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Abstract. This  work  deals  with  the  vibrations  of  sandwich  visco-elastic  structures.  The 

central visco-elastic layer included between two metallic layers leads to solve a problem of  

complex  and non-linear eigenvalues.  Indeed  the  core material  depends  on the frequency.  

Several  methods exist  to solve this type of  problem.  But  the  dimension of  matrices  to be  

manipulated  can  become  very  large  and  generate  substantial computational  times.  A 

reduction technique is proposed herein. It is applied and compared to the high order Newton 

method. 
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3- Finally, the perturbation technique is applied, that is to say, the increment (∆U ,∆p ) is

sought in the truncated series form depending on the perturbation parameter ε :

(4)

4- After inserting these series into the modified problem(3), a series of linear problems for 

each order is obtained and solved.

As  the  number  of  unknowns  is  greater  than  the  number  of  equations,  an  equation  to 

normalize the mode is introduced :

∆U
t
 G U0 = 0 (5)

Then, the linear problems can be written at the ith truncature order, in the following matrix 

form :

(6)

where  Lt refers  to  the  complex  tangent  operator  and  Fnl
i   is  a  second  member  vector 

changing at each 'i' order but  depending only on the variables calculated in previous orders 

and ( )t indicates the transposed operator.

The characteristic parameters of this method are the truncature order of (N) series and a 

small  tolerance  parameter  enabling  to  check  if  the  method  has  converged  towards  the 

solution.  This resolution technique,  named high  order  Newton method gives  good results 

compared to experimental  results. The disadvantage of this method is computational time. 

Indeed, the problems to solve need triangulating large-size matrices. However, one must take 

into consideration that the high order Newton method needs one matrix triangulation only and 

the resolution of “N” linear systems (6) at each iteration for an initial solution (U0,  p0). In 

order to reduce computational times, the authors propose – in the reference [2] – to use real 

matrices  instead  of  consistent  complex  matrices,  corresponding  to  the  Lt Operator.  This 

method is faster but it diverges in some cases.

The  objective  of  this  work  is  to  apply  a  reduction  model  to  the  high  order  Newton 

algorithm in order to reduce computational times while preserving the convergence properties 

of the algorithm.

2222 REDUCTION METHOD

The reduction model is applied to the equation (1) : the displacement vector is projected on 

a small-sized base :
U=ℜ u (7)
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one is discretized with 424  D.o.F., like in reference [2]. The used parameters by the high 

order Newton method are : a truncature order N=20, a tolerance equal to 1.10-7. In order to 

apply the  reduction  method,  20 vectors  are  used.  Then,  the  basis  (8)  is  composed  of  10 

vectors Φ (from a linear  vibration computation) and of 10 vectors Ψ solutions of the linear 

problem (9). The results obtained by the high order Newton method with – referred to as R-

HONA) and without reduction – referred to as HONA – are given in Table 2 for the first two 

bending modes of the beam defined in Table 1.

Mechanical properties Elastic layer – Aluminum Visco-elastic layer

Young modulus Ea = 6,9  1010 N/m2 E0 = 1794  103 N/m2

Poisson ratio υa = 0,3 υp = 0,3

Density ρa = 2766 kg/m3 ρp = 968,1 kg/m3

Thickness ha = 1,524 mm hp = 0,172 mm

Table 1. Mechanical and geometrical properties of Beam 1.

Mode HONA [8] R-HONA

64.32 Iteration 2 3

Damped frequency 70.19647 70.19646

Damping coefficient 0.228979 0.228978

ηm / ηc 0.152653 0.152652

297.85 Iteration 2 3

Damped frequency 310.4359 310.436

Damping coefficient 0.295438 0.295435

ηm / ηc 0.196959 0.196957

Table 2. First two bending modes of Beam 1. E=E0(1+i ηc)= cst, ηc=1.5 and 20 vectors in the reduction base.

Table 2 shows that the reduction technique proposed enables to obtain the same values as 

the high order Newton method.

3.2 Example with a Young modulus depending on the temperature

A second cantilever sandwich beam with dimension (178*10 mm2) is considered. But this 

time, the Young modulus of the central visco-elastic layer is not constant. It is represented by 

the generalized Maxwell model :
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The Maxwell number Nmax is equal to 129. The other characteristics of the layer are shown in Table 3.

Here, for the finite element simulation, the temperature used is 20°C and the number of nodes used 

for discretization is equal to 53, that is to say, 424  D.o.F.. The parameters used by the high-order 

Newton algorithm with and without reduction method are the followings : a truncature order N=20, a 

tolerance parameter equal to 1.10-7 and 20 vectors in the projection basis.  The first three bending 

modes are studied.

In the Table 4, we can note that the computational results carried out with the high order Newton 

with or without reduction diverge when the truncature order is equal to 20 in the series. That is why, in 

Table5, the computation of frequencies and dampings is carried out using a truncature order equal to 5. 

In this case, the two algorithms give good results. 

Mechanical properties Elastic layer – steel Visco-elastic layer

Young modulus Ea = 2,1  1011 N/m2 Ep = 27,216  106 N/m2

Poisson ratio υa = 0,3 υp = 0,44

Density ρa = 7800 kg/m3 ρp = 1200 kg/m3

Thickness ha = 0,6 mm hp = 0,045 mm

Table 3. Properties of the beam 2.

Modes HONA R-HONA

29.96 Iteration 2 5

Damped frequency 32.7725859 32.7725747

Damping coefficient 0.033747927 0.033751093

ηm / ηc 43.2200279 43.2240829

RES 3.72228416E-11 1.14015107E-08

143.49 Iteration 3 4

Damped frequency 197.870522 197.864831

Damping coefficient 0.0981405456 0.0995990691

ηm / ηc 125.68586 127.553749

RES 2.53576098E-12 3.25600381E-09

349.78 Iteration Diverge Diverge

Table 4. First three bending modes of Beam 2. N=20.
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Mode HONA R-HONA

29.99 Iteration 2 4

Damped frequency 32.7842474 32.785868

Damping coefficient 0.0335581189 0.0335753581

ηm / ηc 42.9769478 42.9990273

143.75 Iteration 2 3

Damped frequency 198.384908 198.635266

Damping coefficient 0.0928710797 0.0931472569

ηm / ηc 118.937401 119.291092

349.78 Iteration 3 4

Damped frequency 548.090895 548.325729

Damping coefficient 0.0922039246 0.117323568

ηm / ηc 118.082993 150.253021

Table 5. First benfing modes of the beam 2. N=5.

4444 CONCLUSION

These works deal with the vibrations of sandwich visco-elastic structures. The central layer 

leads to solve a non-linear eigenvalue problem. To do so, two techniques are compared herein 

: the high order Newton algorithms with and without reduction. Two examples of cantilever 

sandwich  visco-elastic  beams  are  studied.  The  first  one  has  a  constant  complex  Young 

modulus  (E=  E0(1+iηc))  and  the  second  one  a  Young  modulus  depending  on  frequency 

(Model of Maxwell for 20°C). In  the two cases,  the proposed methods give good results. 

Numerical  tests of these works show that the use of a truncature order close to 5 leads to 

better convergence than a high order. Currently, numerical tests on more complex geometrical 

examples needing more final spatial discretization are being carried out in order to quantify 

computational time gains.
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