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This work deals with the vibrations of sandwich visco-elastic structures. The central visco-elastic layer included between two metallic layers leads to solve a problem of complex and non-linear eigenvalues. Indeed the core material depends on the frequency. Several methods exist to solve this type of problem. But the dimension of matrices to be manipulated can become very large and generate substantial computational times. A reduction technique is proposed herein. It is applied and compared to the high order Newton method.
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3-Finally, the perturbation technique is applied, that is to say, the increment (∆U ,∆p ) is sought in the truncated series form depending on the perturbation parameter ε :

(4)

4-After inserting these series into the modified problem(3), a series of linear problems for each order is obtained and solved.

As the number of unknowns is greater than the number of equations, an equation to normalize the mode is introduced :

∆U t G U 0 = 0 (5)
Then, the linear problems can be written at the i th truncature order, in the following matrix form : [START_REF] De Lima | Component mode synthesis combining robust enriched Ritz approach for viscoelastically damped structures[END_REF] where Lt refers to the complex tangent operator and F nl i is a second member vector changing at each 'i' order but depending only on the variables calculated in previous orders and ( ) t indicates the transposed operator.

The characteristic parameters of this method are the truncature order of (N) series and a small tolerance parameter enabling to check if the method has converged towards the solution. This resolution technique, named high order Newton method gives good results compared to experimental results. The disadvantage of this method is computational time. Indeed, the problems to solve need triangulating large-size matrices. However, one must take into consideration that the high order Newton method needs one matrix triangulation only and the resolution of "N" linear systems (6) at each iteration for an initial solution (U 0 , p 0 ). In order to reduce computational times, the authors propose -in the reference [START_REF] Duigou | Iterative algorithms for non-linear eigenvalue problems. Application to vibrations of viscoelastic shells[END_REF] -to use real matrices instead of consistent complex matrices, corresponding to the Lt Operator. This method is faster but it diverges in some cases.

The objective of this work is to apply a reduction model to the high order Newton algorithm in order to reduce computational times while preserving the convergence properties of the algorithm.

REDUCTION METHOD

The reduction model is applied to the equation (1) : the displacement vector is projected on a small-sized base :
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one is discretized with 424 D.o.F., like in reference [START_REF] Duigou | Iterative algorithms for non-linear eigenvalue problems. Application to vibrations of viscoelastic shells[END_REF]. The used parameters by the high order Newton method are : a truncature order N=20, a tolerance equal to 1.10 -7 . In order to apply the reduction method, 20 vectors are used. Then, the basis ( 8) is composed of 10 vectors Φ (from a linear vibration computation) and of 10 vectors Ψ solutions of the linear problem [START_REF] Büchter | Three dimensional extension of non-linear shell formulation based on the enhanced assumed strain concept[END_REF]. The results obtained by the high order Newton method with -referred to as R-HONA) and without reduction -referred to as HONA -are given in Table 2 for the first two bending modes of the beam defined in Table 1. Table 2 shows that the reduction technique proposed enables to obtain the same values as the high order Newton method.

Mechanical properties

Example with a Young modulus depending on the temperature

A second cantilever sandwich beam with dimension (178*10 mm2) is considered. But this time, the Young modulus of the central visco-elastic layer is not constant. It is represented by the generalized Maxwell model :

E ( ω )=k 0 +η 0 iω+ ∑ j=1 N max iω ( iω k j + 1 η j ) (4) 
The Maxwell number N max is equal to 129. The other characteristics of the layer are shown in Table 3.

Here, for the finite element simulation, the temperature used is 20°C and the number of nodes used for discretization is equal to 53, that is to say, 424 D.o.F.. The parameters used by the high-order Newton algorithm with and without reduction method are the followings : a truncature order N=20, a tolerance parameter equal to 1.10 -7 and 20 vectors in the projection basis. The first three bending modes are studied.

In the Table 4, we can note that the computational results carried out with the high order Newton with or without reduction diverge when the truncature order is equal to 20 in the series. That is why, in Table5, the computation of frequencies and dampings is carried out using a truncature order equal to 5. In this case, the two algorithms give good results.

Mechanical properties

Elastic layer -steel Visco-elastic layer

Young modulus These works deal with the vibrations of sandwich visco-elastic structures. The central layer leads to solve a non-linear eigenvalue problem. To do so, two techniques are compared herein : the high order Newton algorithms with and without reduction. Two examples of cantilever sandwich visco-elastic beams are studied. The first one has a constant complex Young modulus (E= E 0 (1+iηc)) and the second one a Young modulus depending on frequency (Model of Maxwell for 20°C). In the two cases, the proposed methods give good results. Numerical tests of these works show that the use of a truncature order close to 5 leads to better convergence than a high order. Currently, numerical tests on more complex geometrical examples needing more final spatial discretization are being carried out in order to quantify computational time gains.

E a = 2,

  1 10 11 N/m 2 E p = 27,216 10 6 N/m 2 Poisson ratio υ a = 0,3 υ p = 0,44 Density ρ a = 7800 kg/m 3 ρ p = 1200 kg/m 3 Thickness h a = 0,6 mm h p = 0,045 mm

Table 1 .

 1 Mechanical and geometrical properties of Beam 1.

		Elastic layer -Aluminum	Visco-elastic layer
	Young modulus	Ea = 6,9 1010 N/m2		E0 = 1794 103 N/m2
	Poisson ratio	υa = 0,3			υp = 0,3
	Density	ρa = 2766 kg/m3		ρp = 968,1 kg/m3
	Thickness	ha = 1,524 mm		hp = 0,172 mm
	Mode		HONA [8]	R-HONA
	64.32	Iteration	2	3
		Damped frequency	70.19647	70.19646
		Damping coefficient	0.228979	0.228978
		η m / η c	0.152653	0.152652
	297.85	Iteration	2	3
		Damped frequency	310.4359	310.436
		Damping coefficient	0.295438	0.295435
		η m / η c	0.196959	0.196957

Table 2 .

 2 First two bending modes of Beam 1. E=E0(1+i ηc)= cst, ηc=1.5 and 20 vectors in the reduction base.

Table 3 .

 3 Properties of the beam 2.

	Modes

Table 4 .

 4 First three bending modes of Beam 2. N=20.

	Mode		HONA	R-HONA
	29.99	Iteration	2	4
		Damped frequency	32.7842474	32.785868
		Damping coefficient	0.0335581189	0.0335753581
		η m / η c	42.9769478	42.9990273
	143.75	Iteration	2	3
		Damped frequency	198.384908	198.635266
		Damping coefficient	0.0928710797	0.0931472569
		η m / η c	118.937401	119.291092
	349.78	Iteration	3	4
		Damped frequency	548.090895	548.325729
		Damping coefficient	0.0922039246	0.117323568
		η m / η c	118.082993	150.253021

Table 5 .

 5 First benfing modes of the beam 2. N=5.