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Abstract

In this paper we summarize our methods for the ISIC 2018 Competition: Skin Lesion
Analysis Towards Melanoma Detection.

1 Introduction

In this paper we briefly discuss our methods for addressing Task 1 (lesion segmentation), Task
2 (lesion attribute detection) and Task 3 (classification) of the ISIC 2018 Competition on skin
cancer.

For Task 1 and Task 2, we used a convolutional neuron network (CNN) model called Grass-
Net, which we developed earlier this year for another problem (satellite image segmentation),
and which is a combination of U-Net [4] and ResNet [5]. For Task 3, we use a new CNN model
that we developed called Z-Net (Z for zig-zag), and pre-process the images using Task 1.

For Task 1 and Task 2, we used only the official data of the ISIC 2018 Competition [2] and
[3]. For Task 3, due to the fact that the official dataset is very imbalanced (e.g., the number of
images in the category ”NV” is almost 60 times higher than ”DF”), we added some data that we
could find on the internet using searches by keywords, from free sources such as DermanetNZ,
to reduce this imbalance.

2 Task 1: Lesion Segmentation

2.1 Model

We designed an architecture using Keras/Tensorflow, called GrassNet, which combines the U-
Net of Ronneberger et al. [4] and the ResNet structures of He et al. [5]. More precisely, the
network contains down-sampling and up-sampling layers as in the U-Net, and residual blocks
are added to down-sampling layers as in ResNet. In addition, we concatenate down-sampling
layers to up-sampling layers in order to preserve the information. Our GrassNet has 37 million
trainable parameters.

The droupout with p = 0.5 is also added at the two last down-sampling convolution blocks
to reduce overfitting. The Batch normalization and the Selu activation are added after each
Convolution2D layer. The last activation function is Sigmoid.

The architecture operates on an input image of 256 × 256 pixels and produces a probability
map of the same dimensions.

∗Tien Zung Nguyen is the supervisor of the team; other authors’ contributions are equal.
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2.2 Preprocessing and Training

We resized each training image to 256 × 256, then trained the network using the Adam opti-
mization algorithm [1]. In order to improve the robustness of the model, we applied a set of
transformations (augmentations): rotation with a random angle, flipping, and random noise.
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Figure 1: GrassNet

2.3 Validation results

We obtained a Jaccard score of 0.781 on our first validation submission, after 280 epochs of
training (11 minutes per epoch), on a PC with a GTX 1070 graphic card.

3 Task 2: Lesion Attribute Detection

3.1 Model

For Task 2, we use the same architecture GrassNet as for Task 1.
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3.2 Preprocessing

In order to improve accuracy, we first apply Task 1 to find the lesion on the image, cut down
the image to a smallest possible square which contains the lesion, and then resize that square
to 256 × 256, before feeding it to GrassNet.

3.3 Augmentation and Training

We trained each attribute separately, using the Adam optimization algorithm [1]. Data aug-
mentations similar to Task 1 (random rotations, flipping, and random noises) are used in order
to improve the robustness of the model.

We did not submit our results for validation yet, due to lack of time. (We entered this
competition late, on July 4th).

4 Task 3: Lesion Classification

4.1 Model

We designed a new network, called Z-Net (Z for zig-zag) by combining the GrassNet in Task
1 and an additional down-sampling structure. The idea is that the hidden segmentation inside
Z-Net will improve the accuracy of the classification. Our test runs on this architecture show
promising results compared to previously well-known architectures.

See Figure 2 for the schema of a version of Z-Net. A more sophisticated version also has
bagging.

4.2 Preprocessing

We pre-process in a way similar to Task 2, using the results of Task 1.

4.3 Augmentation and Training

Since the data is extremely imbalanced, we use the up-sampling technique by multiplying the
data with different ratios on different classes. Then we apply a random mix-up [6] with random
weights: for a random couple of image (img1, img2) extracted from data set, we replace it by a
new image img = α ∗ img1 + (1 − α) ∗ img2 with the same label as img1, where α is a random
number in [0.5, 1]. Standard augmentation operations are also used (random rotations, random
zooming, random noise, etc.) in the training process.
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Figure 2: Z-Net
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