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Abstract. To generate action events for a humanoid robot for human
robot interaction (HRI), multimodal interactive behavioral models are
typically used given observed actions of the human partner(s). In previ-
ous research, we built an interactive model to generate discrete events for
gaze and arm gestures, which can be used to drive our iCub humanoid
robot [19,20]. In this paper, we investigate how to generate continuous
head motion in the context of a collaborative scenario where head mo-
tion contributes to verbal as well as nonverbal functions. We show that
in this scenario, the fundamental frequency of speech (FO0 feature) is not
enough to drive head motion, while the gaze significantly contributes to
the head motion generation. We propose a cascaded Long-Short Term
Memory (LSTM) model that first estimates the gaze from speech content
and hand gestures performed by the partner. This estimation is further
used as input for the generation of the head motion. The results show
that the proposed method outperforms a single-task model with the same
inputs.

Keywords: Head motion generation; Human interactions; Multi-tasks learning;
LSTM; Human-robot interaction

1 Introduction

Human interactions are steered by complex and multimodal sensorimotor loops [25].
In order to provide artificial agents such as virtual avatars or social robots with
the ability to communicate and cooperate smoothly with humans, we need a
multimodal behavioral model which can capture the co-variations of joint verbal,
co-verbal and non-verbal cues of social interactions. These cues include speech,
gaze, hand gestures, body postures, etc. Coordination between these cues within
and between conversational partners is of major importance for shaping commu-
nicative functions as well as monitoring interpersonal and group relations. Head
motion contributes to multiple functions such as visual attention, emotional
display, back-channeling and is influenced by multiple social, physiological and
cognitive factors.



We analyze here head motion data of a human subject involved in a face-to-
face cooperative interactive game (see section 3) that requires verbal communi-
cation and visual attention. We challenge the problem of generating continuous
head movements from speech activities and gestures of both partners. We will
show how the exploitation of the main causal relations between speech, gestures,
gaze and head motion into the modeling architecture benefits to both prediction
accuracy and coordinative structures.

2 State of the art

2.1 Head motion, gaze and speech

The study of human eye-head coordination during orienting movements to tar-
gets has a long history [10]. This coordination is influenced by numerous factors
including the nature of the target, its position in the field of vision and with
respect to the previous fixation, etc. Head motion also contribute to active lis-
tening: it complements binaural cues [4] and has been shown to enhance auto-
matic source diarization and localization [16]. Head motion is also important to
acknowledge or replace verbal back-channels (e.g., nodding for acknowledging
or shaking for signaling doubt), but also for many aspects of human communi-
cation. Munhall et al. [18] showed that vision of head motion improves speech
perception. Graf et al. [9] demonstrated that the timings of head motion and
the prosodic structure of the text are consistent and suggest that head motion
is useful to segment the spoken content. Yehia et al [24] notably evidenced high
correlation between head motion, eyebrow movements and the fundamental fre-
quency (F0) of speech. Head motion also provides useful information about the
mood of the speaker [5].

2.2 Predicting head motion

Rule-based systems are common methods to monitor human interactions. For
example, Liu et al [14] proposed to generate head pan by analyzing utterance
structure and identifying backchannels, while head tilt was depending on phrase
length. Cassell et al [6] build a conversational system which coordinated facial
expression, eye gaze, head and arm motion. A similar Nonverbal Behavior Gen-
erator system was proposed by Lee and Marsella [12] that associates multimodal
patterns with given communication functions. Thorisson [22] used a finite state
machine to describe events of interaction scenario with pre-conditions and post-
actions in different hierarchical layers. However, hand-crafted rules are difficult
to handle once considering the many factors conditioning the multimodal be-
haviors such as emotion, task, personality, etc.

Machine learning techniques have been proposed to map functions with be-
haviors. For example, Busso et al [5] proposed to use Hidden Markov Models
(HMM) to drive head motion from prosodic features. Ben Youssef et al [2] used
articulatory features to drive head motion synthesis. Another HMM-based frame-
work to generate body movement from prosody was proposed by Levin [13]. Ding



et al [8] also trained an HMM to generate head and eyebrow movements. Mari-
ooryad et al [15] further explore dynamic Bayesian networks (DBN) for coupling
speech with head and eyebrow movements. More recently Sadoughi et al [21]
introduced latent variables to consider speaker intentions.

Recently, Recurrent Neural Networks (RNN) have been shown to outperform
statistical models in sequence recognition and generation. Gated recurrent units
(GRUs) and Long-Short Term Memory (LSTM) cells have been introduced to
cope with long-term temporal dependencies. These cells basically add gates to
inputs and outputs (and thus the ability to keep activations over short as well as
long periods) of the basic processing units that perform the non-linear mapping.

Few works have been using LSTM to model human machine interaction.
For example, Alahi et al [1] used LSTM with social pooling of hidden states
which combines the information from all neighboring states to predict human
trajectories in crowded space. Haag et al [11] proposed Bidirectional LSTM with
stacked Bottleneck feature to improve the quality of head motion generation.

In this paper, we present a multimodal behavioral model to generate the
head motion of an instructor during a collaborative task with a manipulator.
We proposed a cascaded multitask learning method, where gaze prediction is
considered as an intermediary task for further improving head motion generation.
The results can be used partially to drive multimodal interactive behaviors of a
humanoid robot.

3 Interactive Data

The dataset used as interactive data in this paper has been collected by Mihoub
et al [17]. This face-to-face interaction involves an instructor and a manipulator
who performed a collaborative task called ”put that there”. The experimental
setting is shown in Figure 1. In this scenario, the manipulator will move cubes
following guidance of the instructor as he does not know the source and target
positions of the cubes . Conversely, the instructor knows the locations — delivered
by a computer program via a tablet that is only visible from the instructor —
but is not able to move the cubes. The task requires that they share knowledge
and coordinate their sensorimotor abilities.

The data analyzed here was collected with one instructor interacting with 3
successive manipulators. Each manipulator plays 10 games. Each game consists
in moving 10 cubes from a cube reservoir close to the manipulator — where 16
cubes are randomly arranged in 2 rows — to a target 8x8 chessboard located
between the interlocutors. The interactive data sums up to 30 minutes, with
mean duration of a game close to 80 seconds.

The interactive data were monitored by motion capture — including head
motions, gestures and eye tracking — in synchrony with speech and were resam-
pled at 25 Hz. Motion and speech data were annotated semi-automatically with
Elan [23] and Praat [3]. The total data observations include finally 3 continuous
motion of the instructor’s head (converted to Euler angles: pitch (H1), roll (H2),
and yaw (H3)) and 5 discrete variables:



— IU: Interactive Units correspond to sub-tasks and pace joint activities. We
distinguish between 6 different activities: get information from tablet, find
the cube to be moved, point to the cube, indicate target position, check the
manipulation and validate the target position of the cube.

— SP: the instructor’s speech is segmented according to 5 speech values: ma-
nipulated cube, reference cube, relative positioning, else and none

— MP: the manipulator’s arm gestures are segmented into the following 5
strokes: go-to-rest, grasp, move, put the cube and else.

— GT: the instructor’s arm gestures are segmented into the following 5 strokes:
rest, point the manipulated cube, the reference cube vs. the target position
and else.

— FX: we distinguish between 5 regions of interest of the instructor’s gaze:
manipulator’s face, reservoir, task space (chessboard), reference cube and
else.

Fig. 1. First-person view of the interaction captured from the instructor’s head-
mounted scene camera. At a game onset, the cube reservoir close to the manipulator
is full. The instructor then ask the manipulator to put certain cubes at certain places
of the chessboard: at the center at onset then left/right/on top/at the bottom of cubes
already released. The circle features the point of interest of the current eye fixation.

4 Multimodal interactive behavioral models for
continuous variables

In previous research, Mihoub [17] and Nguyen et al [20] built multimodal be-
havioral models which are able to generate GT and FX given input streams SP
and MP. At training stage, all of discrete streams (IU, GT, FX, SP and MP)
are available, while in generating stage, only SP and MP are observed.

In this work, we investigate interactive models to generate continuous vari-
ables - head motions of the instructor head (H1, H2, H3) with the same observed
input SP and MP.



4.1 Analyzing data

Canonical Correlation Analysis (CCA) is often used to measure the interde-
pendence between two sets of sequential data with different or equal feature
dimensions [7]. The basic idea of CCA is to find optimal linear combinations of
features (so-called canonical variables) of each stream that maximize the corre-
lation between canonical variables.

Using CCA, we computed the correlations between each modality (IU, GT,
FX, SP, MP and F0) and head motions (H1, H2, H3). Figure 2 displays the
mean correlations of this analysis. For all of angles, the highest correlations are
with IU and FX. The pitch angle (H1) exhibits the highest mean correlation
(0.7) while the others are about 0.5. This can be explained by the fact that FX
on face, source’s cube space, tablet are well separated in pitch direction while
the roll and yaw (H2, H3) are actually not separated into different azimuthal
regions. The least correlated feature with head motions is FO. Therefore, for this
specific collaborative task, FO0 is not sufficient to accurately predict head motion.
This is expected since speech chunks partly refers to movable regions of interest
in the visual scene that are intrinsically referred via non verbal signals such as
gaze.

08 T T - Il TX
I ey
_ et
[Jsp
g 06 [ vp
-3 o
=
[}
504
[+
<
&
© oot
0 L
Hl H2 H3

Head motion features

Fig. 2. Correlation of CCAs between each of H1, H2, H3 and FX, IU, GT, SP, MP
and FO

We compare here the performance of mainly three different models:

Baseline. The baseline model for generating head motion uses one LSTM layer
with linear activations to generate directly H1,H2,H3 as shown in Figure 3(a).
This model uses the same inputs than the DBN proposed by Mihoub [17],
i.e. the observed variables (SP and MP).

Control. Based on CCA analysis results (IU and FX have higher correlation
with H1), the control model uses FX as an additional input feature as illus-
trated in Figure 3(b). Our generation models will compete with this control
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Fig. 3. Single vs. Multi-task models: (a) Baseline model with inputs (SP,MP); (b)
The control model with additional FX modality; (¢) Cascaded model that combines
the prediction of FX by LSTM1 with the prediction of head motions by LSTM2 using
combined input; (d) Cascaded single output model without the intervening FX-
prediction task; (e) Cascaded multiple outputs model predicting both FX and Hs
by LSTM2

model that is informed by the FX ground truth. Since the correlation of FX
with H1 is the highest comparing with H2 and H3, the model is expected to
improve significantly the H1 generation quality.

Cascaded. In practice, neither FX nor IU can be used as input feature to train
and test data since they are not always available and need to be inferred
from observed data such as SP and MP [17]. The incremental estimation of
IU is rather difficult with no look-ahead of observations. On the other end,
FX are much more likely to be estimated on-line. We thus propose to use a
multitask learning, in which FX is generated by a first LSTM layer, called
LSTM1 in Figure 3(c). The output of this model is then aggregated with
the original input and fed into a second LSTM layer, called LSTM2. This
multitask model — with discrete FX and continuous H objectives — is trained
in two steps: LSTM1 and LSTM2 are first trained separately and fine-tuning
is further performed on the multitask model with both outputs: FX and (H1,
H2, H3).

Two other models also have been considered, for fairness:

Cascaded single output. This single-output cascaded model has the same
structure as the cascaded model but without the intervening FX-prediction
task shown in Figure 3(d).

Cascaded multiple output. Including two LSTMs stacked to each other and
predicting both FX and Hs illustrated in Figure 3(e).

5 Results

To compare the performance of each model, leave-one-out cross-validation was
performed in which 9 interaction sequences were used to train while the remain-
ing one is used for testing. All models use a total of 80 LSTM neurons. Each



layer of the cascaded models (LSTM1 and LSTM2) has thus 40 LSTM neurons.
Pre-training for LSTM1& LSTM2 and fine tuning are both performed with 50
iterations. All models are implemented on Keras with Theano back-end.

Figure 4 displays root mean square error (RMSE) of H1 as a function of
number of epochs and model. The control model clearly outperforms the others
at epoch 110 with a RMSE of 0.0450 rad. While the Cascaded model is able to
handle over-fitting and get a minimum RMSE of 0.0569 rad at epoch 76, other
methods tend to overfit sooner.
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Fig. 4. (Average H1 RMSE at different epochs corresponding to the different cascaded
models.

Figure 5 (a) displays a chronogram of ground truth vs. predicted H1. As
expected, the Control model generates the most faithful movements notably in
the vicinity of FX events (see around 7.0 sec). In contrast, the H1 generated
by baseline model (driven by the sole SP & MP events) generates delayed head
motion. The head motion generated by the cascaded model is close to the one
generated by the control model, notably respecting coordination with gaze shifts.

Table 1 gives root mean square errors (RMSE) between ground truth and
predicted head motions with different models. As expected from CCA analysis
and chronograms, the largest and lowest RMSE are performed respectively by
the Baseline (0.059) and Control (0.045) models. The Cascaded model exhibits
an intermediate performance (0.057). Since the CCA of FX, SP and MP are not
significantly different for H2 and H3, their RMSE are not significantly improved.
Pearson correlations, also given in Table 1, corroborate these observations.

In order to compare the micro-coordination patterns, we computed the so-
called coordination histograms (CH) proposed by Mihoub et al [17]. In order to
conform to their proposal, continuous streams of head motions (H1, H2, H3) are
first converted to discrete events by detecting peaks of local maximum velocity.
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Table 1. Root mean square errors (Pearson correlations) between ground truth and
predicted head motions with different models.

Models H1 [rad] H2[rad] H3[rad]

Baseline 0.059 (0.84) 0.035 (0.67) 0.066 (0.57)
Control 0.045 (0.91) 0.033 (0.72) 0.066 (0.65)
Cascaded 0.057 (0.84) 0.035 (0.67) 0.065 (0.64)

CH are then built by tabulating the time-delay between each event of one given
modality and the nearest events from other modalities.

We further compared ground-truth coordinate histogram for H1 with those
produced by the different prediction models. Figure 6(a) displays the histogram
computed from ground truth vs. CH predicted by the Baseline, Control vs. Cas-
caded models. Figure 6(b) displays Chi-squared distances between the ground-
truth histogram — considered as the target coordination pattern — with those
produced by the different prediction models for the three angles. These figures
show that the Cascaded model outperforms the Baseline model both in terms
of accuracy and coordination. This result is partly due to the fact that both
Baseline and Control models are directly driven by triggered events (SP, MP)
or FX, while the Cascaded model is able to handle the coordination pattern — in
particular causal relations — between these events.

6 Discussion

Our experiments evidence the benefit that prediction models can draw from
a priori knowledge. While recurrent neural networks can implicitly construct
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Fig. 6. Comparing coordination histograms between H1 and (IU,SP) for Ground truth,
Baseline, Control vs. Cascaded models.

latent representations using massive data, explicit knowledge given as goals or
cost functions help them to build and structure intermediate layered mappings.

Several algorithms to explore the intra- and inter-slice causal relations be-
tween observations have been built for DBN and other statistical models. These
analysis tools that help to shape probabilistic graphical models (PGM) may be
used to automatically structure neural network layers and give ways to shape
latent representations with task-related semantic or pragmatic information.

Although LSTM model can remember events triggered by gaze so that they
can drive head motion following the gaze event, it is difficult to deal with subse-
quent speech events, which are conversely triggered by preceding eye fixations.
A way to improve the head motion generation can be done with time shifted
speech frames from future, which then becomes the forerunner of head motion.
Figure 7(a) displays the H1 RMSE of the baseline model with and without time-
shifted input SP frames. SP is here shifted by 10 frames (~ 0.4 sec): it generates
lower RMS compared with the original model. Figure 7(b) shows the H1 RMSE
obtained at the optimal epoch corresponding to the different models. Almost all
shifted SP generate head motion with lower error.

Of course, bidirectional LSTM can be used and combined with a soft atten-
tion mechanism to optimally probe contextual information (exogenous as well
as intentional). But we here consider reactive models that are able to cope with
on-line interactive behaviors: the horizon of the contextual information does not
extend beyond the current frame.

7 Conclusions & perspectives

In this paper, we propose an efficient solution to structure the intermediate
representations built by layered LSTM. We have shown that gaze can be used
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effectively as a driving signal for head motion generation. This intervention is
effective both in terms of accuracy and coordination patterning.

The quality of prediction may be enhanced in several ways. Other contextual
information can be used as additional input — precise regions of interest for the
gaze, gaze contacts, communicative functions of speech, etc. — as well as inter-
mediate objectives — e.g. eyebrow movements or respiratory patterns. There, we
did not use the segmentation of the task into IUs because most of these IUs
were triggered by gaze or speech events. More complex tasks involving switch-
ing between multiple interaction styles with multiple agents may motivate the
structuring of the interaction by IUs, notably when alternative cues are used to
trigger similar pragmatic frames.

Finally, the head motion generation model will be used to drive the head of
our iCub-humanoid robot when autonomously instructing human manipulators.
We first plan to perform the subjective assessment of our multimodal behavioral
model (see [19] for our crowd-sourcing methodology). Another challenge is to
adapt this model to multiple manipulators, notably those with motor disabili-
ties. In this case, the behavioral model should both incrementally estimate the
best action and the optimal interaction style according to the goodness of fit
between the actual and expected behavior of the interlocutor predicted by the
joint behavioral model.
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