loss of 174

information [24,28] [Fig. 7(a)]. To evaluate how self-similar 175

is the growth of the fan, we normalize its profile by rescaling 176

horizontal and vertical dimensions with its radius, as measured 177

FIG. 5. Digital elevation model (DEM) of an experimental fan
(run 13). Contours are 10 mm apart. Red dashed line indicates the
measured radius of the fan.
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FIG. 6. Profile along the line of maximum deformation of the
reference milk surface at different elevations. Dashed blue lines: raw
data, solid blue lines: corrected data, red lines: actual elevation of the
milk surface.

from the top-view pictures. We find that individual profiles178

differ from their mean by less than 10 % [Fig. 7(b)].179

Based on these observations, we propose to treat the fan’s180

evolution as self-similar. Accordingly, relating the morphology181

of the fan to the input parameters reduces to understanding how182

these parameters control its dimensionless profile.183

Figure 7 shows that we may approximate the fan profile with184

a straight line, at least when the sediment discharge is low. We185

further suggest that the river that feeds the fan controls its slope.186

(a)

(b)

FIG. 7. Radially averaged profiles of an experimental fan (run 4,
Qw = 0.3 l min−1 and Qs = 0.2 g min−1). (a) Six hours separate two
lines. (b) Normalized fan profiles.

FIG. 8. Slope of the fan as a function of the theoretical threshold
slope calculated using Eq. (2) (runs 1 to 6). The red dashed line is a
linear fit with slope A = 1.95.

In the next section, we test this hypothesis using the work of 187

Seizilles et al. [25]. 188

E. Fan near threshold 189

The shape of an alluvial river results from the mechanical 190

equilibrium of its bed [25,32,33]. When a sediment grain is 191

immersed in a river, two forces act on it: gravity and the 192

flow-induced shear stress. When a river transports a small 193

amount of sediment, we expect its bed to remain near the 194

threshold of sediment motion. At the threshold of motion, the 195

normal component of these forces balances the tangential one. 196

Using this assumption and the shallow-water approximation, 197

Seizilles et al. [25] calculated that, for a laminar flow, the 198

threshold slope of a river should read 199

Sh = μ

(
4g

9ν

)1/3(
θc

μ

ρs − ρ

ρ
ds

)4/3 1

Q
1/3
w

. (2)

We now compare this expression to the slope of our 200

experimental fans. We perform six experiments where the 201

sediment discharge, Qs , remains fixed at a low value, whereas 202

the fluid discharge, Qw, varies between experiments (Table I). 203

We then represent the average slope of our experimental fan as 204

a function of the corresponding threshold slope, Sh [Eq. (2)] 205

(Fig. 8). We find that the slope of our experimental fan is 206

proportional to the threshold slope, 207

S = ASh, (3)

where A is a dimensionless coefficient, whose best-fit value 208

is A = 1.95 ± 0.11. If the shallow-water approximation were 209

perfectly accurate, this coefficient would be one. The value of 210

A we find by fitting our observations, however, depends on the 211

parameters of Eq. (2) and therefore inherits their uncertainty. 212

In Eq. (2) the value of the critical Shields parameter is the 213

least reliable. Although we carefully estimated its value with a 214

dedicated setup [Fig. 2(b)], this measurement remains a matter 215

of debate [34]. Moreover, the critical Shields number is raised 216

to the power 4/3 in Eq. (2). An error on its measurement has 217

therefore a significant impact on the value of the threshold 218

slope Sh. 219
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TABLE I. Experimental parameters for the experimental runs.

Constant sediment discharge Constant fluid discharge

Qs = 0.2 ± 0.002 g min−1 Qw = 0.33 ± 0.02 l min−1 Qw = 0.73 ± 0.02 l min−1

Run Fluid discharge Run Sediment discharge Run Sediment discharge Run Sediment discharge
(l min−1) (g min−1) (g min−1) (g min−1)

1 0.9 ± 0.02 7 0.13 ± 0.0084 13 1.68 ± 0.048 18 0.82 ± 0.024
2 0.8 ± 0.02 8 0.49 ± 0.0056 14 3.08 ± 0.12 19 4.9 ± 0.15
3 0.4 ± 0.02 9 0.68 ± 0.013 15 4.83 ± 0.14 20 8.1 ± 0.28
4 0.3 ± 0.02 10 0.74 ± 0.016 16 6.18 ± 0.26
5 0.25 ± 0.02 11 0.77 ± 0.019 17 13 ± 0.36
6 0.2 ± 0.02 12 1.22 ± 0.028

Regardless of the value of A, for a low sediment discharge,220

we find that the fan’s slope remains close to the threshold slope221

of an alluvial river, indicating that the fan inherits its slope from222

the river that builds it. We now investigate the influence of the223

sediment discharge on the fan’s profile.224

III. DEPARTURE FROM THRESHOLD: INFLUENCE OF225

SEDIMENT DISCHARGE226

A. Sediment transport along the fan227

To evaluate the influence of the sediment discharge on the228

morphology of the fan, we perform 14 additional experiments229

with different values of Qs (Table I). We evaluate the error on230

the sediment discharge by estimating geometrically the volume231

of sediment deposited in the inlet channel.232

The observations of Sec. II B show that the deposit is radially233

symmetric, thus the spatially averaged profile of the fan suffices234

to represent its shape. Moreover, the fan grows self-similarly,235

which allows us to further average the resulting profiles236

(Sec. II D). To do so, we normalize each profile by dividing237

its horizontal and vertical coordinates by its radius. Figure 9238

shows essentially linear profiles, which steepen with sediment239

discharge. As the latter vanishes, the fan tends towards a cone240

at threshold, in accord with Sec. II E.241

FIG. 9. Normalized fan profiles for five experiments (Qw =
0.33 l min−1, Qs from 0.13 to 13 g min−1).

We now consider the influence of a finite sediment discharge 242

on the fan’s slope. Because alluvial fans are depositional 243

systems, only near the apex does the sediment discharge equals 244

the input. Accordingly, we consider only the proximal slope 245

Sp of our fans, where r/R < 0.4 (Fig. 9). However, the inlet 246

disturbs the profile, which can be flat or even convex near 247

the apex (Fig. 9). To avoid this disturbance, we measure the 248

proximal slope, Sp, where the dimensionless radius, r/R, lies 249

between 0.1 and 0.4 (proximal area on Fig. 9). 250

In our experiments, the water discharge takes two values 251

(Table I, run 7 to 20) and so does the associated threshold slope, 252

Sh (Sec. II). To investigate the departure from this threshold 253

slope, we first normalize the proximal slope of our fans with the 254

threshold slope, Sp/Sh. We then represent this dimensionless 255

slope as a function of the dimensionless sediment discharge 256

Qs/(q0ds), where q0 is the prefactor of the transport law 257

[Fig. 2(b)] and ds the sediment size (Fig. 10). 258

Our observations gather around a single curve the plane 259

defined by the dimensionless sediment discharge and slope, 260

suggesting that normalizing the fan’s slope with Sh removes the 261

influence of water discharge. This finding accords with Guerit 262

et al. [22], who were also able to separate the influence of water 263

and sediment discharges, although with the different functional 264

form that corresponds to the geometry of their experiment. 265

l

FIG. 10. Normalized proximal slope as a function of the dimen-
sionless sediment discharge. Red dashed line: Eq. (4).
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We now propose to fit our experimental data with the266

following expression:267

S

Sh

= A

(
1 + B

Qs

q0 ds

)α

, (4)

where B and α are dimensionless coefficients which we need268

to fit to our data. By definition, A is the ratio of the measured269

threshold slope to the theoretical threshold slope [Eq. (3)]. A270

least-mean-square fit of the three parameters yields A = 1.85271

± 0.19, B = 0.18 ± 0.09, and α = 0.32 ± 0.02. This value of272

A is close to the one of Sec. II E (Figs. 8 and 10).273

Based on Eq. (4), we can now define rigorously what “a274

small sediment discharge” means. When Qs/(q0 ds) is much275

smaller than one, the influence of the sediment discharge on the276

fan profile is negligible. We then recover the threshold slope277

defined in Sec. II E.278

Equation (4) formulates sediment transport at the scale the279

river [as opposed to the local transport law of Fig. 2(b)]. It is a280

function of the river’s slope, and therefore of the fan’s, which281

results from the internal equilibrium of the river. We now inject282

this empirical transport law into the sediment mass balance to283

calculate the fan profile.284

B. Fan profile285

The fan grows from sediment deposition, a process formal-286

ized by mass balance, which is often referred to as the “Exner287

equation” in the context of sediment transport [35]:288

ρs(1 − λ)πr
∂h

∂t
+ ∂Qs

∂r
= 0, (5)

where h is the fan elevation and λ is the porosity of the deposit.289

We estimate the value of λ by comparing the volume of the290

deposit measured from its DEM to the volume of sediment291

injected into the experiment Qst . We find λ = 0.4 ± 0.02, a292

common value for irregular grains.293

The relation between the local slope of a river and its local294

sediment discharge [Eq. (4)] expresses the sediment transport295

along the fan:296

BQs

q0ds

=
(

1

ASh

∂h

∂r

)1/α

− 1. (6)

The system of Eqs. (5) and (6) is second-order in space and297

first-order in time. It thus requires two boundary conditions298

and an initial condition. The first boundary condition is set by299

the sediment input at the fan’s apex:300

Qs(0,t) = Qs0. (7)

By definition, we also impose that the fan’s elevation vanishes301

at its toe:302

h(R,t) = 0. (8)

As the fan grows, its radius increases and we do not know303

R a priori—the domain over which we must solve the mass304

balance has a free boundary. This Stefan problem thus requires305

an additional boundary condition. In accordance with direct306

observation of our experiments, we further assume that the fan307

traps all the sediment it is fed with. Equivalently, the sediment308

discharge vanishes at the fan toe:309

Qs(R,t) = 0. (9)

We now seek a self-similar solution to Eqs. (5) and (6), 310

with the associated boundary conditions, Eqs. (7), (8), and (9). 311

We first define a similarity variable that takes into account the 312

growth of the fan: 313

X = r

R
, (10)

where the radius R is a function of time which needs to be 314

solved for. The dimensionless radius X varies between 0 and 315

1. Similarly, we define a dimensionless fan profile 316

H (X) = h(r,t)

AShR
(11)

and a dimensionless sediment discharge 317

χ (X) = BQs

q0ds

. (12)

Injecting these expressions into the sediment-transport equa- 318

tion [Eq. (6)] yields an ordinary differential equation: 319

H ′ = −(χ + 1)1/α. (13)

Next, we express the growth of the radius R as a function of the 320

fan’s shape and of the sediment input rate [Eq. (7)] based on the 321

total sediment balance. Namely, we integrate the elevation of 322

the fan over its domain, and differentiate the result with respect 323

to time. We find 324

Qs0 = π

2
V(1 − λ)ρsAShR

2 dR

dt
, (14)

where V is the dimensionless volume of the fan: 325

V = 6
∫ 1

0
HX dX. (15)

The coefficient 6 in the above definition ensure that a fan 326

at threshold has a dimensionless volume of one. Injecting 327

the dimensionless profile and sediment discharge [Eqs. (11) 328

and (12)] into the mass balance equation (5) and using the 329

radius-growth equation (14) yields another ordinary differen- 330

tial equation: 331

χ ′ = 2
χ0

V X (XH ′ − H ), (16)

where χ0 is the dimensionless sediment input: 332

χ0 = BQs0/q0ds. (17)

Finally, the two first-order, ordinary differential equations 333

(13) and (16) need boundary conditions. In dimensionless 334

variables, (8) and (9) become 335

χ (1) = 0 (18)

and 336

H (1) = 0, (19)

respectively. 337

In a way, Eq. (16) is integro-differential, since it involves 338

the dimensionless volume V . This oddity, however, does not 339

complicate much the numerical procedure we use to compute 340

the self-similar profile of the fan. We simply fix the ratio χ0/V 341

and solve Eq. (16) numerically with boundary conditions (18) 342

and (19). We then inject the resulting profile into Eq. (15) to get 343

002900-6
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FIG. 11. Numerical fan profile for various values of the dimen-
sionless sediment input χ0.

the dimensionless volume and thus the dimensionless sediment344

input χ0 (Fig. 11).345

Like in our experiments, the numerical profiles steepen with346

sediment discharge. Specifically, the proximal slope increases347

with the sediment input rate and decreases downstream due348

to sediment deposition. At the fan toe, all numerical profiles349

merge, and the local slope reaches the threshold slope Sth, as350

expected for a vanishing sediment flux. Sediment deposition351

thus results in a concave upward profile.352

When the sediment discharge vanishes, the entire profile353

converges toward the linear profile associated to near-threshold354

sediment transport.355

In short, the slope near the fan toe is the threshold slope and356

therefore records the water discharge. The proximal slope, on357

the other hand, records the sediment discharge. In principle,358

we can thus use the radial profile of a fan to infer both the359

water and the sediment discharges that built it.360

C. From morphology to discharge361

The profiles of our experimental fans do not show any362

concavity (Fig. 9), although their dependence on sediment363

discharge is qualitatively similar to that of the numerical364

profiles. A possible cause for this discrepancy between theory365

and experiment is the divergence of the channel near the fan’s366

toe (Fig. 3).367

Without measurable change in slope in our experiments, we368

cannot infer the sediment discharge based on a local value of369

the fan’s slope. Instead, we may use an integral quantity, likely370

to be less sensitive to measurement errors and natural variabil-371

ity. One such quantity is the fan’s dimensionless volume V ,372

which we expect to increase with sediment discharge.373

Using the numerical procedure of Sec. III B, we compute the374

dimensionless volumeV for a range of dimensionless sediment375

dischargeχ0 (Fig. 12). The resulting curve transitions smoothly376

between its two asymptotes. When the sediment discharge377

vanishes, the fan returns to threshold, and its dimensionless378

volume approaches one. On the other hand, a large sediment379

discharge causes the fan to be so far from threshold that its380

l

FIG. 12. Volume ratio as a function of sediment discharge. Blue
and orange dots: experimental data (Qw = 0.33 l min−1 and Qw =
0.73 l min−1). Red line: numerical solution. Green dashed lines:
asymptotes.

slope is essentially that of its apex, which grows as the sediment 381

discharge to the power 1/3—an unlikely regime in practice. 382

It is more convenient, and perhaps more telling, to express 383

the dimensionless volume as a ratio of volumes. Specifically, 384

V is the ratio of the volume of the actual fan, which we refer 385

to as Vfan, to that of a hypothetical threshold fan with the same 386

radius: 387

V = 6 Vfan

(1 − λ)πAShR3
. (20)

For illustration, we measure the volume of our laboratory 388

fans using their DEMs. We then calculate their volume ratio 389

V according to the above formula and their dimensionless 390

discharge χ0 according to Eq. (17). Plotting these quantities in 391

Fig. 12, we find that our experimental data accord reasonably 392

with the self-similar theory of Sec. III B. 393

IV. CONCLUSION 394

Using a simplified setup, we produced fans fed by a 395

single-thread river, which controls their slope, while avulsions 396

maintain their radial symmetry. The growth of the fan is 397

self-similar, and its radius grows like time to the power 1/3. 398

To assess the influence of the fluid and sediment discharges on 399

the fan profile, we combine these laboratory observations with 400

a first-order theoretical analysis. 401

For a low sediment discharge, the threshold of sediment 402

motion controls the slope of our experimental fans, as it 403

controlled the one-dimensional alluvial fan produced by Guerit 404

et al. [22]. When the sediment discharge increases, so does the 405

fan slope, especially near the fan apex, where the sediment 406

discharge is the highest. As a consequence, the fan profile 407

exhibits a slight curvature [22]. 408

According to the semiempirical theory presented here, the 409

slope near the fan’s toe is an indicator of fluid discharge. 410

Similarly, the ratio of apex slope to toe slope is a proxy for 411

sediment discharge. In this simplified framework, we can thus 412

use the present shape of an alluvial fan to infer the paleofluxes 413

that built it. 414
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Before applying this theory to field observations, however,415

we will need to adapt it. First, the sediment discharge does not416

always vanish at the toe of a fan [36–38]. Consequently, we417

cannot use the distal slope as a straightforward proxy for water418

discharge; we first need to evaluate the sediment discharge that419

exits the fan. Given this measurement, we can probably extend420

the present theory to this new boundary condition.421

In nature, alluvial fans are made of heterogeneous sedi-422

ments. The river that transports them also sorts them according423

to mobility [28,39]. The coarser sediment gets deposited near424

the apex, whereas the finer one ends up at the toe or even425

exits the fan. This segregation causes the fan slope to decrease426

downstream [40]. Thus, both deposition and downstream fining427

translate into a concave upwards profile. To isolate these428

processes, we need reliable transport laws and a mass balance429

that can handle a distribution of grain sizes [12,28].430

Sediment and water inputs are likely to vary during the fan431

history. If so, the self-similar theory presented here does not432

hold, as the shape of the deposit surface can record only the433

last increment of growth. However, the river probably adjusts434

its profile to varying conditions quickly—at least with respect 435

to the fan’s growth. If this is indeed true, the transport law and 436

the mass-balance equation would still hold, and we could solve 437

them numerically to follow varying inputs. 438

Finally, the sediment deposited at a specific period is often 439

recognizable in the internal structure of the fan, in the form of 440

a stratum. Interpreting these strata as proxies for paleoprofiles, 441

geologists can reconstruct the shape of ancient fans [41,42]. 442

Using these paleoprofiles as we have used the DEMs of 443

our experiments, we might infer ancient mass fluxes and the 444

tectonic and climatic forcings that induced them. 445
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