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Quantum transport for white-noise potentials
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3)Université Paris-Dauphine, PSL Research University, CNRS UMR CEREMADE,

75016 Paris, Francec)

4)Department of Mathematics, Michigan State University,

619 Red Cedar Road East Lansing, MI 48824, USAd)

We show that a quantum particle in R
d, for d > 1, subject to a white-noise po-

tential, moves superballistically in the sense that the mean square displacement
∫
‖x‖2〈ρ(x, x, t)〉 dx grows like t3 in any dimension. The white-noise potential is

Gaussian distributed with an arbitrary spatial correlation function and a delta corre-

lation function in time. Similar results were established in one dimension by Jayan-

navar and Kumar (Phys. Rev. Letts. 48 No. 8 (1982)), and for any dimension using

different methods by Fischer, Leschke, and Müller (Phys. Rev. Letts. 73 No. 12

(1994)). We also prove that for the same white-noise potential model on the lattice

Z
d, for d > 1, the mean square displacement is diffusive growing like t1. This behav-

ior on the lattice is consistent with the diffusive behavior observed for similar models

on the lattice Z
d with a time-dependent Markovian potential by Kang and Schenker

(J. Stat. Phys. 134 (2009)).
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Quantum transport for white-noise potentials

I. STATEMENT OF THE PROBLEM AND RESULT

A quantum particle in a random potential can move diffusively, ballistically, or superbal-

listically depending on the circumstances. In this note, we derive some results about the

mean square displacement of a quantum particle subject to a time-dependent white-noise

Gaussian potential Vω(x, t) that is correlated in space and uncorrelated in time. We prove

that the mean square displacement is superballistic for models on R
d and diffusive for models

on the lattice Z
d.

We consider the Schrödinger equation with a time-dependent potential. Due to the

singular nature of the potential, the Schrödinger equation is a stochastic differential equation,

as we describe section IV. In this introduction, however, we proceed formally, and write the

single-particle Schrödinger equation as

i~∂tψ(x, t) = −
~
2

2m
∆ψ(x, t) + Vω(x, t)ψ(x, t), (1)

where x is in R
d (resp. Zd) and the operator −∆ is the Laplacian on R

d (resp. discrete

Laplacian on Z
d). The potential Vω(x, t) is a mean zero Gaussian stochastic process with

covariance

〈Vω(x, t)Vω(x
′, t′)〉 = V 2

0 g(x− x′)δ(t− t′), (2)

where the strength of the disorder is V0 > 0, and the spatial correlation function g ∈

C2(Rd;R) is a real, even function with sufficiently rapid decay at infinity. We assume the

physically reasonable convexity condition that |(∇g)(0)| = 0 and that the Hessian matrix

Hess(g)(0) is negative definite. The angular brackets in (2) denote averaging with respect

the Gaussian probability measure.

Generalizing from the single particle wave function ψ, the evolution of a density matrix

ρ ∈ I, where I is the ideal of trace class operators, is formally governed by the quantum

stochastic Liouville equation

i~
∂ρ

∂t
= [Hω(λ), ρ], (3)

and an initial condition ρ(t = 0) = ρ0 ∈ I, a non-negative trace class operator. We assume

that the density matrix ρ ∈ I has a kernel ρ(x′, x, t). It follows from (3) that the kernel

〈ρ(x′, x, t)〉 formally satisfies the quantum stochastic Liouville equation:

i~
∂ρ

∂t
(x′, x, t) = Lρ(x′, x, t), (4)
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with initial condition ρ(x′, x, 0) corresponding to ρ(t = 0) = ρ0 ∈ I. The generator L of the

time evolution of the kernel ρ(x′, x, t) appearing in (4), called the Liouvillian, is given by:

(Lf)(x′, x) =
~
2

2m
[(∆x′f)(x

′, x)− (∆xf)(x
′, x)] + [Vω(x

′, t)− Vω(x, t)]f(x
′, x). (5)

For example, if ρ is a pure state density matrix ρ = Pψ, where Pψ projects onto the normal-

ized state ψ, the kernel ρ(x′, x, t) = ψ(x′, t)ψ(x, t).

In general, we will consider kernels ρ(x′, x, t) of density matrices ρ solving the stochastic

Liouville equation (4) with initial kernels ρ0(x
′, x), corresponding to a non-negative trace-

class operators ρ0. We assume that ρ0 has a well-behaved kernel so that 〈‖x‖2〉ρ0 <∞. The

solution ρt has a well-behaved kernel ρ(x′, x, t) so that Trρt =
∫
Rd ρ(x, x, t) dx <∞, for all

t ∈ R. We set the disorder λ = 1. We denote by 〈A〉ρ(t) := 〈Tr{Aρ(t)}〉 the average of the

expectation of an observable A in the state ρ(t).

Equations (1) and (4) are stochastic partial differential equations. The product of the

white-noise potential and the solution is interpreted in the Stratonovich sense. The details of

the derivation of the partial differential equation for the disorder-averaged kernel 〈ρ(x′, x, t)〉

of the density matrix (12) are presented in the appendices, sections IV and V. Our main

results concern the evolution of this disorder-averaged kernel 〈ρ(x′, x, t)〉 that satisfies the

deterministic partial differential equation (12).

Theorem 1. We consider the stochastic Liouville equation (4) with Liouvillian L given in

(5) with a white-noise random potential with covariance given by (2) satisfying [H1]–[H3]

in section II. Let 〈ρ(x′, x, t)〉 be the disorder-averaged density matrix, solving the evolution

equation (12) derived in section II, with initial condition ρ0(x
′, x).

1. Continuum: For Rd, the disorder-averaged mean square displacement is superballis-

tic, 〈‖x‖2〉ρ(t) ∼ t3, that is,

〈‖x‖2〉ρ(t) =

∫

Rd

‖x‖2〈ρ(x, x, t)〉 ddx = B(V0)t
3 +O(t2),

in any dimension d > 1, where B(V0) = − 1
3(2d)

(
V0
m

)2
(∆g)(0)Tr(ρ0).

2. Lattice: For Z
d, superballistic motion is suppressed and the disorder-averaged mean

square displacement is diffusive, 〈‖x(t)‖2〉ρ ∼ t, that is,

〈‖x‖2〉ρ(t) =
∑

x∈Zd

‖x‖2〈ρ(x, x, t)〉 = D(V0)t+O(1),
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in any dimension d > 1. The diffusion constant D = D(V0) is proportional to
∑d

m=1{(V0/~)
2[g(0) − g(êm)]}

−1Tr(ρ0) and strictly positive provided V0 > 0 and

g(0) 6= g(êm), for m = 1, . . . , d, where {êm} is the standard orthonormal basis of

Z
d.

If V0 = 0 in either case, then the mean square displacement is O(t2), so the motion is

ballistic.

Theorem 1 indicates that the type of the underlying space, whether it is the lattice Z
d

or continuum R
d, affects the quantum motion dramatically. In the absence of a potential,

V0 = 0 in (1), it is known that a free quantum particle on Z
d or Rd moves ballistically. In

contrast, on Z
d, with appropriate bounded noise Vω and V0 6= 0, a quantum particle travels

diffusively.6,9,14 As will be discussed below, the difference in these two settings is tied to the

unboundedness or boundedness of the unperturbed operator H0 = −∆.

In classical mechanics, a particle moving in the continuum under the influence of suitable

time-independent random potentials behaves diffusively like a Brownian motion so that the

mean square displacement proportional to t. By contrast, a classical particle moving on a

lattice in a time-independent random potential has mean square displacement bounded by

a constant.16 The classical analog of part (1) of Theorem 1 is a classical particle subject

to a force described by a time-dependent white-noise Gaussian potential Vω satisfying (7).

The particle position’s q(t) ∈ R
d satisfies the equation q′′(t) = −∇Vω(q(t), t). Let us assume

that the covariance function g is smooth. Upon integrating the equation of motion for the

velocity q′(t), squaring, and taking the average using the relation (7), we heuristically find

that 〈‖q′(t)‖2〉 = 1
2
V 2
0 (∆g)(0)t. This suggests that ‖q

′(t)‖ ∼ t
1
2 , so that ‖q(t)‖ ∼ t

3
2 , similar

to, and consistent with, the quantum motion described in part (1) of Theorem 1.

In order to put our results in context, we recall the localization-delocalization problem for

a random Schrödinger operator with a static random potential Vω(x, t) = Vω(x). Anderson

localization is known to occur in one-dimension or for a strong static random potential in

higher dimensions analogous to the recurrence of random walks in one- and two-dimensions,

and transience in three-dimensions. For random Schrödinger operators, large disorder can

cause recurrence leading to Anderson localization.2–4 By contrast, a main open problem is

to prove that there is quantum diffusion at weak disorder in dimensions d > 3 for high

energies for the continuum models, or for energies near the center of the band for lattice
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models. This type of static disorder allows correlations between past and present when the

particle revisits any part of the environment where it has been before, and thus is hard to

handle in the delocalization regime at weak disorder, especially combined with recurrence

of random walks in one- and two-dimensions, and transience in three-dimensions. Instead,

we consider a time-dependent random potential Vω(x, t) that can reduce or remove such

temporal correlations. This allows more results to be proved, such as superballistic behavior

for models on R
d and diffusive behavior on Z

d, at all energies, while still providing an

interesting and physically meaningful setting. This is similar to questions about random

walks in random environments, where a static random environment is more challenging to

understand, and a dynamic random environment can be more tractable.

A. Related results

Fischer, Leschke, and Müller7,8 proved a result similar to part (1) of Theorem 1. They

work in the Weyl-Wigner-Moyal formulation of quantum mechanics on phase space Rd×R
d.

Their Hamiltonians have the form H(p, q)+Nt(p, q) where the white-noise potential Nt(p, q)

satisfies a covariance relation similar to (7) where the covariance function g depends on p

as well as q. For the case H(p, q) = p2/(2m), they prove that q(t) ∼ t
3
2 , see eq. (2.60e) of

ref. 7. We remark that in a related paper, Fischer, Leschke, and Müller8 state if one adds

an external magnetic field to the model on R
2, then the superballistic motion is suppressed

and one recovers diffusive motion. This is proved by Müller in his thesis (Beispiel 2.36 of

ref. 17).

Concerning lattice models, Ovchinnikov and Erikhman19 proved a result similar to part

(2) of Theorem 1 for one-dimensional linear random chains using a Laplace transform method

similar to that used later by Jayannavar and Kumar.13 We discuss their work further at the

end of section III. As mentioned in the abstract, our results for the lattice are related to

the work of Kang and Schenker14 who proved diffusive motion for a quantum particle on the

lattice under the influence of a time-dependent Markovian potential. Their work utilizes the

framework developed by Pillet20.

Our methods are very different from those of refs. 7 and 8 and generalize many results of

ref. 19 to all dimensions. Furthermore, our methods are applicable to both the continuum

and lattice models.
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There has been some discussion in the physics literature concerning models for which the

delta correlation in time in (2) is replaced by a more general function h(t − t′), so-called

colored noise (see sections IV and V). Golubović, Feng, and Zeng11 studied Gaussian random

variables with a covariance

〈Vω(x, t)Vω(x
′, t′)〉 = V 2

0 e
−

‖x−x′‖2

ℓ2
−

(t−t′)2

τ2 , (6)

where ℓ and τ are effective spatial and temporal correlation lengths. Beginning with the

Schrödinger equation on R
d, they derive an effective Fokker-Planck equation for the velocity

distribution. Their main result is that temporal correlations cause superballistic behavior

but with different exponents than in Theorem 1. Golubović, Feng, and Zeng11 showed that

the mean square displacement is superballistic: for d = 1 is t
12
5 , while for d > 1, it is

t
9
4 . Rosenbluth,21 disagreeing with the derivation of the Fokker-Planck equation in ref. 11,

derived another equation and used it to show that the mean square displacement for d = 1

is t
12
5 , while for d > 1, it is t2, ballistic motion.

The subject of stochastic acceleration for classical systems has been frequently discussed

in the literature. For example, in the work of Aguer, et. al.,1 the authors present theo-

retical and numerical results that indicate, amongst other results, that the mean squared

displacement in a space and time homogeneous random field with rapid decay in space but

not necessarily in time, for which the force field is not a gradient field, is superballistic with

〈‖q(t)‖2〉 ∼ t
8
3 , for dimensions d > 1. When the force field is a gradient field, the motion is

superballistic only in dimension one, and ballistic for d > 2. The models include the inelas-

tic, nondissipative soft Lorentz gas. In Soret and De Bièvre,22 the authors treat a simplified

random, inelastic, Lorentz gas model and prove, roughly speaking, that the average velocity

〈‖q′(t)‖〉 ∼ t
1
5 , for dimensions d > 5 provided the initial velocity is sufficiently large. The

temporal exponent for this superballistic motion differs from the one in Theorem 1. This

may be attributed to the fact that the model describes a classical particle moving at high

velocity under the influence of a time-dependent potential with a finite temporal correlation

length, similar to the results for colored noise described above.

B. Contents of the paper

In section II, we prove superballistic motion for the model on R
d extending the Laplace

transform method introduced by Jayannavar and Kumar13 for one-dimensional models. Af-
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ter reviewing this approach, we extend it to multi-dimensional models using the method of

characteristics. We then discuss in section III the slowing effect of the lattice Zd. The proof

of diffusive motion on the lattice requires modification of the Laplace transform technique.

We conclude with two appendices. In the first, section IV, we discuss the Stratonovich in-

terpretation of the stochastic differential equation and in the second, section V, we present

a calculation on Gaussian correlations.

II. LAPLACE TRANSFORM APPROACH TO QUANTUM MOTION ON

R
d

Jayannavar and Kumar13 studied the evolution of a pure state density matrix in one

dimension. They chose a Gaussian initial state ψ(x, 0) = Cσe
−x2/4σ2 so that ρ0(x

′, x) =

ψ(x′, 0)ψ(x, 0). The solution ρ(x′, x, t) satisfies the stochastic Liouville equation (4)-(5).

Averaging over the Gaussian disorder, Jayannavar and Kumar13 solve the resulting equation

for the averaged density kernel 〈ρ(x′, x, t)〉. We first review the construction of the solution in

one-dimension. After a review of the method of characteristics in section IIB 1, we construct

an explicit solution for the averaged kernel of the density matrix in any dimension for any

initial density matrix, not necessarily a pure state. We prove that the quantum motion

behaves like 〈‖x(t)‖〉 ∼ t
3
2 in any dimension d on R

d. This exponent 3
2
is independent of the

dimension and appears to be independent of the type of disorder.

[H1]: The potential Vω(x, t) is a mean zero Gaussian stochastic process 〈V (x, t)〉 = 0 with

covariance

〈Vω(x, t)Vω(x
′, t′)〉 = V 2

0 g(x− x′)δ(t− t′). (7)

[H2]: The strength of the potential is V0 > 0.

[H3]: The spatial correlation function g ∈ C2(Rd,R) is assumed to be a real, even function

with sufficiently rapid decay at infinity. It satisfies the physically reasonable convexity

condition that |(∇g)(0)| = 0 and that Hess(g)(0) is negative definite.

By sufficiently rapid decay in [H3], we need that, at a minimum, g and its first and second

partial derivatives belong to L1(Rd). Since a correlation function must be the Fourier trans-

form of a positive measure, the reality of g forces it to be an even function. A common exam-
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ple of a correlation function g satisfying [H3] is a Gaussian function g(x) = e−
∑d

i,j=1Aijxixj ,

for a positive definite matrix A.

For a random variable K, we denote by 〈K〉 the expectation with respect to the Gaussian

process.

Since the Schrödinger equation (1) and the Liouville equation (4)-(5) with a white-noise

potential (7) are stochastic partial differential equations, the singular term Vω(x, t)ψ(x, t)

requires some interpretation. The Gaussian nature of the process, however, allows us to

easily derive a partial differential equation for the averaged density ρ.

The basic approach of Jayannavar and Kumar13 is as follows. If ψ(x, t) satisfies the

Schrödinger equation

i~∂tψ = Hψ, H = −
~
2

2m
∆+ Vω(·, t), (8)

then the pure state density matrix ρ(x′, x, t), given by ρ(x′, x, t) = ψ(x′, t)ψ(x, t), satisfies

the equation

∂tρ(x
′, x, t) = −

i~

2m
(∆x′ −∆x)ρ(x

′, x, t)

−
i

~
(Vω(x

′, t)− Vω(x, t))ρ(x
′, x, t)

= −
i

~
Lρ(x′, x, t), (9)

the Liouvillian equation (4)-(5). In general, we now assume that ρ(x′, x, t) is the kernel of a

density matrix that solves the Liouville equation (3) so that the kernel satisfies (9) with an

initial condition ρ0(x
′, x). We normalize the initial conditions so Trρ0 =

∫
Rd ρ0(x, x) dx = 1.

We will always assume that the diagonal of the kernel of the initial density matrix ρ0 satisfies

∫

Rd

‖x‖2ρ0(x, x) dx <∞,

in the continuum case, or, for the Z
d case,

∑

x∈Zd

‖x‖2ρ0(x, x) <∞,

Taking the expectation of (9), we obtain

∂t〈ρ(x
′, x, t)〉 = −

i~

2m
(∆x′ −∆x)〈ρ(x

′, x, t)〉

−
i

~
〈(Vω(x

′, t)− Vω(x, t))ρ(x
′, x, t)〉. (10)

8
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We next use Novikov’s Theorem18 to compute the average 〈Vω(z, t)ρ(x
′, x, t)〉, where

z denotes x or x′, with respect to the Gaussian random variables under the covariance

assumption (7). From section V, we obtain

〈Vω(z, t)ρ(x
′, x, t)〉 = −

iV 2
0

2~
[g(z − x′)− g(z − x)]〈ρ(x′, x, t)〉. (11)

Using this result, we find that (10) may be written as

∂t〈ρ(x
′, x, t)〉 = −

i~

2m
(∆x′ −∆x)〈ρ(x

′, x, t)〉

−

(
V0
~

)2

[g(0)− g(x− x′)]〈ρ(x′, x, t)〉. (12)

We introduce new variables X := x+ x′ and Y := x− x′ into the equation (9). We write

R(X, Y, t) for 〈ρ(x′, x, t)〉. The Laplace transform of R(X, Y, t) with respect to t is

R̃(X, Y, s) =

∫ ∞

0

e−stR(X, Y, t) dt. (13)

Using the initial condition R(X, Y, 0) := 〈ρ(x′, x, 0)〉, and defining

h(Y, s) := s+

(
V0
~

)2

[g(0)− g(Y )], (14)

we obtain
2i~

m
∇X · ∇Y R̃(X, Y, s) + h(Y, s)R̃(X, Y, s) = R(X, Y, 0) (15)

We define the Fourier transform of the density matrix with respect to X :

R̂(k, Y, t) :=

∫

Rd

eik·XR(X, Y, t) dX. (16)

Taking the Fourier transform of the equation (15) with respect to X , we obtain

k · ∇Y
̂̃
R(k, Y, s) +

m

2~
h(Y, s)

̂̃
R(k, Y, s) =

m

2~
R̂(k, Y, 0) (17)

We will solve this equation for
̂̃
R(k, Y, s) in one dimension in section IIA and in any di-

mension in section IIB. Setting Y = 0, this yields the Laplace transform of the function

R̃(k, 0, t). Combining (16) and the fact that R(X, 0, t) = 〈ρ(x, x, t), we find that the second

moments of the position vector x are given by

∫

Rd

xixj〈ρ(x, x, t)〉 dx = −
1

2d+2

∂2

∂ki∂kj
R̂(k, 0, t)

∣∣∣
k=0

. (18)

9
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The mean square displacement is given by

〈‖x‖2〉ρ(t) =

∫

Rd

‖x‖2〈ρ(x, x, t)〉 dx

= −

(
1

2d+2

)
∆k R̂(k, 0, t)

∣∣∣
k=0

. (19)

In section III, we will prove that quantum transport with the white-noise potential on Z
d

is diffusive. The diffusion coefficient matrix [dij] is defined by

dij =: lim
t→∞

−
1

t

1

2d+2

∂2

∂ki∂kj
R̂(k, 0, t)

∣∣∣
k=0

, (20)

and the diffusion constant D is the trace of this matrix

D = Tr[dij] =
d∑

i=1

dii. (21)

A. Solution of the one-dimensional problem

In the one-dimensional case, equation (15) for R̃(X, Y, s) agrees with eq. 10 of ref. 13. We

now take the Fourier transform with respect to X . This results in the ordinary differential

equation:
d

dY
̂̃
R(k, Y, s) +

m

2~k
h(Y, s)

̂̃
R(k, Y, s) =

m

2~k
R̂(k, Y, 0) (22)

We integrate this equation with the boundary condition
̂̃
R(k, Y = b, s) = 0 and obtain

̂̃
R(k, Y, s) =

m

2~k

∫ Y

b

e−
∫ Y

z
m
2~k

h(w,s)dwR̂(k, z, 0) dz. (23)

Taking b = −∞ imposes the physically reasonable boundary condition limY→−∞
̂̃
R(k, Y, s) =

0 corresponding to the decay of the kernel of the density matrix. We now take Y = 0. Using

the definition of h in (14) and changing variables with z̃ := −(m/(2~k))z, we obtain

̂̃
R(k, 0, s) =

∫ ∞

0

e−sze−(
V0
~
)
2
[g(0)z−

∫ z

0 g(
−2~k
m

w)dw] R̂(k,−2~kz/m, 0) dz. (24)

The integral in (24) is in the form of a Laplace transform, so

R̂(k, 0, t) = e−(
V0
~
)
2
[g(0)t−

∫ t

0 g(
−2~k
m

w)dw] R̂(k,−2~kt/m, 0). (25)

Note that one does not have to specify the spatial correlation function g nor the initial

density matrix ρ0.
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As follows from (19), the second moment of the position operator is calculated from two

derivatives with respect to k of R̂:

〈x(t)2〉ρ = −
1

8

d2

dk2
R̂(k, 0, t)

∣∣∣∣
k=0

. (26)

We define the phase function in (25) to be

Φ(k, t) := −

(
V0
~

)2

[g(0)t−

∫ t

0

g

(
−2~k

m
w

)
dw], (27)

and note that Φ(0, t) = Φ′(0, t) = 0 due to [H3]. In terms of the phase function, we have

R̂(k, 0, t) := eΦ(k,t)R̂(k,−2~kt/m, 0).

The computation of the second derivative yields

−4
d2

dk2
R̂(k, 0, t) =

[
d2Φ(k, t)

dk2
+

(
dΦ(k, t)

dk

)2
]
R̂(k,−2~kt/m, t)eΦ(k,t)

+

[
2

(
dΦ(k, t)

dk

)(
d

dk
R̂(k,−2~kt/m, 0)

)

+
d2

dk2
R̂(k,−2~kt/m, 0)

]
eΦ(k,t).

(28)

The crucial part of the calculation that gives the leading behavior in t is the second

derivative of the phase function in (27):

d2Φ(k, t)

dk2

∣∣∣∣
k=0

=

(
V0
~

)2 ∫ t

0

g′′(−2~kw/m)

(
2~w

m

)2

dw

∣∣∣∣∣
k=0

=
1

3

(
2V0
m

)2

g′′(0)t3, (29)

where integration over w ∈ [0, t] gives the t3 term. This shows that

〈x2〉ρ(t) = −
1

6

(
V0
m

)2

g′′(0)[Trρ0]t
3 +O(t2). (30)

We note that the evenness of g is important here: If g′(0) 6= 0 then the term

(
dΦ(k, t)

dk

)2

is g′(0)2t4 and dominates the behavior of the second moment.

If the random potential vanishes, the correlation function g = 0 and the phase Φ = 0.

We see that the last term on the right of (28) behaves like t2 so the motion is ballistic.

11
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B. The multidimensional continuum problem

A similar approach may be taken in order to compute the mean square displacement

on R
d in any dimension. The additional component required for this is the solution of a

nonhomogeneous transport equation.

1. The method of characteristics

In this section, we review the method of characteristics for a semilinear transport equa-

tion:

k · ∇xu(x) = c(x, u). (31)

In our case, the function c(x, u) on the right of (31) has the form c(x, u) = −h(x)u(x)+m(x).

The characteristic equations for the pair (x(s), z(s)) are:

dx

ds
= k, (32)

and
dz

ds
= c(x, z) = −h(x)z +m(x). (33)

The first equation integrates to give x(s) = ks + k0, with k, k0 ∈ R
d, and s ∈ R. With this

solution x(s), the first-order ordinary differential equation (33) for z(s) becomes,

dz

ds
+ h(x(s))z(s) = m(x(s)), (34)

and the solution z(s) has the form

z(s) =

∫ s

b

e−
∫ s

w
h(x(w′)) dw′

m(x(w)) dw, (35)

with the boundary condition z(b) = 0 at b that is determined by the problem. We recall

that z(s) = u(x(s)) solves the original equation (31).

2. The general solution

We apply the method of characteristics to the semilinear transport equation (17). We let

(Y (v), z(v)) be the solutions of the corresponding characteristic equations (32) and (33) so

12
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that z(v) =
̂̃
R(k, Y (v), s). The function Y (v) = kv + k0, for w ∈ R and k, k0 ∈ R

d, solves

the characteristic equation (32). The function z(v) solves the second equation (34):

d

dv
̂̃
R(k, Y (v), s) + h(Y (v), s)

̂̃
R(k, Y (v), s) =

m

2~
R̂(k, Y (v), 0), (36)

where, as before in (14), we define

h(Y (v), s) := s+

(
V0
~

)2

[g(0)− g(Y (v))].

As in (35), the solution to (36) is

̂̃
R(k, Y (v), s) =

m

2~

∫ v

−∞

e−
∫ v

w
m
2~
h(Y (w′),s) dw′

R̂(k, Y (w), 0) dw, (37)

with the boundary condition
̂̃
R(k, Y (−∞), s) = 0 as described below (23).

Following the reductions used in the one-dimensional case, we re-express the integral in

(37) as a Laplace transform. We finally obtain

R̂(k, Y (0), t) = R̂ (k, Y (−2~t/m) , 0) e−(
V0
~
)
2
[g(0)t−

∫ t

0
g(Y (−2~s

m )) ds]. (38)

We now compute the second moment of the position operator following (19). The in-

tegration constant k0, appearing in the solution of the characteristic equation (32), is set

equal to zero. As in (27), we define the phase function Φ(k, t) as

Φ(k, t) = −

(
V0
~

)2 [
g(0)t−

∫ t

0

g

(
−
2~sk

m

)
ds

]
. (39)

In analogy with (25), the crucial computation of the derivative with respect to k relies on

the fact that Y (v) = vk, v ∈ R. Consequently, we have a term identical to (29) which gives

the superballistic behavior (28). In analogy with the calculation (28), we find

∂2Φ

∂kj∂ki
(k, t)

∣∣∣∣
k=0

=
1

3

(
2V0
m

)2
∂2g

∂kj∂ki
(k0)t

3. (40)

In light of (19), this yields:

〈‖x‖2〉ρ(t) = −
1

2d+2

d∑

j=1

∂2j R̂(k, 0, t)|k=0

= −
1

3

1

2d

(
V0
m

)2

(∆g)(0) Tr(ρ0) t
3 +O(t2). (41)

13
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Remark 2. As is shown in refs. 7 and 8, the kinetic energy H0 = −∆ in this situation satisfies

a linear in time lower bound in the state ρ:

〈H0〉ρ(t) > C0t, t > 0.

This indicates that linear energy growth due to the unbounded white-noise potential. Unlike

the lattice case, the kinetic energy operator H0 is unbounded so an infinite amount of energy

can be added to the system. In section 3 of ref. 8, the authors consider a model with white-

noise and dissipation through a linear coupling to a heat bath. They prove that the averaged

energy remains bounded in certain situations.

III. THE LAPLACE TRANSFORM APPROACH TO QUANTUM

MOTION ON Z
d

The motion of a quantum particle restricted to a square lattice Zd differs from the results

in section II primarily due to the fact that the lattice Laplacian is a bounded operator. The

Gaussian white-noise potential results in diffusive motion on the lattice. This is in keeping

with the result of Kang and Schenker.14 They studied a similar problem on Z
d for which the

potential Vω(x, t) is a Markovian potential. They proved that the motion is diffusive. We

now turn to the proof of the second part of Theorem 1.

To prove part 2 of Theorem 1, we will pursue the same basic strategy as in section II

except an exact solution for the Laplace transform as in (24) is no longer possible. Instead,

we will prove that

∫ ∞

0

e−ts

(
∑

x∈Zd

‖x‖2〈ρ(x, x, t)〉

)
dt = −

d∑

j=1

∂2

∂k2j

̂̃
R(k, 0, s)

∣∣∣∣∣
k=0

=
C0

s2
+O

(
1

s

)
, (42)

for C0 > 0 depending on V0 and g. Condition (42) is equivalent to 〈‖x‖2〉ρt ∼ t indicating

diffusive motion. We will use below the fact that the expressions in (42) are real.

Let {êj} be the standard orthonormal basis of Zd. The discrete Laplacian acting on a

function f at site x ∈ Z
d sums f over all 2d nearest neighbors to x. We write {f̂j}

2d
j=1

for the 2d nearest neighbor directions at the origin so that f̂j = êj , for j = 1, . . . d and

f̂d+j = −êj , for j = 1, . . . , d. With this notation, the discrete Laplacian ∆ on ℓ2(Zd) is the

14
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finite-difference operator

(∆f)(x) =
∑

y:|x−y|=1

f(y) =
2d∑

j=1

f(x+ f̂j) =
d∑

j=1

[ f(x+ êj) + f(x− êj)] . (43)

The Laplacian is normalized so its spectrum is [−2d, 2d]. The Laplacian may be factored

via directional derivatives ∇±
i defined by

(∇±
i f)(x) = f(x± êi)− f(x). (44)

These two finite-difference operators commute. The adjoint of ∇±
i is ∇∓

i . In terms of these,

the discrete Laplacian (43) may be written as

(∆f)(x) = −

d∑

j=1

(∇+
j ∇

−
j f)(x) + 2df(x) (45)

It is convenient to introduce new variables X = x+ x′ and Y = x− x′. In terms of these

variables, we obtain

∆x′ −∆x = 2

d∑

j=1

[
∇+
Y,j∇

−
X,j +∇+

X,j∇
−
Y,j

]
. (46)

As above, we write R(X, Y, t) for the averaged density 〈ρ(x′, x, t)〉. We then obtain from the

fundamental equation (12) the equation for R(X, Y, t):

∂tR(X, Y, t) = −
i~

m

d∑

j=1

(
∇+
Y,j∇

−
X,j +∇+

X,j∇
−
Y,j

)
R(X, Y, t)

−

(
V0
2

)2

[g(0)− g(Y )]R(X, Y, t). (47)

We write R̃(X, Y, s) for the Laplace transform of R(X, Y, t) with respect to t. Taking the

Laplace transform of (47) we obtain:

i~

m

d∑

j=1

[
∇+
Y,j∇

−
X,j +∇+

X,j∇
−
Y,j

]
R̃(X, Y, s) + h(Y, s)R̃(X, Y, s) = R(X, Y, 0), (48)

where R(X, Y, 0) = 〈ρ0(x, x
′)〉 and h(Y, s) := s+

(
V0
2

)2
[g(0)− g(Y )].

We next take the Fourier transform with respect to X ,

̂̃
R(k, Y, s) :=

∑

X∈Zd

eik·XR̃(X, Y, s), k ∈ T d. (49)

15
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The Fourier transform of the differential operator term on the left in (48) may be written as

2
d∑

j=1

[(
eik·êj − 1

) ̂̃
R(k, Y + êj , s) +

(
e−ik·êj − 1

) ̂̃
R(k, Y − êj , s)

+ 2 (1− cos(k · êj))
̂̃
R(k, Y, s)

]
. (50)

By means of (50), the Fourier transform of (48) with respect to X is

i~

m

(
d∑

j=1

[(
eik·êj − 1

) ̂̃
R(k, Y + êj, s) +

(
e−ik·êj − 1

) ̂̃
R(k, Y − êj , s)

])

+
2i~

m

(
d∑

j=1

(1− cos(k · êj))

)
̂̃
R(k, Y, s) + h(Y, s)

̂̃
R(k, Y, s)

= R̂(k, Y, 0). (51)

In order to calculate the averaged mean square displacement, we compute

∂2

∂km∂kn

̂̃
R(k, 0, s)|k=0 by differentiating the equation (51) twice with respect to kj and then

eliminating the s-dependent terms. We first note that (51) evaluated at k = 0 gives

h(Y, s)
̂̃
R(0, Y, s) = R̂(0, Y, 0). (52)

Let c1 :=
~

m
and we write ∂m := ∂

∂km
. The km-derivative of (51) at k = 0 is

h(Y, s)∂m
̂̃
R(0, Y, s) = c1[

̂̃
R(0, Y + êm, s)−

̂̃
R(0, Y − êm, s)] + ∂mR̂(0, Y, 0). (53)

The mixed second partial derivative ∂nm := ∂2

∂kn∂km
of (51) at k = 0 results in

h(Y, s)∂2nm
̂̃
R(0, Y, s)− c1[∂m

̂̃
R(0, Y + ên, s)− ∂m

̂̃
R(0, Y − ên, s)]

−c1[∂n
̂̃
R(0, Y + êm, s)− ∂n

̂̃
R(0, Y − êm, s)

−ic1δmn

[
̂̃
R(0, Y + êm, s) +

̂̃
R(0, Y − êm, s)

]

+2ic1δnm
̂̃
R(0, Y, s) = ∂2nmR̂(0, Y, 0). (54)

For the diagonal term n = m, with ∂2m := ∂2

∂k2m
, we obtain

h(Y, s)∂2m
̂̃
R(0, 0, s)− 2c1[∂m

̂̃
R(0, Y + êm, s)− ∂m

̂̃
R(0, Y − êm, s)]

−ic1

[
̂̃
R(0, Y + êm, s) +

̂̃
R(0, Y − êm, s)

]

+2ic1
̂̃
R(0, Y, s) = ∂2mR̂(0, Y, 0). (55)
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According to (42), we need to extract the s-dependance of the terms on the right of (55)

at Y = 0:

h(0, s)∂2m
̂̃
R(0, 0, s) = 2c1[∂m

̂̃
R(0, êm, s)− ∂m

̂̃
R(0,−êm, s)]

+ic1

[
̂̃
R(0, êm, s) +

̂̃
R(0,−êm, s)

]

−2ic1
̂̃
R(0, 0, s) + ∂2mR̂(0, 0, 0). (56)

We use (52) and (53), and the evenness of g, to eliminate the factors of
̂̃
R depending on

s on the right of (56). For the first term on the right in (56), we find:

[∂m
̂̃
R(0, êm, s)− ∂m

̂̃
R(0,−êm, s)] = c1[h(êm, s)h(2êm, s)]

−1[R̂(0, 2êm, 0) + R̂(0,−2êm, 0)]

−2c1[h(êm, s)h(0, s)]
−1R̂(0, 0, 0)

+h(êm, s)
−1[∂mR̂(0, êm, 0)− ∂mR̂(0,−êm, 0)] (57)

The second term may be written as

[
̂̃
R(0, êm, s) +

̂̃
R(0,−êm, s)

]
= h(êm, s)

−1
[
R̂(0, êm, 0) + R̂(0,−êm, 0)

]
, (58)

and the third term,
̂̃
R(0, 0, s) = h(0, s)−1R̂(0, 0, 0). (59)

We use (57)–(59) in (56). This, combined with the facts that h(0, s) = s and that the

result must be real according to (42), shows that

−∆k
̂̃
R(0, 0, s) =

(
2~

m

)2(
1

s2

){ d∑

m=1

1

h(êm, s)

}
R̂(0, 0, 0) +O

(
1

s

)
. (60)

We note that h(êm, s) = s + (V0/~)
2[g(0) − g(êm)]. We assume that g(0) > g(êm) for all

m = 1, . . . , d. For example, if g(x) = g̃(‖x‖), this condition is simply that g(0) > g(1). If

g is strictly decreasing, this condition is satisfied. Under this condition, the leading term of

(60) is O(s−2) meaning the evolution is diffusive. If, on the other hand, g(0) = g(êm) for

some m, then the leading term is O(s−3) meaning that the motion is ballistic. This also

shows that the motion is also ballistic if V0 = 0.

To explore this further, the first term on the right in (60) may be written as

d∑

m=1

Cd
s2(s+ Γm)

, Γm := (V0/~)
2[g(0)− g(êm)],
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where Cd :=
(
2~
m

)2
R̂(0, 0, 0). We assume Γm > 0, for all m. The inverse Laplace transform

of this term is

Cd

d∑

m=1

[
e−Γmt

Γ2
m

+
t

Γm
−

1

Γ2
m

]
. (61)

If Γm = 0 for some m, then the inverse Laplace transform is

Cd
2
t2,

so the motion is ballistic. For short times for which tΓm ≪ 1, for all m, an expansion of the

exponential in (61) yields the effective behavior

〈‖x‖2〉ρt ∼

(
d

2

)
t2.

This shows that for short times relative to Γm, the motion appears ballistic. If, on the other

hand, tΓm ≫ 1, then the motion is diffusive and we obtain

〈‖x‖2〉ρt ∼ Cd

(
d∑

m=1

1

Γm

)
t + constant,

yielding the effective diffusion constant

D(V0, g) :=

(
2~

m

)2

Tr(ρ0)

(
d∑

m=1

1

Γm

)
(62)

This result for the diffusion constant is reminiscent of the one-dimensional result of ref. 19.

Their formula (52) for the averaged mean square displacement is our equation (61) and they

find that the diffusion constant is proportional to Γ−1, where Γ is V 2
0 , as in (62).

IV. APPENDIX 1: SDE INTERPRETATION OF THE SCHRÖDINGER

EQUATION

The Schrödinger equation (1) and the quantum stochastic Liouville equation (4) are cor-

rectly interpreted as a stochastic differential equation (SDE) using the Stratonovich integral.

For example, for the Liouville equation, (4), let Xt denote the stochastic process ρ(x′, x, t)

and let L0 denote the deterministic Liouvillian

(L0f)(x
′, x) :=

~
2

2m
[(∆x′f)(x

′, x)− (∆xf)(x
′, x)].
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We denote by Wt the standard d-dimensional Brownian motion. Then, we may write (4) as

the SDE:

i~dXt = L0Xt dt+Xt ◦ (dWt(x
′)− dWt(x)), (63)

where ◦ denotes the Stratonovich integral.

With regard to the choice of the Stratonovich integral, we paraphrase from pgs. 62–63 of

ref. 8. The choice of the Stratonovich integral is quite natural on physical grounds. The time

change of a realistic physical system is governed by driving forces with a nonzero correlation

time. Theoretical models based on stochastic processes which are uncorrelated in time may

only be used successfully if the correlation time of the actual driving forces is much smaller

than any other time scale inherent to the system. As in ref. 8, we interpret equations (1)

and (4) in the Stratonovich sense. Roughly speaking, this means that the white-noise in

(63) may be replaced by colored noise for which the time correlation function hν is a smooth

function converging weakly to a delta function as ν → 0. The resulting regularized equation

is averaged, and then the limit ν → 0 of the equation is taken. This procedure is used in

the next section to compute a correlation function leading to equation (12). Justification

for the procedure is given in a number of Wong-Zakai-like theorems, as in Horsthemke and

Lefever12 (pg. 101), Karatzas and Shreve15 (Chapter 5.2 D), and Brzeiniak and Flandoli.5

Wong-Zakai-like theorems guarantee that the solution ρ
(ν)
t of the regularized equation with

colored noise parameterized by ν converges to the solution of the stochastic PDE with the

Stratonovich interpretation.

V. APPENDIX 2: AN AVERAGING RESULT FOR GAUSSIAN RANDOM

VARIABLES

We consider a general situation where V is a Gaussian random field with mean zero and

covariance function C so that

〈Vω(x, t)Vω(y, s)〉 = C((x, t), (y, s)). (64)

Let R[V ] be a functional of the Gaussian random variable V with covariance function C as

in (64). In this case, a result of Glimm-Jaffe (ref. 10 Theorem 6.3.1) or Novikov (ref. 18

Section 2) states that

〈V (z, t)R[V ]〉 =

∫

Rd+1

C((z, t), (y, s))

〈
δR[V ]

δV (y, s)

〉
dy ds. (65)
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In the white-noise case, the covariance function is given by

C((x, t), (y, s)) = V 2
0 δ(t− s)g(x− y), (66)

and for the colored noise case, we have a family of covariance functions

Cν((x, t), (y, s)) = V 2
0 hν(t− s)g(x− y), (67)

where hν(t) is a family of smooth functions with hν(t) → δ(t) in the distributional sense as

ν → 0. We will assume that the support of hν ⊂ [−ν, ν].

In keeping with the Stratonovich interpretation of the stochastic differential equation (9)

for the kernel ρ(x′, x, t), we will first compute the expectation (65) for colored noise with

correlation function (67) and then take the limit ν → 0. We denote the expectation of a

random variable with respect to the colored noise with correlation function (67) by 〈·〉ν.

We write V (ν) to denote colored noise and use (65) to first compute 〈V (ν)(z, t)ρ(x′, x, t)〉,

where z denotes x or x′. The functional R[V ] in (65) is ρ[V (ν)](x′, x, t). We write ρ[V (ν)] to

emphasize the dependence of ρ on V (ν). According to (65), we must compute the variational

derivative of ρ[V (ν)](x′, x, t) with respect to V (ν)(y, s) and then take s = t and finally ν → 0.

We write the differential equation for the density matrix ρ[V (ν)] in (9) as

ρ[V (ν)](x′, x, t) = −
i~

2m

∫ t

0

(∆x′ −∆x)ρ[V
(ν)](x′, x, τ)dτ

−
i

~

∫ t

0

[V (ν)(x′, τ)− V (ν)(x, τ)]ρ[V (ν)](x′, x, τ)dτ

+ρ(x′, x, 0), (68)

where the initial density matrix ρ(x′, x, 0) is independent of V (ν).

Using the Liouvillian L defined in (5), the variational derivative with respect to V (ν)(y, s)

may be computed from (68). We note that the variation of the process at the time τ does

not depend on the process at a later time s > τ , so that for ν > 0,
∫ s−ν

0

L

(
δρ[V (ν)](x′, x, τ)

δV (ν)(y, s)

)
dτ = 0. (69)

As a consequence, we obtain from (68):

δρ[V (ν)](x′, x, t)

δV (ν)(y, s)
= −

i

~

∫ t

s−ν

L

(
δρ[V (ν)](x′, x, τ)

δV (ν)(y, s)

)
dτ

−
i

~

∫ t

0

{
[δV (ν)(x′, τ)− δV (ν)(x, τ)]

δV (ν)(y, s)

}
ρ[V (ν)](x′, x, τ)dτ.

(70)
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For the argument of the second term on the right in (70), we find

{
[δV (ν)(x′, τ)− δV (ν)(x, τ)]

δV (ν)(y, s)

}
= δ(τ − s)[δ(x′ − y)− δ(x− y)]. (71)

Taking the limit s→ t, with s 6 t, we obtain from (70)–(71):

lim
s→t

δρ[V ](x′, x, t)

δV (y, s)
= −

i

~

∫ t

t−ν

L

(
δρ[V (ν)](x′, x, τ)

δV (ν)(y, s)

)
dτ

−
i

~

∫ t

0

δ(τ − t)[δ(x′ − y)− δ(x− y)]ρ[V ](x′, x, τ) dτ.

(72)

We now take ν → 0. The limit of the first term on the right in (72) vanishes and the limit

of the second term may be evaluated using δ(τ) = d
dτ
H(τ), where H(τ) is the Heaviside

function with H(0) = 1
2
. Inserting this result (72) into (65), and taking the expectation, we

obtain

〈V (z, t)ρ[V ](x′, x, t)〉 = −
iV 2

0

2~

∫

Rd

g(z − y)[δ(x′ − y)− δ(x− y)]〈ρ[V ](x′, x, t)〉 dy

= −
iV 2

0

2~
[g(z − x′)− g(z − x)]〈ρ[V ](x′, x, t)〉. (73)

This establishes the result needed in the derivation of (11).
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1B. Aguer, S. De Bièvre, P. Lafitte, P. Parris, Classical motion in force fields with short

range correlations, arXiv:0906.4676; abridged version J. Stat. Phys. 138, no. 4-5, 780814

(2010).

2M. Aizenman and S. Molchanov, Localization at large disorder and at extreme energies:

an elementary derivation, Comm. Math. Phys. 157 (1993), no. 2, 245–278.

21



Quantum transport for white-noise potentials

3M. Aizenman, J. Schenker, R. Friedrich, D. Hundertmark, Finite-volume fractional-

moment criteria for Anderson localization, Dedicated to Joel L. Lebowitz, Comm. Math.

Phys. 224 (2001), no. 1, 219-253.

4P. W. Anderson, Absence of Diffusion in Certain Random Lattices, Phys. Rev. 109, 1492–

1505 (1958).
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