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Abstract

This paper deals with mass customization and the
association of the product configuration task with
the planning of its production process while trytog
minimize cost and cycle time. Our research aims at
producing methods and constraint based tools to
support this kind of difficult and constrained prob
lem. In some previous works, we have considered an
approach that combines interactivity and optimiza-
tion issues and propose a new specific optimization
algorithm, CFB-EA (for constraint filtering based
evolutionary algorithm). This article concerns an
improvement of the optimization step for large prob

requirements are then used to support the optiroizaif
both product and production process.

Given this problem, product performance, processlecy
time and process plus product cost can be optimized
therefore deal with a multi-criteria problem and goal is
to propose to the user solutions belonging to theet®
front. For simplicity we only consider cycle timadtotal
cost (product cost plus process cost), consequdrelywo-
step process can be illustrated as shown in figure
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lems. Previous experiments have highlighted that
CFB-EA is able to find quickly a good approxima-
tion of the Pareto Front. This led us to propose to
split the optimization step in two sub-steps. Fiest
“rough” approximation of the Pareto Front is quickl
searched and proposed to the user. Then the user in
dicates the area of the Pareto Front that he é-int
ested in. The problem is filtered in order to raist
the solution space and a second optimization step i
done only on the focused area. The goal of the arti
cle is to compare thanks to various experimentation
the classical single step optimization with the two
sub-steps proposed approach.

1 Introduction

This article is about the concurrent optimizatidrpooduct
configuration and production planning. Each probl&n
considered as a constraint satisfaction problemPjCsd
these two CSP problems are also linked with sonme co
straints. In a previous paper [Pitiet al., 2013], we have
shown that this allows to consider a two-step psecdi)

interactive configuration and planning, where non-

negotiable user requirements (product requirememts
production process requirements) are first prock#isenks
to constraint filtering and reduce the solutioncepéi) op-
timization of configuration and planning, where otgble

T >
Initial sclution space

T »
Solution space fine with the user  Pareto optimal solutions space
H i fine with the user

Step 1 - Interactive
Configuration —
Planning
Non-negotiable
@‘

Requirements
SN’
Figurel - Two-step process

Step 2
Response
optimization

Negotiable
Requirements

user

Some experimental studies, reported last yearofRitial.,
2012], discusses optimization performance accordimg
problem characteristics (mainly size and constrémel).
That last paper proposes to divide the step 2 {®@&ment
computation) in two tasks, particularly in the caddarge
problems: (i) a first rough computation that pertoihave a
global idea of possible compromises (ii) a secomumuta-
tion on a restricted area that is selected by #ee.(r'he goal
of this article is to present experimental restiitat show
that this idea allows to significantly reducing iomtzation
duration while improving optimization quality.

In this introduction, we clarify with a very simpéxample
what we mean by concurrent configuration and plagni
problem and relevant optimization needs. Then deoisd
section formalizes the optimization problem, présethe
optimization algorithm and describes the experimlent
study. The third section is dedicated to varioysegixnenta-
tions.



1.1 Configuration and planning processes.

Many authors, since [Mittal and Frayman, 1989],ifi8een
et al., 1998] or [Aldanondat al., 2008] have defined con-
figuration as the task of deriving the definitiohaospecific
or customized product (through a set of propertes)-
assemblies or bill of materials, etc...) from a generod-
uct or a product family, while taking into accowsgecific

customer requirements. Some authors, like [Schiterl“r

2001], [Bartaket al., 2010] or [Zhanget al. 2013] have
shown that the same kind of reasoning process eaoh-
sidered for production process planning. They tloeee
consider that deriving a specific production plapdra-
tions, resources to be used, etc...) from some ddrgkneric
process plan while respecting product charactesistind
customer requirements, can define production phrapni
Many configuration and planning studies (see faneple
[Junker, 2006] or [Laborie, 2003]) have shown teath
problem could be successfully considered as a @nst
satisfaction problem (CSP). We proposed to asstiem
in a single CSP in order to process them concuyent

This concurrent process and the supporting comstrai

framework present three main interests. First thégw

considering constraints that links configuration ganning
in both directions (for example: a luxury produictish re-
quires additional manufacturing time or a giveneasisly
duration forbids the use of a particular kind ofrgmnent).
Secondly they allow processing planning requiremenen
if product configuration is not completely definednd
therefore avoid the traditional sequence: configureduct
then plan its production. Thirdly, CSP fit very Weh one
side, interactive process thanks to constrainerfily tech-
niques, and on the other side, optimization thaoksrious
problem-solving techniques. However, we assumenitefi
capacity planning and consider that productioraismthed
according to each customer order and productioadagpis
adapted accordingly.

In order to illustrate the problem to solve we tete very
simple example, proposed in [Pitiet al., 2012], dealing
with the configuration and planning of a small @adhe
constraint model is shown in figure 2. The planéesined
by two product variables: nhumber of seats (Seaissiple
values 4 or 6) and flight range (Range, possiblaes600
or 900 kms). A configuration constraint Cc1l forbalplane
with 4 seats and a range of 600 kms. The produgtioness
contains two operations: sourcing and assemblingte(l
Sourc and Assem). Each operation is described byptw-
cess variables: resource and duration: for souydhmg re-
source (R-Sourc, possible resources “Fast-S” ataVS")

and duration (D-Sourc, possible values 2, 3, 4g6ks), for

linking seats with sourcing, Cpl (Seat, R-SourcS@#c),
and a second one linking range with the assemb(Om?,
(Range, R-Assem, D-Assem). The allowed combinatains
each constraint are shown in the 3 tables of figuaed lead
to 12 solutions for both product and productioncess.

R-sourc D-Sourc R-Assem D-Assem
Slow-8 Fast-S 2,3,4,6 Norm-A,Quic-A 4,5,6,7
AS
Seats R-Sourc = D-Sourc Seats Range Range R-Assem D-Assem
4 Slow-5 4 4 900 600 Norm-A 5
4 Fast-S 2 6 600 600 Quic-A 4
8 Slow-S 8 ) 900 900 Norm-A 7
5 Fast-8 3 800 Quic-A 8

Cp1 (Seat. R-Sourc, D-Sourc), Cc1(Seats, Range) Cp2 (Range, R-Assem, D-Assem)

Figure 2 - Concurrent configuration and planning CSP model

1.2 Optimization needs

With respect to the previous problem, once thearnst or
the user has provided his non-negotiable requirésnée is
frequently interested in knowing what he can gdeimms of
price and delivery dates (performance is not cared any
more). Consequently, the previous model must beatigod
with some variables and numerical constraints igepito
compute the two criteria. The cycle time matchesehding
date of the last production operation of the cauriégl prod-
uct. Cost is the sum of the product cost and psocest.

R-sourc
Slow-8.Fast-S

C-Seats
90 4
120 &

Cs1(C-Seats, Seats)

Seats C-Range
40 600

60 900
Cs2 (C-Range. Range)

Range

C-Assem
5
4
7

&

C-Sourc
G0
8o

R-Sourc
Slow-5
Fast-S

70 Slow-5 8

90 Fast-3 3

Cs3 (C-Sourc, R-Sourc, D-Sourc).

D-Sourc
4
2

C-Assem R-Assem
100 Norm-A
120 Quic-A
10 MNorm-A
130 Quic-A

Cs4 (C-Assem, R-Assem D-Assem)

Figure 3 - CSP model to optimize

The model of figure 2 is completed in figure 3. Femst,
each product variable and each process operatiagsisci-
ated with a cost parameter and a relevant costreamis (C-

assembling, the resource (R-Assem, possible ressurcgeats Csi1), (C-Range, Cs2), (C-Sourc, Cs3) anksg@m

“Quic-A” and “Norm-A”") and duration (D-Assem, pobsk
values 4, 5, 6, 7 weeks).

Two process constraints linking product and procesta-
bles modulate configuration and planning possiégit one

cs4) detailed in the tables of figure 3.

The total cost and cycle time are obtained withumerical
constraint as follows:

Total cost = C-Seats + C-Range + C-Sourc AgSem.
Cycle time = D-Sourc + D-Assem



The twelve previous solutions are shown on therégd
with the Pareto front gathering the optimal ondse §oal of
this article is to improve the computation of tRigreto front
with respect to the user preference.

420
Total cost: k€
400 +
380 * @
‘-.
‘\
360 = .
1
“\.
340 e
S
e
320 +
5 Cycle Time : weeks
5 7 9 " 13 15

Figure4 — Problem solutions and Pareto front

2 Optimization problem and techniques

The optimization problem is first defined, and thbe op-
timization algorithm that will be used is describ&ihally,
the experimental process is introduced.

2.1 Optimization problem

The optimization problem can be generalized asahe
shown in figure 5.

Product cost variables

x
X

Process variables

Process cost variables

x

Figure5 — Constrained optimization problem

The constrained optimization problem (O-CSP) isirasef
by the quadruplet <V, D, C, f > where V is the sktleci-
sion variables, D the set of domains linked to \thdables
of V, C the set of constraints on variables of \d dnthe
multi-valued fitness function. The set V gatheh& product
variables and the resource process variables (suaresthat
duration process variables are deduced from prodndt
resource). The set C gathers: only configuratiomstraints
(Cc) and process constraints (Cp). The variablesation
durations and cycle time are linked with a numérazmn-
straint that does not impact solution definitiord @aherefore
does not belong to V and C. The same applies t@tbe-
uct/process cost variables and total cost, whieh liaked
with cost constraints (Cs) and total cost constsaiffhe
filtering system allows dynamically updating themain of
all these variables with respect to the constraifite varia-
bles belonging to V are all symbolic or at leasicdéte. Du-
ration and cost variables are numerical and coatisu
Therefore, constraints are discrete (Cc), numerfcgtle
time and total cost) or mixed (Cp and Cs). Discrete-
straints filtering is processed using a conventi@ma con-
sistency technique [Bessiere, 2006] while numerixah-
straints are processed using bound consistencynibig
1993].

2.2 Optimization algorithm

A strong specificity of this kind of optimizatiorrgblem is
that the solution space is large. [Amilhastre e8D2] re-
port that a configuration solution space of moranth
1.4*10* is required for a car-configuration problem. When
planning is added, the combinatorial structure lsaoome
huge. Another specificity lies in the fact that thleape of
the solution space is not continuous and, in MESES,
shows many singularities. Furthermore, the muiteda
problem and the need for Pareto optimal results adse
strong problem expectations. These points expl&ip nvost
of the articles published on this subject, as franeple
[Hong et al., 2010] or [Liet al., 2006] consider genetic or
evolutionary approaches to deal with this problémthis
article we will use “CFB-EA” (for Constraint Filtierg
Based Evolutionary Algorithm) a promising algoriththat
we have designed specifically for this problem.

CFB-EA is based on the SPEA2 method [Zitz&tral.,
2001] which is one of the most useful Pareto-baseth-
ods. It's based on the preservation of a seleaifdmest so-
lutions in a separate archive. It includes a pernfog evalu-
ation strategy that brings a well-balanced popaotatiensity
on each area of the search space, and it useslaxeatrun-
cation process that preserves boundary solutioandures
both a good convergence speed and a fair presemvefi
solutions diversity.

To deal with constrained problems, we completed thi
method with specific evolutionary operators (ifitiation,
uniform mutation and uniform crossover) that preedea-
sibility of generated solutions.



This provides the six steps following approach:
1. Initialization of individual set that respect thene
straints (thanks to filtering),

tion, (ii) we have an user who can possibly refirgecriteria
requirements with regard to the solutions obtaideadng
optimization process ; (iii) CFB-EA is relevant fibve range

2. Fitness assignment (balance of Pareto dominance ad concurrent configuration and planning problemguired

solution density)

3. Individuals selection and archive update

4. Stopping criterion test

5. Individuals selection for crossover and mutatioeraep
tors (binary tournaments)

6. Individuals crossover and mutation that respecttire
straints (thanks to filtering)

7. Return to step 2.

For initialization, crossover and mutation operstogach
time an individual is created or modified, everyngddeci-

sion variable of V) is randomly instantiated ints current
domain. To avoid the generation of unfeasible imtligls,

the domain of every remaining gene is updated Imgtraint

filtering. As filtering is not full proof, inconsient individu-

als can be generated. In this case a limited badkiprocess
is launched to solve the problem. This approachsiibe
need any additional parameter tuning for constraiuh-

dling. In the following, we will briefly remind thprinciples

and operators used in CFB-EA.

Many research studies try to integrate constramtsA. C.

Coello Coello proposes a synthetic overview in [Meaz

Montes and Coello Coello 2011]. The current tentenin

the resolution of constrained optimization problesing

EAs are penalty functions, stochastic rankirgpnstrained,
multi-objective concepts, feasibility rules and cpkopera-
tors. CFB-EA belongs to this last family.

The special operators class gathers methods th&d tleal

only with feasible individuals like repairing metim

preservation of feasibility methods or operatort threove

solutions within a specific region of interest viiththe

search space as for example the boundaries ofetiwbfe
region. Generally and has we verified on our kagteri-

mentations, these methods are known to be perfgrmim
non-over-constrained problems (i.e. a feasiblet&miucan

be obtained in a reasonable amount of time to be @b
generate a population of solutions).

CFB-EA aims at preserving the feasibility of thdiinduals

during their construction or modification. Proposgukcific

evolutionary operators prune search space usingtreomt

filtering. The main difference between our approacid

others is that we do not have any infeasible smhuiin our

population or archive. Each time we modify an indiaal,

the constraints filtering system is used in ordmrverify

consistency preservation of individuals.

Previous experimentations [Pitietal., 2012] allowed us to
verify that the exact approaches are limited tdbjgms of

limited size and that CFB-EA is completely compegitfor

the level of constraint of the models which intéres. In

this article, we propose a new two sub-step opttion

approach that takes advantage of the three follgpwirarac-
teristics: (i) EA are anytime algorithms, e.g. ttoayn supply
a set of solutions (Pareto Front) at any time dftitializa-

(size and constraints level) and more particuldrban pro-
pose, in a reasonable amount of time, a good appation
of the Pareto Front that allows the user to deeioleut his
own cost/cycle time compromise.

2.3 Two-task optimization approach.

As explained in the introduction, the goal of thiticle is to
evaluate, for large problem, the interest of replgcthe
single shot Pareto front computation by two sudeess
tasks: (i) a first rough computation that provideglobal
idea of possible compromises (ii) a second comjmutain a
restricted area selected by the user.

This is shown in the illustration of figure 6. Thedt part of
figure 6 shows a single shot Pareto. The right phfigure
6 shows a rough Pareto quickly obtained (first Yasi-
lowed by a zoom selected by the user (max costnaax
time) and a second Pareto computation only onrdssict-
ed area (second task). The restricted area isnalutdiy con-
straining the two criteria total cost and cyclediffor inter-
esting area) and filtering these reductions on whwle
problem.

Total cost Total cost
A
max cost
N
l nd
oo\ \ 2" Pareto on
\ i \V restricted area
: v
\ 1 \|
\ \
\\ Single shot \ Rough I Pareto
\ Pareto
.:~\ _______ "‘ﬂxé%‘e \‘\-\_‘_
-~ s
Cycle time Cycle time”

Figure 6 — Single shot and two-task optimization principles

The second optimization task does not restart fsomatch.

It benefits from the individuals of the archive th&longs to
the restrained area founded during first task. Wes tre-
placed the initialization of our CFB-EA (constitui of the
first population) by a selection of a set of thatbelutions
obtained during the first rough optimization.

This provides the following process:

1. Interactive configuration and planning using fon
negotiable requirements of the user (as before),

2.1 - ' global optimization task on negotiable requirersent
of the user

2.2 - 2 optimization on interesting area initialized with
individuals of the previous step.



3 Experimentations

3.1 Maodel used and performance measure

The goal of the proposed experiments is to comfizee
two optimization approaches (single-shot and tvei-tap-
timization approaches) in terms of result qualitg @ompu-
tation time. In terms of quality we want to compé#re two
fronts and will use the Hypervolume measuremenpased
by [Zitzler and Thiele 1998] which is illustrated figure 7.
It measures the hypervolume of the space dominayed
set of solutions. It thus allows evaluating botimwergence
and diversity proprieties (the fittest and mostedsified set
of solutions is the one that maximizes hypervolumnie)
terms of computation time, we want to evaluate,a@iven
Hypervolume result the time reduction provided bg te-
cond approach.

Worst Point W

Max_cost

C;= (Cost-Max_cost)* (time-Max_time)

;; .|
S
o L
© HY = £
g =
o | Pareto
m
|
Cycle time Max_time

Figure 7 — Hyper volume definition

In terms of problem size, we consider a model déifall_

aircraft” that gathers 92 variables (symbolic, ggeor float

variables) linked by 67 constraints (compatibiliigbles,

equations or inequalities). Among these variables,find

21 decision variables that will be manipulated bg bpti-

mization algorithms (chromosome in EAS):

- 12 variables (each with 6 possible discrete valties)
describe product customization possibilities,

- 9 variables (each with 9 possible discrete valtlea)
describe production process possibilities. In fdbg

- Aircraft_zoom_1: area that correspond to solutiwith
a cycle time less than 410 (solutions with shortgste
times),

- Aircraft_zoom_2: area that correspond to solutiwith
a cycle time less than 470 and a total cost lems ®35
(compromise solutions),

- Aircraft_zoom_3: area that correspond to solutiwith
a total cost less than 475 (solutions with lowesalt
costs).

T30

o0

Totad cost

Cycle tme

® Archave after 3 hours + Final Archive after 24 hours.

Figure 8 —Pareto-fronts obtained on “full aircraft modeftes 3
and 24 hours of computation

These three areas correspond with a division offitied

Pareto front obtained after 24h of computatiorhireé equal
parts. These areas have been selected in ordematoaee
performance of the proposed two-task approachijtkalso
corresponds with some classical preference of a whe

could wish: (i) a less expensive plane, (ii) a slegcle time,
(iii) a compromise between total cost and cycleetindve
will discuss this aspect in section 3.3.

The optimization algorithms were implemented in (pro-

gramming language and interacted with the filtersygtem
coded in Perl language. All tests were done usitaptop
computer powered by an Intel core i5 CPU (2.27 Gimty

one CPU core is used) and using 2.8 Go of ram.

3.2 Two-task approach evolutionary settings

For a first experimentation of the two-task apptate use
classical evolutionary settings (e.g. the same wiarlary
settings used for the single-shot approach: Pdpulatize:

nine values aggregate 3 resource types and 3 msour80, Archive .size: 100, !rjdividual Mutation Probeitlytll 0.3,
quantities for each of the 9 process operations th4>ene Mutation Probability: 0.2, Crossover Probgbild.8).

compose the production process.
Without any constraints, this provides a humbepassible
combinations around (= 6'2x 9°). An average constraint
level (around 93% of solutions rejected) allows*ZB°
feasible solutions. Results of experimentation’shwither
model sizes and other constraint levels can beuttausin
[Pitiot et al., 2012].

Figure 8 shows the Pareto Fronts obtained with ERB-
after 3 and 24 hours of computation. The rough tBrent

obtained after 3 hours of computation allows therus

decide in which area he is interested in. In thet rseib-

section, we will study a division of this Paretorit in three
restricted area:

The main difference with the single-shot approagiwith
the backtrack limit (e.g. number of allowed backkran
mutation or crossover operator). This limit hasrbeet to
100 in the one-shot approach and to 30 in the tep-ap-
proach.

Indeed in the two-step approach, it could be timesaming
to obtain a valid solution. For example with thegse-shot
optimization, only 2.5% of filtered individuals weunfea-
sible and none of them were abandoned; while viightivo-
task approach and a lower backtrack limit, arouft af
filtered individuals were unfeasible and 0.3% dérthwere
abandoned. So a lower backtrack limit reduces itme t
spend to try to repair unfeasible individuals.



The only other difference between single-shot CHBagad
two-task CFB-EA is the stopping criterion. Whilesimgle-
shot approach, we use a fix time limit (24hourkg two-
task approach uses a bcondition stopping teststioas ei-
ther if there is no HV improvement after 2 hoursafier 12
hours of computation (that must be added to theetimitial
hours for getting the rough Pareto Front).

3.3 Experimental results

The goal of this section is to evaluate the twd-tzstimiza-
tion on the three selected areas of figure 8 (z&paoom 2
and zoom3) with respect to the single-shot optitiora

First result illustrations

Figure 9 illustrates an example of the Pareto &dhat can
be obtained on the zoom 1 area :

- rough Pareto obtained after 3 hours (fig 9 scg)are

- two-task, after 3+12 hours (fig 9 triangles),

- single-shot, stopped after 24 hours (fig 9 diads)n

750

700

Total cost

650 * o+ o
VW owy [ ]
600
AR
L o
% * vy, ‘h. [}
* o
550 %o voy
%
500
330 340 350 360 370 380 390 400 410

m Archive after 3 hours Cycle time

v Final archive on zoom after 12hours (3h+9h only on zoomed area)
+ Final Archive after 24 hours

Figure 9 —Example of Pareto fronts obtained on zoom1

The Pareto Fronts obtained by the two approacheglés
shot and two-task) are very close when the cycigrésiter
than 355. For lower cycle times, the proposed tagktap-
proach is a little better. However, these curvesespond
with a specific run. In order to derive strongenciosions,
10 executions of the two approaches have beenethier
each of the three zoom areas.

Detailed comparisons

Detailed experimental results achieved on the tlaemn
areas are presented in figure 10 and table 1.

On each graph of figure, the vertical axis corresjsoto the
hyper volume (average of ten runs) reach and haoté@ne
is the time spent. At time 0O, the single-shot optation is
launched (dotted line). After 3 hours (10800 sesdnd

- the single-shot keeps going on (dotted line),

- the two-task is launched (solid line).

The table provides numeric results for each zooga.afhe
columns display the single-shot, two-task and %afap

- average final hypervolume,

- average % standard deviation of hypervolume
- average computation time,
- average % standard deviation of computation time,
- maximum value of hypervolume.
7000

6000

Total cost

5000

4000

3000
2000

1000

i 0 10000 20000 30000 40000 50000 60000 70000 80000 90000
—Average HV on zoom1 area with zoomed CFB-EA Cycle time
---Average HV on zoom1 area with global CFB-EA

2000
1800
1600
1400
1200
1000

Total cost

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
—Average HV on zoom2 area with zoomed CFB-EA Cycle time
---Average HV on zoom?2 area with global CFB-EA

2000
1800
1600
1400
1200
1000
800
600
400
200

Total cost

0 -
0 10000 20000 30000 40000 50000 60000 70000 80000 90000
—Average HV on zoom3 area with zoomed CFB-EA
---Average HV on zoom3 area with global CFB-EA

Cycle time

Figure 10 — Evolution of hypervolume

In terms of quality, the new proposed approach task
optimization) allows to obtain a similar performanwith
respect to single-shot one:

- 0.4% worse on zoom1

- 1% worse on zoom2

- 4% better on zoom3

but in around half of computing time:

- 13 h instead of 24h for on zoom1

- 13.5h instead of 24h for on zoom2

- 10.5h instead of 24h for on zoom 3.

Furthermore, this computing time includes the 2rboof
computation without any hypervolume reduction befor
stopping (stopping criterion of the two-task aptga



It can be seen on the figurelO that when the sisige
CFB-EA has trouble to obtain a good Pareto Fromtndu
the first three hours, the more the two-task CFBi&Aper-
forming. On zooml area, single-shot CFB-EA reackés
tively quickly a near-final Pareto Front; while aoom3
area, it reaches it very slowly.

Single-shot Two-task .
CFBEA CFBEA gapin %
Average
Final HV 5849 5823 -0.4
Average 0 0
‘g HV RSD 3.8% 5.1%
8| Total
NI time 86400(24h) 47996 (=13h) -44.6
Total
time 0 15%
RSD
Max HV 6043 6057 0.2
Single-shot Two-task .
CFBEA CFBEA gap in %
Average
Final HV 1758 1740 -1.
Average o o
cél HV RSD 2.1% 2.3%
8| Total
NI time 86400(24h) 48501 (=13.5h) -44
Total
time 0 16%
RSD
Max HV 1795 1776 -1
Single-shot Two-task .
CFBEA CFBEA gap in %
Average
Final HV 1765 1844 4.4
Average o 0
cg HV RSD 3.16% 0.07%
8| Total
N[ time 86400(24h) 38185 (=10.5h) -55.9
Total
time 0 26%
RSD
Max HV 1831 1845 0,7

Table 1. Comparison of the two approaches

4 Conclusions

The goal of this paper was to evaluate a new opéititn
principle that can handle concurrent configuratma plan-
ning. First the background of concurrent configioratand
planning has been recalled with associated constiai
modeling elements. Then an initial optimization rageh
(single-shot CFB-EA) was described followed by the-
task approach object of this paper.

Instead of computing a Pareto Front on the wholatiso
space, the key idea is: to compute quickly a roBgheto

Front, to ask the user about an interesting areh &m
launch Pareto computation only on this area.

According to experimental results, in terms of caoagtion
time, the new two-task approach allows a signifidame
saving around half of the previous time neededheydin-
gle-shot optimization approach. In terms of qualityper-
volume computation are very close or even a litéter in
some case.

Furthermore, these results have been obtained m@athar
large problem that contains around*100"" solutions. With
smaller problems, the proposed approach shouldomerf
much better. We are already working on a more &kten
test (different model size and different level ohstraints)
as we did in [Pitiotet al., 2012]. Another key aspect that
needs to be study is to find a way to define theghoPareto
computation time.
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