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Abstract

We focus on the maximum number of minimal transversals in 3-partite 3-
uniform hypergraphs on n vertices. Those hypergraphs (and their minimal
transversals) are commonly found in database applications. In this paper we
prove that this number grows at least like 1.4977n and at most like 1.5012n.
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1. Introduction

Hypergraphs are a generalization of graphs where edges may have arities
different than 2. They were formalized by Berge in the seventies [1]. Formally,
a hypergraph H is a pair (V, E), where V is a set of vertices and E a family of
subsets of V called hyperedges. In the following, we suppose that V =

⋃

e∈E e,
i.e., the hypergraphs that we handle have no isolated vertices. The number
of vertices of a hypergraph is called its order. When all the hyperedges of a
hypergraph have the same arity p, we call it a p-uniform hypergraph. When the
set of vertices of a hypergraph can be partitioned into k sets such that every
edge intersects each part at most once, the hypergraph is called k-partite. In
the following, we are interested in tripartite, 3-uniform hypergraphs, sometimes
known as (3, 3)-hypergraphs. A subset of the vertices of a hypergraph H is a
transversal of H if it intersects every edge of H and is said to be a minimal
transversal if none of its proper subsets is a transversal.

The problem of enumerating the minimal transversals of a given hypergraph
has been extensively studied [2, 3, 4]. It is an important problem in theoretical
computer science as it is equivalent to the dualization of monotone Boolean
functions and the enumeration of maximal independent sets [5, 6]. As such, it
has many real-world applications in artificial intelligence [7], biology [8], mobile
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communication [9] and data mining [4, 10, 11, 12], among others. Since the
number of minimal transversals of a hypergraph may be exponential in the
order of the hypergraph, the complexity of enumeration algorithms is often
expressed as a function of the size of both their input and their output [13].
The maximum number of minimal transversals in a class of hypergraph can then
be an important parameter for the real world applications of those theoretical
algorithmic evaluations.

Here, we are interested in the number of minimal transversals that arise in
tripartite 3-uniform hypergraphs. Such hypergraphs correspond to 3-dimensional
Boolean datasets, e.g. data describing objects by sets of attributes under differ-
ent conditions, and the enumeration of their minimal transversals is involved in
the mining of different patterns such as triadic concepts [14, 15] and association
rules [16]. We denote by f3(n) the maximum number of minimal transversals
in such hypergraphs of order n.

In 1965, Moon and Moser [17] provided a construction of a graph of order n
that contains 3n/3 independent sets. This number is reached by using a disjoint
union of K3s. The same construction can be adapted to (3, 3)-hypergraphs as
illustrated in Figure 1: a set of disjoint 3-edges will form a (3, 3)-hypergraph
with 3n/3 = 1.4422n minimal transversals, hence f3(n) ≥ 1.4422n.

. . .
. . .

Figure 1: Moon and Moser’s construction (left) and its analogue for (3, 3)-hypergraphs (right).

Moreover, let H be a (3, 3)-hypergraph which vertices are partitioned into
three sets S1, S2 and S3 that each intersects each hyperedge at most once. For a
given vertex set X ⊆ S1∪S2, there is only one possible Y ⊆ S3 such that X ∪Y
is a minimal transversal. By supposing that all subsets of S1 ∪S2 can appear in
minimal transversals, we obtain 2n−|S3| minimal transversals. If we choose the
smallest of the three sets to be S3, then S3 has at most n/3 vertices and so we
obtain an upper bound of 2n/3 × 2n/3 = 4n/3 ≈ 1.5874n minimal transversals.

Thus, for any integer n, 1.4422n ≤ f3(n) ≤ 1.5874n. In this paper, we
improve those bounds through two theorems.

Theorem 1. There exists a constant c such that for any integer n ≥ 15,

f3(n) ≥ c1.4977n.

Theorem 2. For any integer n,

f3(n) ≤ 1.5012n.
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We prove Theorem 1 through a construction based on a hypergraph on
fifteen vertices found via computer search. The proof of Theorem 2 relies on a
technique introduced by Kullman [18] and used by Lonc and Truszczyński [19]
on rank 3 hypergraphs. This class contains (3, 3)-hypergraphs but is much
larger, and the bound they obtain is greater than the trivial one implied by the
tripartition in our case. This proof technique resembles measure and conquer,
an approach used in the analysis of exact exponential-time algorithms, see for
example Fomin, Grandoni and Kratsch [20].

2. Lower Bound

We consider tripartite 3-uniform hypergraphs. In this section, we improve
the lower bound of 1.4422n for f3(n) by exhibiting a construction that reaches
c1.4977n minimal transversals, where c is a constant. To this end, we first make
an observation that allows us to multiply the number of minimal transversals
while only summing the orders of hypergraphs.

Observation 3. let H1 and H2 be two hypergraphs of order n1 and n2 with,
respectively, t1 and t2 minimal transversals. Then, the disjoint union of H1 and
H2 has n1 + n2 vertices and exactly t1t2 minimal transversals. To put it into
words, we sum the orders while multiplying the number of minimal transversals.

A computer search of the space of small hypergraphs allows us to make the
following observation.

Observation 4. There is a tripartite 3-uniform hypergraph on fifteen vertices
with four hundred and twenty-eight minimal transversals.

As such,
f3(15) ≥ 428.

The hypergraph mentioned in Observation 4 is described in Figure 2 and
Figure 3. We denote this hypergraph by H15. Its minimal transversals can be
computed using any available software, such as the one maintained by Takeaki
Uno1.

Theorem 1. There exists a constant c such that for any integer n ≥ 15,

f3(n) ≥ c1.4977n.

1http://research.nii.ac.jp/~uno/dualization.html with the data file at
http://giacomo.kahn.science/resources/H15.txt
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{α, 1, a} {β, 1, b} {γ, 1, c} {δ, 1, d} {ǫ, 1, e}
{α, 2, b} {β, 2, c} {γ, 2, d} {δ, 2, e} {ǫ, 2, a}
{α, 3, c} {β, 3, d} {γ, 3, e} {δ, 3, a} {ǫ, 3, b}
{α, 4, d} {β, 4, e} {γ, 4, a} {δ, 4, b} {ǫ, 4, c}
{α, 4, e} {β, 5, a} {γ, 5, b} {δ, 5, c} {ǫ, 5, d}

Figure 2: H15 has fifteen vertices that can be partitioned into three sets {1, 2, 3, 4, 5},
{a, b, c, d, e} and {α, β, γ, δ, ǫ}. It has four hundred and twenty-eight minimal transversals.

Proof. Let n be an integer greater than 15. There are two unique integers k and
r such that r is in [0, 14] and n = 15k + r. We aim to build a hypergraph on n
vertices with many minimal transversals. The idea is to make the disjoint union
of copies of H15. To reach exactly n vertices, the last copy is modified in the
following way. Let Hr

15 be the hypergraph H15 with r more vertices v1, . . . , vr.
In order for the edges to span all vertices, we add edges {vi, 1, a} for all i from
1 to r. Observe that Hr

15 has at least as many minimal transversals as H15.
As a consequence of making the disjoint union of k − 1 copies of H15 and one
copy of Hr

15, we obtain a tripartite 3-uniform hypergraph on n vertices with

at least 428k minimal transversals. Since k = n−r
15 and 428

1
15 > 1.4977, fixing

c = 428−
14
15 we conclude that for all n greater than 15

f3(n) ≥ c · 1.4977n.

Another way to see the hypergraph H15 is with a 3-dimensional cross table,
where a cross in cell (α, 1, a) represents the edge {α, 1, a}.

a b c d e a b c d e a b c d e a b c d e a b c d e
1 × × × × ×
2 × × × × ×
3 × × × × ×
4 × × × × ×
5 × × × × ×

α β γ δ ǫ

Figure 3: Another representation of H15. Each cross represents a 3-edge.

3. Upper Bound

In this section, we prove that f3(n) ≤ 1.5012n (Theorem 2) by first proving
the technical Lemma 10. The general structure of the proof is similar to Lonc
and Truszczyński’s proof of their bound to the maximal number of minimal
transversals in 3-uniform hypergraphs in [19] and is as follows.

Given a rooted tree. If we have a probability distribution attributed to each
internal node for picking one of its children, we may apply the following random
process: start from the root, and follow the node distribution to pick one of
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its children until you reach a leaf. In this process, the probability to end up in
some fixed leaf is the product of probabilities on the unique path from this leaf
to the root. The sum over all leaves of these probabilities equals 1. Consider
the smallest such probability p. Then the number of leaves is bounded above
by p−1. Actually, for any tree, there is such a probability distribution that
assigns the same probability to each leaf in the end. When facing an unknown
structure, we may not be able to find that optimum distribution, but this tool
gives us some power to adjust the counting of the leaves.

In this paper, we build a tree where the root is some specific hypergraph H0.
All nodes will be hypergraphs and the leaves can be identified with minimal
transversals of H0. We build an adequate probability distribution by designing
some measure function µ on our hypergraphs. For internal node H, we shall
fix some value τ and give probability τµ(H

′)−µ(H) to the transition towards its
child H ′. This value τ is uniquely defined since we want the sum to equal 1 at
each step. In the end, if we manage to bound all values τ above by some τ0 and
if the leaves have non-negative measures, the product of all those probabilities

shall be bounded below by τ
−µ(H)
0 and thus the number of leaves is no more

than τ
µ(H)
0 .

a

1

γ

δ

2

b

Figure 4: This small hypergraph shall serve as an example to illustrate the following concepts
of condition, procedure and measure.

Let us dive into the more technical part, illustrated with Figure 4’s example
hypergraph. We use the notion of condition, introduced thereafter.

Definition 5. Given a set V of vertices, a condition on V is a pair (A+, A−) of
disjoint sets of vertices. A condition is trivial if A+ ∪ A− = ∅, and non-trivial
otherwise.

All the conditions that we handle are non-trivial. A set T of vertices satisfies
a condition (A+, A−) if A+ ⊆ T and T ∩ A− = ∅. As such, having vertex sets
satisfy a condition amounts to forcing a set of vertices to be present (the vertices
in A+) and forbidding other vertices (the vertices in A−). For instance, {1, b} is
a minimal transversal of the hypergraph depicted in Figure 4 that satisfies the
condition ({1}, {γ}) because it contains 1 but not γ.

5



Let H be a hypergraph and (A+, A−) a condition. The hypergraph H(A+,A−)

is constructed from H and (A+, A−) through the following procedure:

1. remove every edge that contains a vertex that is in A+;

2. remove from every remaining edge the vertices that are in A−;

3. remove redundant edges.

Vertices of H that appear in a condition (A+, A−) are not in H(A+,A−) as
they are either removed from all the edges or all the edges that contain them
have disappeared. For instance, if H is the hypergraph depicted in Figure 4 and
A = ({1}, {γ}), the hypergraph H({1},{γ}) is the one depicted in Figure 5.

2

b

Figure 5: Let H be the hypergraph in Figure 4. Then, this figure depicts H({1},{γ}). The
edges that contained 1 were removed from the hypergraph and the vertex α was removed from
the remaining edge.

Lemma 6. Let H be a hypergraph, (A+, A−) be a condition and T be a set of
vertices of H. If T is a minimal transversal of H and T satisfies (A+, A−), then
T \A+ is a minimal transversal of H(A+,A−).

Proof. The proof is straightforward from the construction of H(A+,A−).

A family of conditions is complete for the hypergraph H if the family is non-
empty, each condition in the family is non-trivial, and every minimal transversal
of H satisfies at least one condition of the family. For instance, {({1}, {γ})} is
not a complete family of conditions for the hypergraph depicted in Figure 4
because there is a minimal transversal, {γ, δ}, that does not contain the vertex
1 and thus does not satisfy any of the conditions. However, {({1}, ∅), (∅, {1})} is
a complete family of conditions because all minimal transversals either contain
or do not contain the vertex 1.

Let C be the class of k-partite, with k ≤ 3, hypergraphs such that their
vertex set can be partitioned in such a way that one of the parts is a minimal
transversal. We suppose that they are implicitly partitioned in such a way and
call S the part that is a minimal transversal. Tripartite 3-uniform hypergraphs
belong to this class. It is clear that k-partite hypergraphs do not become (k+1)-
partite when vertices are removed from edges or edges are deleted. As such, if a
hypergraph H = (V, E) belongs to the class C and A = (A+, A−) is a condition
on V such that the edges that contain vertices of A− ∩ S also contain vertices
of A+, then HA is in C. From now on, we suppose that all the conditions we
handle respect this property.

6



A hypergraph is non-trivial if it is not empty. A descendant function for C
is a function that assigns to each non-trivial hypergraph in C a complete family
of conditions. Let ρ be such a function.

Using ρ, we can construct a rooted labeled tree TH for all hypergraphs H in
C. When H is trivial, then TH is a single node labeled with H. When H is non-
trivial, we create a node labeled with H and make it the parent of the root of all
the trees THA

, for A ∈ ρ(H). Note that this construction is possible because C is
closed under the operation of removing edges and removing vertices from edges,
and the number of vertices can only decrease when the transformation from H
to HA occurs. Such a rooted tree corresponding to our toy example is presented
in Figure 6. One can check that all the conditions above are respected.

Proposition 7. Let ρ be a descendant function for a hypergraph class closed
under removing edges and removing vertices from edges. Then for all hyper-
graphs H in such a class, the number of minimal transversals is bounded above
by the number of leaves of TH.

Proof. If H is trivial, then it has only one transversal, the empty set. If the
empty set is an edge of H, then H has no transversals. In both cases, the
proposition follows directly from the definition of the tree. Let us assume now
that H is non-trivial, and that the proposition is true for all hypergraphs with
fewer vertices than H.

As H is non-trivial, ρ is well defined for H and ρ(H) is a complete family
of conditions. Let X be a minimal transversal of H. Then X satisfies at least
one condition A in ρ(H). From Lemma 6, we know that there is a minimal
transversal Y of HA such that Y = X \ A+. Then the number of minimal
transversals of H is at most the sum of the number of minimal transversals in
its children.

Bounding the number of leaves in TH for all hypergraphs H ∈ C is thus
bounding f3(n). In order to do that, we use Lemma 8 proven by Kullmann [18].
We denote by L(T ) the set of leaves of a rooted tree T and, for a leaf ℓ ∈ L(T ),
we denote by P (ℓ) the set of edges on the path from the root to ℓ.

Lemma 8 ([18, Lemma 8.1]). Consider a rooted tree T with an edge labeling
w with value in the interval [0, 1] such that for every internal node, the sum of
the labels on the edges from that node to its children is 1 (that is a transition
probability).

Then,

|L(T )| ≤ max
ℓ∈L(T )





∏

e∈P (ℓ)

w(e)





−1

.

In order to pick an adequate probability distribution, we use a measure. A
measure µ is a function that assigns to any hypergraph H in C a real number
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a

1

γ

δ

2

b

γ2

b

({b}, ∅) ({2}, ∅) ({γ}, ∅)

a

γ

δ

2

b

a

γ

({a}, ∅) ({γ}, ∅)

δ

({δ}, ∅)

δ

a

2

({a2δ}, ∅)

({1}, ∅) (∅, {1})

({b}, ∅) ({γ}, {b})

(∅, {γb})

Figure 6: Example of a decomposition tree for our running example. The measure µ is given
for each hypergraph, while the conditions are given on the edges.
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µ(H) such that 0 ≤ µ(H) ≤ |V (H)|. Let A be a condition on the vertices of
hypergraph H and µ be a measure. We define

∆(H,HA) = µ(H)− µ(HA).

If, for every condition A in ρ(H), µ(HA) ≤ µ(H), then we say that ρ is
µ-compatible. In this case, there is a unique positive real number τ ≥ 1 such
that

∑

A∈ρ(H)

τ−∆(H,HA) = 1.

When τ ≥ 1,
∑

A∈ρ(H) τ
−∆(H,HA) is a strictly decreasing continuous function

of τ . For τ = 1, it is at least 1, since ρ(H) is not empty, and it tends to 0 when
τ tends to infinity.

A descendant function defined on a class C is µ-bounded by τ0 if, for every
non-trivial hypergraph H in C, τ ≤ τ0.

Now, we adapt the τ -lemma proven by Kullmann [18] to our formalism.

Theorem 9 (Kullmann [18]). Let µ be a measure and ρ a descendant function,
both defined on a class C of hypergraphs closed under the operations of removing
edges and removing vertices from edges. If ρ is µ-compatible and µ-bounded by
τ0, then for every hypergraph H in C,

|L(TH)| ≤ τ
h(TH)
0

where h(TH) is the height of TH.

We now use Theorem 9 to provide an upper bound to f3(n). We start by
proving Lemma 10 using an approach similar to that of [19].

Lemma 10. There is a measure µ defined for every hypergraph H in C and a
descendant function ρ for C that is µ-compatible and µ-bounded by 1.8393.

Proof. Let H be a hypergraph belonging to the class C, i.e., a k-partite, k ≤ 3
hypergraph that contains a set S of vertices that is a minimal transversal such
that no two vertices of S belong to a same edge.

We choose, as the measure µ(H),

µ(H) = |V (H)| − αm(H)

where m(H) is the maximum number of pairwise disjoint 2-element edges in H
(i.e. the size of its maximum matchings) and α = 0.145785. The same measure
is used in [19] (with a different α).

We use Theorem 9 to bound the number of leaves in the tree TH and thus
the number of minimal transversals in H. To do so, we define a descendant
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function ρ that assigns a family of conditions to H depending on its structure.
This takes the form of a case analysis.

In each case, we consider a vertex a ∈ S and its neighbours. The condi-
tions are chosen in such a way that they are pairs (A+, A−) of subsets of these
neighbours and are sometimes strengthened to contain a if and only if its pres-
ence in A+ or A− is implied by our hypotheses. This causes every condition A
to respect the property that A+ intersects all the edges containing a vertex of
A− ∩ S, which lets HA remain in the class C.

In each case i and for every condition A ∈ ρ(H), we find a bound kH,A such
that

kH,A ≤ ∆(H,HA)

and a unique positive real number τi that satisfies the equation

∑

A∈ρ(H)

τ
−kH,A

i = 1 (1)

We show that τi ≤ 1.8393 for all i. Let τ0 = 1.8393.

As all our conditions involve at least one element from V (H) \ S, the height
of TH is bounded by |V (H)| − |S|. Hence, we have

|L(TH)| ≤ τ
|V (H)|−|S|
0

In the remainder of the proof, we will write conditions as sets of expressions
of the form a and b where a means that a is in A+ and b means that b is in
A−. For example, the condition ({a, c}, {b, d, e}) will be written as acbde and
the condition ({b, c}, ∅) will be written as bc. For a vertex v, we denote by d2(v)
the number of 2-edges that contain v, and by d3(v) the number of 3-edges that
contain v.

For each case, we suppose that the previous ones do not apply.

Case 1: d2(a) ≥ 2 : the hypergraph H contains a vertex a from S that
belongs to at least two 2-edges {a, b} and {a, c}(Figure 7).

a

b

c

Figure 7: Case 1: The vertex a ∈ S is in at least two 2-edges and may be part of some other
2-edges or 3-edges.
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A minimal transversal of H either contains or does not contain b, and as such
{b, b} is a complete family of conditions for H. Similarly, a minimal transversal
of H either contains or does not contain c so {bc, bc, b} is also a complete family
of conditions. Minimal transversals of H that do not contain b or c necessarily
contain a (as {a, b} or {a, c} would not be covered otherwise). Hence {bc, abc, ab}
is a complete family of conditions for H.

Let M be a maximum set of pairwise distinct 2-edges (matching) of H. By
removing k vertices we decrease the size of a maximum matching by at most
k. Hence, |V (HA)| ≤ |V (H)| − 2 and m(HA) ≥ m(H) − 2 when A ∈ {bc, ab}.
Similarly, |V (Habc)| ≤ |V (H)| − 3 and m(Habc) ≥ m(H)− 3. Thus, we have

∆(H,HA) ≥

{

2− 2α for A ∈ {bc, ab}

3− 3α for A = abc
. (2)

Equation (1) becomes 2τ2α−2
1 + τ3α−3

1 = 1. For our chosen α, we have that
τ1 ≤ τ0.

Case 2: d2(a) = 1 : the hypergraph H contains a vertex a from S that
belongs to a unique 2-edge {a, b}. We break down this case into two sub-
cases depending on whether or not a belongs to some 3-edges: d3(a) = 0 and
d3(a) ≥ 1.

a

b

Figure 8: Case 2: The vertex a is part of only one 2-edge {a, b} and may be part of other
3-edges.

Since a is in only one 2-edge, removing both a and b decreases the size of a
maximum matching by at most 1.

• d3(a) = 0 : a is in a single 2-edge {a, b} and no 3-edges. A minimal
transversal of H either contains or does not contain b. As such, {b, b} is a
complete family of conditions for H. As {a, b} is the only edge containing
a, a minimal transversal of H that contains b cannot contain a. Similarly,
every minimal transversal of H that does not contain b necessarily contains
a. This makes {ba, ab} a complete family of conditions for H.

Let M be a maximum set of pairwise disjoint 2-edges of H. As {a, b}
is the only edge containing a, b belongs to one of the edges in M . The
hypergraphs Hba and Hab contain all the edges in M except for the one
containing b. Thus, m(Hba) = m(Hab) ≥ m(H) − 1. Since |V (Hba)| =
|V (Hab)| ≤ |V (H)| − 2, we have

∆(H,HA) ≥ 2− α for A ∈ {ba, ab}. (3)
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Equation (1) becomes 2τα−2
2.1 = 1. For our chosen α, we have that τ2.1 ≤ τ0.

a

b

cd

Figure 9: Case 2.2: The vertex a is part of only one 2-edge {a, b} and at least one 3-edge
{a, c, d}.

• d3(a) ≥ 1 : a is in a single 2-edge and in some 3-edges, one of which
being {a, c, d} (Figure 9). We start with the complete family of conditions
{bc, bdc, bcd, b}. Any minimal transversal of H that does not contain either
b or both c and d necessarily contains a. This makes {bc, bdc, abcd, ab} a
complete family of conditions for H. Removing either b, c or d from the
hypergraph decreases the size of the maximum matching by at most one.
As mentioned previously, removing both a and b cannot decrease the size
of the maximum matching by more than 1. As such, m(HA) ≥ m(H)−|A|
when A ∈ {bc, bdc, ab} and m(Habcd) ≥ m(H)− 3. We obtain

∆(H,HA) ≥



















2− 2α if A = bc

3− 3α if A = bdc

4− 3α if A = abcd

2− α if A = ab

. (4)

Equation (1) becomes τ2α−2
2.2 + τ3α−3

2.2 + τ3α−4
2.2 + τα−2

2.2 = 1. For our chosen
α, we have that τ2.2 ≤ τ0.

Case 3: d2(a) = 0 and d3(a) ≥ 1 : the hypergraph H contains a vertex a
from S that is in no 2-edge and in some 3-edges, one of which being {a, b, c}
(Figure 10).

a

b

c

Figure 10: Case 3: The vertex a is in at least one 3-edge, but in no 2-edge.

We start with the conditions {b, cb, bc}. Any minimal transversal that does
not contain b and c necessarily contains a so we strengthen the family of condi-
tions to {b, cb, abc}. Since we do not have any 2-edge anymore (because previous
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cases do not apply), we cannot decrease the size of a maximum matching. We
obtain

∆(H,HA) ≥











1 if A = b

2 if A = cb

3 if A = abc

. (5)

Equation (1) becomes τ−1
3 + τ−2

3 + τ−3
3 = 1. For our chosen α, we have that

τ3 ≤ τ0.

This proof ensures that there is a measure µ and a descendant function ρ
for our class of hypergraphs such that ρ is µ-bounded by 1.8393. This allows us
to formulate the following theorem.

Theorem 11. The number of minimal transversals in a hypergraph belonging
to the class C is less than 1.8393n−|S|.

Proof. Let µ and ρ be the measure and descendant function used in Lemma 10’s
proof. The height h(TH) of the tree is less than n− |S| so applying Theorem 9
yields the result.

Theorem 2 is a straightforward corollary of Theorem 11.

Theorem 2. For any integer n,

f3(n) ≤ 1.83932n/3 ≤ 1.5012n.

Proof. The vertices of a tripartite 3-uniform hypergraph can be partitioned into
three minimal transversals so any of them can be S. The minimization of the
bound is achieved by using the biggest set which, in the worst case, has size
n/3.

4. Discussion and Conclusion

In this paper, we showed that the maximum number of minimal transversals
in (3, 3)-hypergraphs of order n is between c1.4977n, where c is a constant, and
1.5012n. Both bounds can be used to better analyse the worst-case complexity
of algorithms for mining 3-dimensional Boolean data, such as TRIAS [21], Data-
Peeler [22] or the one proposed by Makhalova and Nourine [23].

As a future work, the upper bound could be improved through the same
approach by choosing a better measure or branching. The lower bound could
maybe be improved by finding other worst cases through computer search. The
worst cases we managed to find all corresponded to solutions of the chess rook
problem in n

3 ×
n
3 ×

n
3 matrices up to n = 5 (see Figure 3). However, this did not

seem to be the case for n = 6 so we postulate that it does not work for n > 5.

There is also a growing interest for pattern mining in k-dimensional datasets
with k > 3 as reality cannot always be represented by mere ternary relations.
For this reason, it would be interesting to devise a more general proof, following
the same schema, to bound the maximal number of minimal transversals in
(k, k)-hypergraphs.
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