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Growth and shape of a laboratory alluvial fan

Using laboratory experiments, we investigate the influence of water and sediment discharges on the morphology of an alluvial fan. In our flume, a single-thread laminar river deposits corundum sand into a conical fan. We record the fan progradation with top-view images and measure its shape using the deformation of a Moiré pattern. The fan remains virtually self-affine as it grows, with a nearly constant slope. We find that, when the sediment discharge is small, the longitudinal slope of the fan remains close to that of a river at the threshold for sediment transport. Consequently the slope depends on the water discharge only. A higher sediment discharge causes the fan's slope to depart from the threshold value. Due to the downstream decrease of the sediment load, this slope gets shallower towards the fan's toe. This mechanism generates a concave fan profile. This suggests that we could infer the sediment flux that feeds a fan based on its proximal slope.

I. INTRODUCTION

Alluvial fans are sedimentary deposits which form at the outlet of mountain ranges. When a river flows through a mountain range, the flow-induced shear stress entrains sediment particles and carries them downstream. As it reaches the plain, the river loses its lateral confinement, and its slope drops. These changes induce sediment deposition [1][START_REF] Rachocki | Alluvial Fans: A Field Approach[END_REF][START_REF] Blair | [END_REF][4][START_REF] Blair | Geomorphology of Desert Environments[END_REF]. As the river deposits its load, its bed rises until it overflows to find a new path. This phenomenon, called avulsion, maintains the radial symmetry of the deposit through time [START_REF] Field | [END_REF][7][8]. The geometry of the fan thus depends on the conditions under which it was built.

Three parameters are known to control the slope of an alluvial fan: the water discharge Q w , the sediment discharge Q s , and the sediment size d s [9]. Field observations show that, in most cases, the slope of the fan increases with d s and Q s , whereas it decreases with Q w [10][START_REF] Denny | Alluvial Fans in the Death Valley Region, California and Nevada[END_REF][12]. There is no consensus yet about the physical origin of these relations or about their mathematical formulation [12].

Analogues of alluvial fans are easily produced in the laboratory, and they accord qualitatively with field observations [START_REF] Schumm | Experimental Fluvial Geomorphology[END_REF][START_REF] Parker | [END_REF][15][16]. Most authors represent the slope as a function of the discharge ratio Q s /Q w and find a positive correlation [17][18][19][20][21]. This function, however, appears to vary from experiment to experiment, suggesting that we investigate the influence of the water and the sediment discharges independently [20].

Guerit et al. [22] have produced an alluvial fan confined between two plexiglass plates. This experimental setup dictates the width of the river and precludes avulsion, thus simplifying the interpretation of the results. When the sediment discharge is vanishingly small, the fan adjusts its shape to keep the river's bed near the threshold of motion. Its profile is then virtually linear, and its slope depends only on water discharge and sediment size. To the contrary, a finite sediment load affects the * devauchelle@ipgp.fr fan's shape-it steepens with sediment discharge. As sediment 51 gets deposited along the fan, the slope shallows downstream, 52 resulting in a concave upward profile [12,22].

53

Building upon this study, we remove the plexiglass plates 54 that confine the flow and build a complete fan with a 55 more realistic geometry. By doing so, we allow the river to 56 (1) spontaneously select its own size and slope [START_REF] Lacey | Minutes of the Proceedings of the Institution of Civil Engineers[END_REF] and 57 (2) distribute sediment over a self-formed lobe [START_REF] Parker | [END_REF][START_REF] Reitz | [END_REF].

58

We design an experimental setup to generate an alluvial fan 59 fed by a single-thread channel. We first impose a low sediment 60 discharge, to remain near the threshold of sediment motion, 61 and use the work of Seizilles et al. [25] to express the slope of 62 our fan as a function of the water discharge (Sec. II). We then 63 increase the sediment discharge to investigate its impact on the 64 fan's profile (Sec. III). Finally, we show that we can infer the 65 water and sediment discharges of a fan from its profile.

66

II. SINGLE-THREAD LABORATORY FAN

67

A. Experimental setup 68

We produce our experimental fan in a 80-cm-wide and 69 50-cm-long tank. At the back of the tank, a 15-cm-high vertical 70 wall simulates a mountain front. At the center of this wall, a 71 2.5-cm-wide tilted channel directs the sediment and fluid 72 mixture toward the tank. The opposite side of the tank is 73 bounded by a trench to evacuate the fluid. To prevent any 74 fluid accumulation at the outlet, the fan lies on a 60-cm-wide 75 and 30-cm-long shelf covered with a 200 μm sieve mesh. This 76 setup allows us to build a fan with an opening angle of 180 • 77 (Fig. 1).

78

We use a viscous mixture of water (40 %) and glycerol 79 (60 %) to maintain a laminar flow, at a Reynolds number 80 of about 50 (density ρ = 1150 kg m -3 and viscosity ν 81 = 7 × 10 -6 m 2 s). A header tank provides a constant fluid 82 discharge, which value we monitor using an electromagnetic 83 flowmeter (Kobold, MIK-5NA10AE34R). Water evaporation 84 concentrates the glycerol mixture. We measure its density 85 R h twice a day and compensate for evaporation with fresh water.

As a result, the fluid discharge varies by less than 5% during an experiment, an indication that the viscosity of the fluid is also reasonably constant.

At the experiment inlet, a tilted channel mixes the fluid with a well-sorted sediment composed of corundum grains (crystalline aluminium oxide). We measure the grain size using image analysis [d 50 = 416 ± 45 μm; Fig. 2(a)] and its density using a pycnometer (ρ s = 3900 ± 56 kg m -3 ). At the macroscopic scale, the physical properties of the grain translate into a friction coefficient (μ = 0.7) and a transport law relating the bedload intensity to the shear stress τ , namely,

q s = q 0 (θ -θ c ), (1) 
where θ = τ/[(ρ sρ)gd s ] is the Shields parameter with g the acceleration of gravity [26]. We measure the transport law of our corundum sediment with an independent experimental setup [22,27,28]. We find a critical Shields number θ c = 0.14 ± 0.005 and a prefactor q 0 = 33.4 ± 0.7 g s -1 m -1 [Fig. 2(b)].

To produce a single-thread laboratory fan, the sediment discharge has to be low and constant throughout the fan growth.

To achieve this, we have designed a conveyor-belt sediment dispenser. Sediments are stored in a hopper placed over a 3.5-cm-wide conveyor belt (Norcan). A stepper motor controlled by an Arduino motor shield drives the belt. To adjust the sediment discharge, we can adjust two parameters: the distance between the hopper and the belt, and the belt speed. To monitor the sediment discharge injected into the experiment, the entire device is placed on an electronic scale (Ohaus, Explorer 35), which measures the weight of the dispenser every minute.

B. Radially symmetric alluvial fan

At the beginning of an experiment, the surface of the experimental setup is bare. We start the fluid and sediment feed at the same time and keep them constant during the entire 1), with q 0 = 33.4 ± 0.7 g s -1 m -1 and θ c = 0.14 ± 0.005. experimental run. To monitor the fan evolution, we acquire 118 top-view pictures using a camera fixed above the tank center 119 (Canon EOS 100 D with a Canon 28-105 mm f /3.5-4.5 APO 120 macro 0.5 m/1.6 ft Ultrasonic lens). We record a picture every 121 10 min (Fig. 3).

122

The growth of our fan is similar to the ones of Van Dijk 123 et al. [19] and Reitz and Jerolmack [START_REF] Reitz | [END_REF]. The flow alternates 124 between a single channel and a thin sheet of fluid covering a 125 portion of the fan. In our case, however, the flow gets more and 126 more channelized as the fan grows. The channel migrates either 127 through the gradual erosion of its banks or through floodings 128 and abrupt avulsion. This series of avulsions allows the channel 129 to explore the entire fan surface, thus maintaining its radial 130 symmetry (Fig. 3).

131

Using the top-view pictures, we measure the evolution 132 of the fan radius. To do so, we develop an algorithm that 133 automatically locates the fan toe. Because the fan color is well 134 defined, we can detect its boundary by applying a threshold. We 135 then measure the average radius of the fan by approximating 136 its boundary by a half circle (red dashed lines on Fig. 3). We 137 find that, typically, the distance from the apex to the boundary 138 varies by less than 5% (Fig. 3). After a transient, which duration 139 depends on the sediment discharge, the fan radius increases like 140 the cubic root of time (Fig. 4). This experimental observation 141 accords with the self-similar evolution of a semiconical deposit 142 for which, based on mass balance, we expect R ∝ (Q s t) 1/3 143 [START_REF] Reitz | [END_REF]28].

144

Because of its radial symmetry, the fan's shape reduces to its 145 downstream profile. Consequently, to describe the growth and 146 shape of our laboratory fans, we need an accurate measurement 147 of their profiles. 

C. Measurement of the fan elevation 149

To measure the elevation of our experimental fan, we project 150 a Moiré pattern onto its surface with a video projector [29,30].

151

We then use the Light3D commercial software to calculate the 152 digital elevation model (DEM) of the deposit [31] (Fig. 5).

153

To evaluate the accuracy of our measurements, we scan 154 the surface of a tray filled with milk and use it as horizontal 155 reference. We find that the DEM of the milk surface is affected 156 by lens distortion (raw data; Fig. 6). We thus measure the The lens-induced deformation depends on the coordinates of the pixel and on the distance from the lens (raw data; Fig. 6). We thus fit each DEM of the milk surface with a secondorder, two-dimensional polynomial. We then evaluate the six coefficients of this polynomial for each elevation. By applying this correction to the measured DEM of the fan, we reduce the uncertainty of its elevation by a factor of about 10 (Fig. 6). After correction, the uncertainty on the measured elevation is less than 400 μm, which corresponds approximately to the size of a sediment grain.

D. Self-similar growth

The elevation contours of the DEM are well approximated by concentric circles, thus confirming the radial symmetry of the fan (Fig. 5). This property suggests that we can compute the radially averaged profile of the fan with minimal loss of information [START_REF] Reitz | [END_REF]28] [Fig. 7(a)]. To evaluate how self-similar is the growth of the fan, we normalize its profile by rescaling horizontal and vertical dimensions with its radius, as measured from the top-view pictures. We find that individual profiles evolution as self-similar. Accordingly, relating the morphology 181 of the fan to the input parameters reduces to understanding how 182 these parameters control its dimensionless profile.

183

Figure 7 shows that we may approximate the fan profile with 184 a straight line, at least when the sediment discharge is low. We 185 further suggest that the river that feeds the fan controls its slope. In the next section, we test this hypothesis using the work of Seizilles et al. [25].

E. Fan near threshold

The shape of an alluvial river results from the mechanical equilibrium of its bed [25,[START_REF] Glover | Stable Channel Profiles[END_REF][START_REF] Henderson | [END_REF]. When a sediment grain is immersed in a river, two forces act on it: gravity and the flow-induced shear stress. When a river transports a small amount of sediment, we expect its bed to remain near the threshold of sediment motion. At the threshold of motion, the normal component of these forces balances the tangential one. Using this assumption and the shallow-water approximation, Seizilles et al. [25] calculated that, for a laminar flow, the threshold slope of a river should read

S h = μ 4g 9ν 1/3 θ c μ ρ s -ρ ρ d s 4/3 1 Q 1/3 w . ( 2 
)
We now compare this expression to the slope of our experimental fans. We perform six experiments where the sediment discharge, Q s , remains fixed at a low value, whereas the fluid discharge, Q w , varies between experiments (Table I). We then represent the average slope of our experimental fan as a function of the corresponding threshold slope, S h [Eq. ( 2)] (Fig. 8). We find that the slope of our experimental fan is proportional to the threshold slope,

S = AS h , ( 3 
)
where A is a dimensionless coefficient, whose best-fit value is A = 1.95 ± 0.11. If the shallow-water approximation were perfectly accurate, this coefficient would be one. The value of A we find by fitting our observations, however, depends on the parameters of Eq. ( 2) and therefore inherits their uncertainty. In Eq. ( 2) the value of the critical Shields parameter is the least reliable. Although we carefully estimated its value with a dedicated setup [Fig. 2(b)], this measurement remains a matter of debate [34]. Moreover, the critical Shields number is raised to the power 4/3 in Eq. ( 2). An error on its measurement has therefore a significant impact on the value of the threshold slope S h . I). We evaluate the error on We now consider the influence of a finite sediment discharge on the fan's slope. Because alluvial fans are depositional systems, only near the apex does the sediment discharge equals the input. Accordingly, we consider only the proximal slope S p of our fans, where r/R < 0.4 (Fig. 9). However, the inlet disturbs the profile, which can be flat or even convex near the apex (Fig. 9). To avoid this disturbance, we measure the proximal slope, S p , where the dimensionless radius, r/R, lies between 0.1 and 0.4 (proximal area on Fig. 9).

In our experiments, the water discharge takes two values (Table I, run 7 to 20) and so does the associated threshold slope, S h (Sec. II). To investigate the departure from this threshold slope, we first normalize the proximal slope of our fans with the threshold slope, S p /S h . We then represent this dimensionless slope as a function of the dimensionless sediment discharge Q s /(q 0 d s ), where q 0 is the prefactor of the transport law [Fig. 2(b)] and d s the sediment size (Fig. 10).

Our observations gather around a single curve the plane defined by the dimensionless sediment discharge and slope, suggesting that normalizing the fan's slope with S h removes the influence of water discharge. This finding accords with Guerit et al. [22], who were also able to separate the influence of water and sediment discharges, although with the different functional form that corresponds to the geometry of their experiment. We now propose to fit our experimental data with the following expression:

S S h = A 1 + B Q s q 0 d s α , ( 4 
)
where B and α are dimensionless coefficients which we need to fit to our data. By definition, A is the ratio of the measured threshold slope to the theoretical threshold slope [Eq. ( 3 

B. Fan profile

The fan grows from sediment deposition, a process formalized by mass balance, which is often referred to as the "Exner equation" in the context of sediment transport [35]:

ρ s (1 -λ)πr ∂h ∂t + ∂Q s ∂r = 0, ( 5 
)
where h is the fan elevation and λ is the porosity of the deposit.

We estimate the value of λ by comparing the volume of the deposit measured from its DEM to the volume of sediment injected into the experiment Q s t. We find λ = 0.4 ± 0.02, a common value for irregular grains.

The relation between the local slope of a river and its local sediment discharge [Eq. ( 4)] expresses the sediment transport along the fan:

BQ s q 0 d s = 1 AS h ∂h ∂r 1/α -1. (6) 
The system of Eqs. ( 5) and ( 6) is second-order in space and first-order in time. It thus requires two boundary conditions and an initial condition. The first boundary condition is set by the sediment input at the fan's apex:

Q s (0,t) = Q s0 . ( 7 
)
By definition, we also impose that the fan's elevation vanishes at its toe:

h(R,t) = 0. (8) 
As the fan grows, its radius increases and we do not know R a priori-the domain over which we must solve the mass balance has a free boundary. This Stefan problem thus requires an additional boundary condition. In accordance with direct observation of our experiments, we further assume that the fan traps all the sediment it is fed with. Equivalently, the sediment discharge vanishes at the fan toe:

Q s (R,t) = 0. ( 9 
)
We now seek a self-similar solution to Eqs. ( 5) and ( 6), 310 with the associated boundary conditions, Eqs. ( 7), (8), and (9). 311 We first define a similarity variable that takes into account the 312 growth of the fan:

313 X = r R , (10) 
where the radius R is a function of time which needs to be 314 solved for. The dimensionless radius X varies between 0 and 315 1. Similarly, we define a dimensionless fan profile 316

H (X) = h(r,t) AS h R (11) 
and a dimensionless sediment discharge

317 χ (X) = BQ s q 0 d s . ( 12 
)
Injecting these expressions into the sediment-transport equa-318 tion [Eq. ( 6)] yields an ordinary differential equation:

319 H = -(χ + 1) 1/α . ( 13 
)
Next, we express the growth of the radius R as a function of the 320 fan's shape and of the sediment input rate [Eq. ( 7)] based on the 321 total sediment balance. Namely, we integrate the elevation of 322 the fan over its domain, and differentiate the result with respect 323 to time. We find

324 Q s0 = π 2 V(1 -λ)ρ s AS h R 2 dR dt , ( 14 
)
where V is the dimensionless volume of the fan:

325 V = 6 1 0 H X dX. ( 15 
)
The coefficient 6 in the above definition ensure that a fan 326 at threshold has a dimensionless volume of one. Injecting 327 the dimensionless profile and sediment discharge [Eqs. [START_REF] Denny | Alluvial Fans in the Death Valley Region, California and Nevada[END_REF] 328 and ( 12)] into the mass balance equation ( 5) and using the 329 radius-growth equation ( 14) yields another ordinary differen-330 tial equation:

331 χ = 2 χ 0 V X (XH -H ), (16) 
where χ 0 is the dimensionless sediment input:

332 χ 0 = BQ s0 /q 0 d s . ( 17 
)
Finally, the two first-order, ordinary differential equations 333 (13) and ( 16) need boundary conditions. In dimensionless 334 variables, ( 8) and ( 9) become 335 χ (1) = 0 (18) and 336

H (1) = 0, (19) 
respectively.

337

In a way, Eq. ( 16) is integro-differential, since it involves 338 the dimensionless volume V. This oddity, however, does not 339 complicate much the numerical procedure we use to compute 340 the self-similar profile of the fan. We simply fix the ratio χ 0 /V 341 and solve Eq. ( 16) numerically with boundary conditions (18) 342 and (19). We then inject the resulting profile into Eq. ( 15) to get 343 the dimensionless volume and thus the dimensionless sediment input χ 0 (Fig. 11).

Like in our experiments, the numerical profiles steepen with sediment discharge. Specifically, the proximal slope increases with the sediment input rate and decreases downstream due to sediment deposition. At the fan toe, all numerical profiles merge, and the local slope reaches the threshold slope S th , as expected for a vanishing sediment flux. Sediment deposition thus results in a concave upward profile.

When the sediment discharge vanishes, the entire profile converges toward the linear profile associated to near-threshold sediment transport.

In short, the slope near the fan toe is the threshold slope and therefore records the water discharge. The proximal slope, on the other hand, records the sediment discharge. In principle, we can thus use the radial profile of a fan to infer both the water and the sediment discharges that built it.

C. From morphology to discharge

The profiles of our experimental fans do not show any concavity (Fig. 9), although their dependence on sediment discharge is qualitatively similar to that of the numerical profiles. A possible cause for this discrepancy between theory and experiment is the divergence of the channel near the fan's toe (Fig. 3).

Without measurable change in slope in our experiments, we cannot infer the sediment discharge based on a local value of the fan's slope. Instead, we may use an integral quantity, likely to be less sensitive to measurement errors and natural variability. One such quantity is the fan's dimensionless volume V, which we expect to increase with sediment discharge.

Using the numerical procedure of Sec. III B, we compute the dimensionless volume V for a range of dimensionless sediment discharge χ 0 (Fig. 12). The resulting curve transitions smoothly between its two asymptotes. When the sediment discharge vanishes, the fan returns to threshold, and its dimensionless volume approaches one. On the other hand, a large sediment discharge causes the fan to be so far from threshold that its l FIG. 12. Volume ratio as a function of sediment discharge. Blue and orange dots: experimental data (Q w = 0.33 l min -1 and Q w = 0.73 l min -1 ). Red line: numerical solution. Green dashed lines: asymptotes.

slope is essentially that of its apex, which grows as the sediment 381 discharge to the power 1/3-an unlikely regime in practice. 382

It is more convenient, and perhaps more telling, to express 383 the dimensionless volume as a ratio of volumes. Specifically, 384 V is the ratio of the volume of the actual fan, which we refer 385 to as V fan , to that of a hypothetical threshold fan with the same 386 radius:

387 V = 6 V fan (1 -λ)πAS h R 3 . ( 20 
)
For illustration, we measure the volume of our laboratory 388 fans using their DEMs. We then calculate their volume ratio 389 V according to the above formula and their dimensionless 390 discharge χ 0 according to Eq. (17). Plotting these quantities in 391 Fig. 12, we find that our experimental data accord reasonably 392 with the self-similar theory of Sec. III B.

393

IV. CONCLUSION 394

Using a simplified setup, we produced fans fed by a 395 single-thread river, which controls their slope, while avulsions 396 maintain their radial symmetry. The growth of the fan is 397 self-similar, and its radius grows like time to the power 1/3. 398 To assess the influence of the fluid and sediment discharges on 399 the fan profile, we combine these laboratory observations with 400 a first-order theoretical analysis.

401

For a low sediment discharge, the threshold of sediment 402 motion controls the slope of our experimental fans, as it 403 controlled the one-dimensional alluvial fan produced by Guerit 404 et al. [22]. When the sediment discharge increases, so does the 405 fan slope, especially near the fan apex, where the sediment 406 discharge is the highest. As a consequence, the fan profile 407 exhibits a slight curvature [22].

408

According to the semiempirical theory presented here, the 409 slope near the fan's toe is an indicator of fluid discharge. 410 Similarly, the ratio of apex slope to toe slope is a proxy for 411 sediment discharge. In this simplified framework, we can thus 412 use the present shape of an alluvial fan to infer the paleofluxes 413 that built it.

Before applying this theory to field observations, however, we will need to adapt it. First, the sediment discharge does not always vanish at the toe of a fan [36][37][38]. Consequently, we cannot use the distal slope as a straightforward proxy for water discharge; we first need to evaluate the sediment discharge that exits the fan. Given this measurement, we can probably extend the present theory to this new boundary condition.

In nature, alluvial fans are made of heterogeneous sediments. The river that transports them also sorts them according to mobility [28,39]. The coarser sediment gets deposited near the apex, whereas the finer one ends up at the toe or even exits the fan. This segregation causes the fan slope to decrease downstream [START_REF] Bull | Geomorphology of Segmented Alluvial Fans in Western Fresno County[END_REF]. Thus, both deposition and downstream fining translate into a concave upwards profile. To isolate these processes, we need reliable transport laws and a mass balance that can handle a distribution of grain sizes [12,28].

Sediment and water inputs are likely to vary during the fan history. If so, the self-similar theory presented here does not hold, as the shape of the deposit surface can record only the last increment of growth. However, the river probably adjusts its profile to varying conditions quickly-at least with respect 435 to the fan's growth. If this is indeed true, the transport law and 436 the mass-balance equation would still hold, and we could solve 437 them numerically to follow varying inputs.

438

Finally, the sediment deposited at a specific period is often 439 recognizable in the internal structure of the fan, in the form of 440 a stratum. Interpreting these strata as proxies for paleoprofiles, 441 geologists can reconstruct the shape of ancient fans [START_REF] Hornung | [END_REF]42]. 442 Using these paleoprofiles as we have used the DEMs of 443 our experiments, we might infer ancient mass fluxes and the 444 tectonic and climatic forcings that induced them. 

FIG. 2 .

 2 FIG. 2. (a) Sediment-size distribution. (b) Transport law. Blue dots and error bars: measurements. Red dashed line: Eq. (1), with q 0 = 33.4 ± 0.7 g s -1 m -1 and θ c = 0.14 ± 0.005.

FIG. 3 .

 3 FIG.3. Top-view pictures of an experimental fan during its growth, run 13 (Q w = 0.33 l min -1 and Q s = 1.68 g min-1 ). Fluid appears in blue, sediment appears in white. Red dashed line indicates the measured radius of the fan.
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  FIG.4. Evolution of the fan radius (Q w = 0.33 l min -1 , Q s from 0.13 to 13 g min -1 ).

FIG. 5 .

 5 FIG. 5. Digital elevation model (DEM) of an experimental fan (run 13). Contours are 10 mm apart. Red dashed line indicates the measured radius of the fan.

FIG. 7 .

 7 FIG. 7. Radially averaged profiles of an experimental fan (run 4, Q w = 0.3 l min -1 and Q s = 0.2 g min -1 ). (a) Six hours separate two lines. (b) Normalized fan profiles.
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  To evaluate the influence of the sediment discharge on the 228 morphology of the fan, we perform 14 additional experiments 229 with different values of Q s (Table

230FIG. 9 .

 9 FIG. 9. Normalized fan profiles for five experiments (Q w = 0.33 l min -1 , Q s from 0.13 to 13 g min -1 ).

lFIG. 10 .

 10 FIG.10. Normalized proximal slope as a function of the dimensionless sediment discharge. Red dashed line: Eq. (4).

  )]. A least-mean-square fit of the three parameters yields A = 1.85 ± 0.19, B = 0.18 ± 0.09, and α = 0.32 ± 0.02. This value of A is close to the one of Sec. II E (Figs. 8 and 10). Based on Eq. (4), we can now define rigorously what "a small sediment discharge" means. When Q s /(q 0 d s ) is much smaller than one, the influence of the sediment discharge on the fan profile is negligible. We then recover the threshold slope defined in Sec. II E. Equation (4) formulates sediment transport at the scale the river [as opposed to the local transport law of Fig. 2(b)]. It is a function of the river's slope, and therefore of the fan's, which results from the internal equilibrium of the river. We now inject this empirical transport law into the sediment mass balance to calculate the fan profile.

FIG. 11 .

 11 FIG. 11. Numerical fan profile for various values of the dimensionless sediment input χ 0 .

  445

TABLE I .

 I Experimental parameters for the experimental runs. = 0.2 ± 0.002 g min -1 Q w = 0.33 ± 0.02 l min-1 Q w = 0.73 ± 0.02 l min -1

		Constant sediment discharge			Constant fluid discharge	
		Q s Run	Fluid discharge	Run	Sediment discharge	Run	Sediment discharge	Run	Sediment discharge
			(l min -1 )		( g m i n -1 )		( g m i n -1 )		( g m i n -1 )
		1	0.9 ± 0.02	7	0.13 ± 0.0084	13	1.68 ± 0.048	18	0.82 ± 0.024
		2	0.8 ± 0.02	8	0.49 ± 0.0056	14	3.08 ± 0.12	19	4.9 ± 0.15
		3	0.4 ± 0.02	9	0.68 ± 0.013	15	4.83 ± 0.14	20	8.1 ± 0.28
		4	0.3 ± 0.02	10	0.74 ± 0.016	16	6.18 ± 0.26	
		5	0.25 ± 0.02	11	0.77 ± 0.019	17	13 ± 0.36	
		6	0.2 ± 0.02	12	1.22 ± 0.028			
	220	Regardless of the value of A, for a low sediment discharge,			
	221	we find that the fan's slope remains close to the threshold slope			
		of an alluvial river, indicating that the fan inherits its slope from			

222

the river that builds it. We now investigate the influence of the 223 sediment discharge on the fan's profile.
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differ from their mean by less than 10 % [Fig. 7(b)].

179

Based on these observations, we propose to treat the fan's