
HAL Id: hal-01847440
https://hal.science/hal-01847440

Submitted on 17 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multipurpose S-shaped solvable profiles of the refractive
index: application to modeling of antireflection layers

and quasi-crystals
Jean-Claude Krapez

To cite this version:
Jean-Claude Krapez. Multipurpose S-shaped solvable profiles of the refractive index: application to
modeling of antireflection layers and quasi-crystals. Journal of the Optical Society of America. A
Optics, Image Science, and Vision, 2018, 35 (6), pp.1039-1052. �10.1364/JOSAA.35.001039�. �hal-
01847440�

https://hal.science/hal-01847440
https://hal.archives-ouvertes.fr


Multipurpose S-shaped solvable profiles of the 
refractive index: application to modeling of 
antireflection layers and quasicrystals 

J.-C. KRAPEZ 
ONERA, The French Aerospace Lab, DOTA, F-13661 Salon de Provence, France 
krapez@onera.fr 

Received 18 December 2017; revised 18 April 2018; accepted 02 May 2018. 

 
A class of four-parameter solvable profiles of the electromagnetic admittance has recently been discovered by 
applying the newly developed Property & Field Darboux Transformation method (PROFIDT). These profiles are 
highly flexible. In addition, the related electromagnetic-field solutions are exact, in closed form and involve only 
elementary functions. In this paper, we focus on those that are S-shaped and we provide all of the tools needed for 
easy implementation. These analytical bricks can be used for high-level modeling of lightwave propagation in 
photonic devices presenting a piecewise-sigmoidal refractive-index profile such as, for example, antireflection 
layers, rugate filters, chirped filters and photonic crystals. For small amplitudes of the index modulation, these 
elementary profiles are very close to a cosine profile. They can therefore be considered as valuable surrogates for 
computing the scattering properties of components like Bragg filters and reflectors as well. In this paper we 
present an application for antireflection layers and another for 1D quasicrystals. The proposed S-shaped profiles 
can be easily manipulated for exploring the optical properties of smooth quasicrystals, a class of photonic devices 
that adds to the classical binary-level quasicrystals.   © 2018 Optical Society of America 

OCIS codes: (260.2710) Inhomogeneous optical media; (310.0310) Thin films; (310.1210) Antireflection coatings; (310.1620) Interference coatings; 
(310.4165) Multilayer design; (310.6805) Theory and design; (310.6860) Thin films, optical properties; (060.3735) Fiber Bragg gratings; (050.5298) 
Photonic crystals; (230.1480) Bragg reflectors; (160.5293) Photonic bandgap materials; (050.1590) Chirping.  
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1. INTRODUCTION 
The classical method for modeling light propagation in a 

continuously heterogeneous dielectric film (see Fig. 1 for a description 
of the canonical case) consists in slicing it into thin homogeneous 
sublayers and then applying the well-known analytical transfer matrix 
approach [1-3]. However, this method is approximate; it is all the more 
precise when the discretization step, in terms of optical thickness, is 

small with respect to the considered free-space wavelength  . As a 

rule of thumb, to achieve acceptable numerical results, the optical 

thickness steps ii zn   should typically be smaller than 60  [4]. 

Replacing these elementary steps of constant index by graded profiles 
that are analytically solvable (i.e., for which a closed-form analytical 
solution to Maxwell’s equations is known) would provide the double 
benefit of reducing the number of discretization sublayers and 
generating a synthetic model that may be continuous, or even of a 
higher differentiability class, with respect to position.  

 

 

Fig. 1. Geometry considered for the case of a graded layer laid over a 
homogeneous substrate (canonical case considered in § 2-3). The 

graded layer extends from 0 to the physical depth 1z , which 

corresponds to the optical depth 1 . The case of a plane wave with TE 

polarization and incidence angle a  is represented here. In § 4-5, 

multiple graded layers will be stacked together.  



Analytical solutions, sometimes with the associated transfer 
matrices, have been proposed for the following profile functions: 
linear, exponential, power law, sinusoidal, hyperbolic cosine, 
hyperbolic tangent, and Epstein profile (these functions describe either 
the refractive index or the permittivity) [5-17]. In all these cases, the 
computation of special functions is required, namely Bessel, Mathieu, 
Airy, Hermite, Heun or hypergeometric functions. However, solutions 
based on elementary functions should be preferred for reasons of 
computation time, especially if repeated evaluations are necessary, like 
for inverse scattering modeling. Known solvable profiles that lead to 
solutions involving only elementary functions are few: a four-
parameter refractive index profile of this type was presented in [18] 
and a series of algebraic or 2nd-order polynomial profiles were 
described in [19, 20]. The latter profiles are concave or convex and 
they can be stitched together to produce a continuous composite 
profile. However, since they are defined with only three parameters, 
there are serious limitations when trying to obtain a composite profile 
with the first derivative continuous at all nodes (not to mention the 
second derivative). We have to mention the possibility of generating 
sequences of 1D periodic index profiles, together with the related 
electromagnetic (EM)-field functions, all based on trigonometric 
functions only [21, 25]. 

In [26] we reported a new method based on joint PROperty and 
FIeld Darboux Transformations (the dubbed “PROFIDT method”) for 
building sequences of solvable profiles of the EM tilted optical 
admittance in the optical-thickness space. It simultaneously yields the 
closed-form expressions of the related EM fields E  and H  (for both 
polarization modes TE and TM). The method is devoted to media 
whose permittivity   and permeability   are real-valued, positive 

and show continuous (or at least piecewise-continuous) variations 
along one direction, say z  (this z-dependency will be omitted in the 
following expressions, except when really needed). The tilted optical 

admittance is defined by  pm
cos , where   is the local 

incidence angle; 1pm  for the TE polarization mode and 1pm  

for the TM mode. However, in the present paper, we will restrict our 

discussion to nonmagnetic materials ( 0  , where 0  is the 

permeability of free space). Hence, the tilted admittance   reduces to 

0Y  times the (refractive) pseudoindex *n , with pm
nn cos*  , where 

n  is the z-dependent refractive index rn   0  and 

000 Y  is the free-space admittance [1]. Since they are related 

with a constant factor, all developments made in [26] for the tilted 

admittance   can be readily translated for the pseudoindex *n , which 

will be the case in the sequel. On the other side, the effective (or tilted) 
optical thickness (or optical depth)  , as measured along the  z,0  

geometrical-depth interval (see Fig. 1), is defined by: 

     .cos
0


z

duuun   (1) 

A preliminary Liouville transformation changes Maxwell’s equations 
(in the physical-depth space) into Schrödinger equations (in the 
optical-depth space) for the transformed electric and magnetic scalar 
fields. The square root of the admittance (here the pseudoindex), resp. 
its reciprocal, obeys the same Schrödinger equation but with a zero 
eigenvalue. Successive Darboux transformations can then be applied to 
obtain chains of solvable pseudoindex profiles together with the 
related EM fields [26]. Among the infinite sequences of pseudoindex 
profile solutions provided by the PROFIDT method, one class of 4-
parameter profiles is particularly interesting. It is described through a 

function  s  that represents either the square root of the 

pseudoindex *n  or its reciprocal. The function  s  is a linear 

combination (LC) of two independent solutions  B  and  D  of a 

2nd order differential equation satisfied by 
21*n , resp. 

21*n  ( BA  and 

DA  are two arbitrary constants):  
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In Eq. (2), the argument ̂  results from a linear transformation of 

the optical thickness   according to the following expression (for ease, 

a centered formula is preferred here):  
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where 1  is the optical thickness of the considered graded layer (i.e., 

over the interval  
1,0 z ), c  and   are two additional free-

parameters that may take values in  ,0 , resp.  , . In Eq. (2), 

cosh1sech   is the hyperbolic secant function. The class of profiles 

generated by the LC in Eq. (2) was thus dubbed of “  ̂sech -type”. In 

Eq. (2), two sub-classes of profiles of the pseudoindex  *n  are 

actually represented: the first one, as obtained by setting the exponent 

of  *n  to 21 , stems from the Helmholtz equation expressed for 

the electric field E  (“ E -form” profiles; 1fm ); the second one, 

as obtained by setting the exponent to 21 , stems from the 

Helmholtz equation expressed for the magnetic field H  (“ H -form” 

profiles; 1fm ). All of these profiles are defined with four 

parameters: BA , DA ,   and 1c  (the current optical thickness   

and the “characteristic” optical thickness c  will be systematically non-

dimensionalized by the optical thickness of the graded layer 1 , see Eq. 

(3)). Notice that the latter two parameters   and 1c  act non-

linearly in the definition of  s   (see Eq. (2) and Eq. (3)).      

In fact, we came to the same function as the one reported in Eq. (2) 
in a previous paper devoted to heat diffusion in graded media [27]. 

Therein, the linear combination     DABA DB  was used to 

describe a class of solvable profiles of the property:     21 bs , 

where b  is the (graded) thermal effusivity and   represents the 

square root of the heat diffusion time along the path  z,0 . The same 

analytical tools can be used to model temperature fields and EM fields 
in graded media, which is quite noticeable. In this respect, let us 
mention Ref. [28], where interesting connections have been 
highlighted between heat diffusion on one side and EM field 
attenuation in a specific class of metals on the other side.   

Numerous numerical trials have led to the conjecture in [27] that 

these 4-parameter  ̂sech -type profiles present an unbounded 

flexibility. By this, we mean that they can satisfy any set of four 
specifications regarding the two end-values and the two end-slopes of 
the leading property of the graded layer. A few illustrative examples 
were provided in [26] with a set of refractive-index profiles satisfying 
different combinations of end-slopes. Actually two solutions have been 



systematically obtained: an E -form profile and an H -form 

profile.  

In this paper, we will focus on the sub-class of  ̂sech  profiles with 

horizontal end-slopes, i.e., rising or descending S-shaped profiles. We 

dubbed them ZESST profiles (Zero-End-Slope  ̂Sech -Type profiles). 

Three potential applications were already outlined in [26]. First, they 
provide an easy model for index-matching layers; a rapid comparison 
was made with the classic quintic profile [4, 29]. Next, a locally-periodic 
profile was built by stitching together alternately rising and falling 
ZESST profiles, for the purpose of modeling an apodized rugate filter 
(rugate profiles are efficient solutions for producing notch filters 
deprived of ripples and side-lobes [30-37]). Finally, a model for chirped 
mirrors (as used for ultrafast lasers [38, 39]) was produced by slowly 
varying the width and amplitude of the assembled ZESST profiles. 

In this paper, we aim to build upon the previous study and analyze 
the specific features of the ZESST profiles in greater depth. In Section 2, 
we will provide practical tools for their design. In Section 3, we will 
consider the design of smooth index-matching layers and antireflection 
coatings and will describe the results of a comparative analysis with 
other profiles from the literature. Section 4 will be devoted to an 
improved matching layer design: it is obtained by joining three 

 ̂sech -type profiles and it is continuous up to the second derivative. 

Section 5 provides another example of ZESST profile applications, 
namely the modeling of smooth quasi-periodic multilayers. It specifically 
addresses the transmission properties of Fibonacci quasicrystals, in 
particular the photonic bandgap structures. Section 6 is a discussion 
about other potential applications and a conclusion. 

2. PROFILES OF  ̂sech  TYPE WITH S-SHAPE 
A. Profile construction 

Let us consider a graded layer extending from 0z  to 1zz   in the 

physical space, which correspond to 0  and 1   in the optical-

depth space (see Fig. 1). In the first part of the paper, this graded layer 
is simply bounded by two homogeneous and semi-infinite media: on 

the left, an incident medium with refractive index an  (typically air) and 

on the right, a substrate with refractive index sn . In the second part of 

the paper, multiple graded layers will be stacked together.   
A plane wave is impinging from the left side with an incidence angle 

a  in the incident medium. The incidence angle at optical depth   is

  . Basic relations between *n  and n  (see Annex A) together with 

the relation between *n  and the function  s  in Eq. (2) provide the 

necessary tools for translating any boundary specification (regarding 

level or slope) on either  n ,  *n  or  s  into equivalent 

boundary specifications on the two other parameters (obviously, for 
the ZESST profiles considered here, the zero-end-slope specifications 
are common to all three parameters). Then, having at hand two 

boundary specifications on  s , namely  
00 ss   and 

 
11 ss   , and two others on its derivative, i.e.,  

00 ss    and 

 
11 ss   , the four parameters 1c ,  , BA  and DA  must be 

evaluated by solving a system of four equations that are linear in BA  

and DA , but non-linear in 1c  and  . Although a standard non-

linear root-finding solver can provide the solution in a relatively short 
time, it would be desirable to be able to do without. For this reason, an 
alternative method is now proposed for the ZESST profiles, which 

consists in evaluating the two non-linear parameters 1c  and   

with the empirical relations in Eqs. (4) and (5). They have been 

determined after having performed some numerical tests leading to 

the following observations: *

0n  and *

1n  intervene only through their 

ratio *

0

*

1 nn ; moreover, switching from a value of this ratio to its 

reciprocal induces nothing other than a sign change to  ; the same 

happens when switching from an E -form profile to an H -form 

profile. A closer analysis when the index ratio *

0

*

1 nn
 
approaches one 

value, revealed that   xOaxc  0

21

1   and 

  xO 1Arcsinh  where  
32

*

0

*

1ln nnx  , 0a  is the first term 

in the left column in Table 1, and  xO  means a term of order x . 

Then, the terms  xO  have been fitted with polynomials of the 

variable x  to obtain: 
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The coefficients 
ja  and 

jb  are reported in Table 1 for J=3. 

Table 1. Coefficients of the polynomial fittings in Eqs. (4) and (5) 
j 

ja  
jb  

0 1.6188704 1.0912949.10-1 
1 1.0061871.10-1 1.0813551.10-1 
2 2.6169621.10-2 2.3368282.10-2 
3 6.3935152.10-3 7.5773489.10-3 

 
When performing the fitting, a quite large domain was considered 

for *

0

*

1 nn , far beyond the values encountered in optics; actually, the 

proposed empirical relations are intended to be applicable to a broader 
class of problems, including for example acoustics, microwaves and 

transmission lines. The relative error on 1c , resp. the absolute 

error on   (after being scaled by 
c

1 ) is less than 3.10-5 , resp. 8.10-6 

when the index ratio *

0

*

1 nn  is within the range [0.1, 10]. In this range, 

the RMS difference between the “exact” ZESST profile  2* fm
n  and 

that inferred from the fitted values of 1c  and   (after scaling by 

2*

0

2*

1

fmfm
nn  ) is less than 2.10-5. 

Once the two parameters 1c  and   are determined from Eqs. 

(4) and (5), the remaining two parameters BA , DA  are simply 

inferred from the two equations expressing the boundary conditions 

on  s , namely regarding 
2*

0

fm
n  and 

2*

1

fm
n  (by use of Eq. (2)). 

This finally solves the determination of the profile  s  and thereby 

the pseudo-index profile  *n , which is straightforwardly inferred 

from     2* sn   or     2*  sn , depending on whether the 

E -form case or the H -form case is being considered.  

In Fig. 2, we plotted a series of ZESST-profiles for a relatively large 
range of end-to-end index-ratio values, namely from 0.25 to 4. Both the 

E -form and H -form profiles are reported. In the present case of 

ZESST profiles, these two forms are very close to each other; a much 
greater difference is generally observed in the situation of slanted end-
slopes – see [26]. 



  

Fig. 2. Solvable profiles of  ̂sech -type with zero-end-slope (ZESST 

profiles) for the pseudoindex  *n  (  *n  is divided by the value 

taken at the left end of the layer, i.e., *

0n ). They are expressed against 

the normalized optical thickness 1 , where 1  is the total optical 

thickness of the graded layer. Six values are considered for the right-to-

left refractive-index ratio *

0

*

1 nn : 0.25, 0.5, 0.8, 1.25, 2 and 4. In black: 

profiles of E -form, in red: profiles of H -form (they nearly 

overlap).  

One should stress the following point. The PROFIDT method 
provides successive sets constituted of a pair of pseudoindex profiles 

 *n  (i.e., E -form and H -form), together with the 

corresponding analytical solutions for the EM fields E  and H , for 
both the TE and TM modes (the related transfer matrices will be 

presented thereafter). Then, given an incidence index an  and an 

incidence angle a  (hence a Snell-Descartes invariant aI  - see Annex 

A), any such pseudoindex profile  *n  can be translated into an index 

profile  n  with the help of Eq. (A1) for TE polarization, resp. Eq. (A2) 

for TM polarization. For this reason, one can argue that the solvable 

profiles expressed in terms of refractive index  n  are aI -dependent, 

whereas the original ones, i.e., those regarding the pseudoindex  *n , 

are not. Consequently, the EM field solutions are valid for a refractive-

index profile  n  and the sole aI  value that was used in Eq. (A1) or 

Eq. (A2) to infer it. If the EM fields had to be computed for any other 

incidence-angle value (more precisely, any other aI  value), one should 

refer to other methods, like the classical (homogeneous) transfer 
matrix, and apply it to discretized homogeneous slices.  

If desired, a last step can be applied for changing from the optical-
thickness space   back into the geometrical-thickness space z , which 

corresponds to an inverse Liouville transformation. The underlying 
operations were fully described in [26]. We will merely summarize the 
procedure that is applicable for normal incidence or, in case of oblique 

incidence, for TE polarization only. In these cases, the profiles of *n  or 

n  can be analytically expressed vs. the geometrical depth z , albeit in 

implicit form only. This is based on the following relationship between 

  and z  (whereby   spans the interval  
1,0   and z  spans the 

interval  
1,0 z ):  

        ,0,, HEHEc ffz    (6) 
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In the case of TM polarization, the inverse Liouville transformation 
involves a quadrature that cannot be reduced to a closed-form 
analytical expression. The transformation z  should then be 

performed numerically (see [26]). For this reason, in the sequel, 
examples of the inverse Liouville transformation will concern normal 
incidence or, in case of oblique incidence, TE polarization only. 

With this restriction in mind, applying the inverse Liouville 
transformation described in Eqs. (6)-(8) on the ZESST profiles in Fig. 2 
yields the profiles plotted in Fig. 3. 

 

Fig. 3. ZESST profiles of Fig. 2 plotted against the normalized physical 

depth z  ( 1z  is the total thickness of the graded layer). Normal 

incidence or oblique incidence with TE polarization was assumed for 
performing the inverse Liouville transformation from   to z . 

B. Surrogate models for modulated profiles (periodic and almost 
periodic) 

Normalizing the ZESST profiles according to    *

0

*

1

*

0

* nnnn   

provides another perspective on their shape; see Fig. 4 and Fig. 5. For 
reference, we also plotted a normalized cosine profile. 

For falling profiles (i.e., *

0

*

1 nn <1), the profile curvature in Fig. 4 and 

Fig. 5 is higher at the left end of the layer, whereas for rising profiles, it 
is the opposite. This means that the curvature is more pronounced 
towards the boundary presenting the highest index value. This 
dissymmetry is more acute in the z -space (Fig. 5) than in the  -space 

(Fig. 4). Furthermore, when the amplitude of the modulation 

diminishes (i.e., when *

0

*

1 nn  approaches 1), the  ̂sech -type profiles, 

both of E -form and H -form, increasingly resemble a cosine 

profile. One can even notice that the H -form profiles are slightly 



closer to it (for a given value of *

0

*

1 nn ). The RMS difference between a 

ZESST profile and the cosine profile gives a measure of their similarity. 
Interestingly, the RMS difference is the same for a given value of 

*

0

*

1 nn  and for its reciprocal. For example, if we refer to the two pairs 

of curves in Fig. 5 that correspond to *

0

*

1 nn =0.8 and 1.25, namely the 

closest ones to the cosine profile, the RMS difference is 0.06 for both 

E -type (black) profiles, and only 0.04 for both H -type (red) 

profiles. 

 

Fig. 4. Same as in Fig. 2 for the normalized pseudoindex 

   *

0

*

1

*

0

* nnnn  . The arrow indicates increasing values of the right-

to-left index ratio *

0

*

1 nn : 0.25, 0.5, 0.8, 1.25, 2, 4. The normalized 

cosine profile has been added in green.  

 

Fig. 5. Same as Fig. 4 against the normalized physical depth 1zz . 

Normal incidence or oblique incidence with TE polarization. 

More insight into this similarity is provided in Fig. 6, where the RMS 

difference is plotted against  *

0

*

1ln nn . This variable was chosen to 

place greater emphasis on low-contrast profiles. The data for rising 

profiles (i.e., *

0

*

1 nn  ) and for falling profiles ( *

0

*

1 nn  ) obviously 

overlap. Except for H -form profiles and a relatively low contrast, i.e., 

1*

0

*

1 nn <0.05, the proximity to the cosine profile is better in the  -

space than in the z -space (this was already noticed when comparing 
Fig. 4 and Fig. 5). Moreover, we can notice that for a vanishing contrast 

(i.e., 1*

0

*

1 nn ) the RMS difference has a non-vanishing limit of 

about 0.007, which, anyway, is quite low.   
Let us fix the RMS acceptance-threshold at 10-2: profiles showing a 

lower RMS difference value in the z -space will be considered as 

satisfactory surrogate models for sine/cosine profiles. The E -form 

profiles meet this criterion provided that *

0

*

1 nn  [0.988; 1.012]. For 

H -form profiles, the allowable interval is much broader: *

0

*

1 nn  

[0.932; 1.073]. After doubling the acceptance threshold, the allowable 

interval for *

0

*

1 nn  broadens to [0.95; 1.05] for E -form profiles, 

resp. to [0.88; 1.13] for H -form profiles, which is now quite large. In 

the end, for applications dealing with an index contrast not higher than 
5-12% (as for Bragg filters and reflectors) and requiring only 1-2% 
accuracy on the actual profile shape, the ZESST profiles can 
advantageously replace the classic sine-cosine profiles (the benefit is 
that the former involve elementary functions for computing the EM 
fields and scattering properties, whereas the latter involve Mathieu 
functions [5, 6]).  

 

Fig. 6. RMS difference between the normalized ZESST profiles and the 
cosine profile (see Fig. 4 and Fig. 5) against the logarithm of the 

pseudoindex contrast *

0

*

1 nn  (in absolute value). Dotted curves: RMS 

difference in the  -space (see Fig. 4), plain curves: same in the z -

space (see Fig. 5). In black: profiles of E -form, in red: profiles of 

H -form.  

C. Transfer matrix 

The analytical transfer matrix is used for expressing the linear 
relationship between the vector of tangential components of the EM 

fields at two positions in a graded material, namely  t

HE 11

~
,  at 1   

and  t

HE 00

~
,  at 0 : 
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where E  represents xE  or yE  in the case of the TE mode, resp.  the 

TM mode. Symmetrically, H
~

 represents 0YH y  or 0YH x .   



Transfer matrices related to different profiles can then be multiplied 
in sequence for modeling light propagation through the corresponding 
stacking, in the same way as for homogeneous layers [1, 2, 26]. The 
scattering properties (reflectance, transmittance) of the resulting 
synthetic optical structure can be inferred from the four entries of the 
global matrix, together with the refractive indices of the incidence 
medium and the substrate through well-known relationships (see e.g. 
[1, 2]). 

We will designate by 
E

M  and 
H

M  the transfer matrix 

associated with an E -form, resp. an H -form, profile. The generic 

expressions of the four entries of the matrix 
E

M  related to a solvable 

profile in the  -space were developed in [26] and they are recalled in 

Annex B. The interesting point is that 
H

M  is obtained simply by a 

180° circular permutation of the corresponding 
E

M  matrix [26].  

Assuming an EM plane wave (either TE or TM-polarized), with  , 

the wavelength in free-space, and 20 k , the wavenumber, the 

tangential component of the electric field, i.e., xE  for the TE mode, or 

yE  for the TM mode inside a  ̂sech  profile of E -form is 

expressed as  
21*n  times a linear combination involving the 

following function: 

     ,1expˆtanh1,
22
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22
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and its complex conjugate    00 ,, kKkP    [26]. Symmetrically, the 

magnetic-field related to the H -form profiles (i.e., yH  for the TE 

mode, resp. xH  for the TM mode) is expressed as  
21*n  times a 

linear combination involving the same functions  
0,kK   and 

 
0,kP  . The matrices related to the  ̂sech -type profiles are 

obtained by substituting the expressions of the linearly independent 

functions  
0,kK   and  

0,kP   presented in Eq. (10). Skipping the 

intermediate analytical details, we provide the results in synthetic form 
in Annex B. All that is needed to calculate the four entries of 

E
M  or 

H
M  is fully contained in Equations (B1) and (B3). One additional 

useful result is that the transfer matrices of two symmetric ZESST 

profiles evolving from *

0n  to *

1n , resp. from *

1n  to *

0n , differ only by an 

exchange of the entries A and D.  

3. APPLICATION OF ZESST PROFILES TO MATCHING 
LAYERS AND AR COATINGS 
A first application that springs to mind is the design of gradient-index 
matching layers or antireflection coatings. Reflections originating at the 

interface of two dissimilar media with index 0n  and 1n  may be 

significantly reduced over a broad spectral range by the use of an 
intermediate layer with a smooth transition between the two index 
values [4, 29, 42-44]. A continuous first derivative at both ends of the 
matching layer is obtained with the cubic function 
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010 23)( ttnnnn   [4] and with the cosine function 

   2cos1)( 010 tnnnn  . Therein, the argument t  represents 

either the normalized geometrical thickness 1zz  or the normalized 

optical-thickness 1 . With the quintic function
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010 61510)( tttnnnn  , the second derivative is 

continuous too and Southwell showed that the antireflection 
properties of the quintic profile are improved compared to those of the 
cubic one; it is near optimum [4, 29]. Nanorod layers of TiO2 and SiO2 
were grown by oblique angle deposition to produce gradual-index 
multilayers approximating the quintic profile [45-46]. Another type of 
matching layer is obtained with the hyperbolic tangent profile 

    2121tanh)( 1

2

0

2

1

2

0

2  tnnnn  , where 1  is used for 

adjusting the steepness of the transition (it belongs to the family of 
Epstein layers, see [15]). Broadband omnidirectional antireflection 
(AR) coatings were claimed in [47] by adding to the former tanh profile 

  2

ARktV , where  tV  is one among the well-known reflectionless 

potentials (RP) described by Kay and Moses [48] and 
ARARk 2  is 

the AR-design wavenumber (they will be referred to as “tanh+RP” 
profiles). Notice that since both tanh and RP profiles were originally 
designed for unbounded media (infinite support), a balance has to be 
found between the opposing effects of steepness and support 
truncation. 

The ZESST profiles may offer an interesting alternative, since: 1- 
they allow a continuous first derivative to be obtained at the layer ends, 
and 2- the computation of the associated EM solution and the 
scattering properties is analytical, exact and easy (refer to Annex B). 

A comparison of the ZESST profiles of E -form and of H -form 

with the classical profiles mentioned previously is shown in Fig. 7 and 

Fig. 8, where the scaled index 0nn  is plotted against the scaled optical 

depth 1 , resp. the scaled physical depth 1zz . For this illustration, 

we considered an index-step ratio of 1.5. Two profiles were drawn for 
the cubic, cosine and quintic functions, depending on the choice for the 

argument t , i.e., either t = 1  (plain curves) or t = 1zz  (dashed 

curves).  

 

Fig. 7. Index profiles considered as gradient-index matching layers 

between two media with index contrast 01 nn =1.5. The scaled index 

is plotted against the normalized optical depth 1 . Black: ZESST 

profile of E -form, red: profile of H -form, magenta: cubic profiles, 

green: cosine profiles, blue: quintic profiles, grey: tanh profile, orange: 
“tanh+RP” profile. Continuous (resp. dashed) lines: analytical profiles 

expressed in t = 1  (resp. in t = 1zz ). 

A profile in t = 1  is symmetric about the center at 1 = 21  

and   21 010 nnnn  , see Fig. 7. The same is observed in Fig. 8 

after interchanging 1  and 1zz .  



For the tanh profile and the “tanh+RP” profile [47], we used t =

1zz  and 1 =7, which provides a not-too-steep ramp and, at the same 

time, insignificant discontinuity at the boundaries. With regard to the 
reflectionless potential, we used the simplest one, namely the classic 
hyperbolic secant potential (also known as modified Pöschl-Teller 

potential),    21sech2 2

22

1

2

2 


tztV  , which is here centered 

at t = 21  (we selected an AR design wavelength of 210 znAR   and 

a parameter 2 =10 – the maximum contrast induced by the RP is then 

about 0.5 0n ).   

 

Fig. 8. Same as Fig. 7 against the normalized physical depth 1zz . 

Assuming a plane wave coming from the left in Fig. 1, the reflectance 
spectra for the ten matching layers represented in Fig. 7-8 are reported 
in Fig. 9-10 in logarithmic scale and in Fig. 11 in linear scale. For all, 
except the two solvable ZESST profiles, we had to implement the 
classical homogeneous-layer analytical transfer matrix method. As 
such, in order to lower the error induced by this approximation, we 

imposed the conservative constraint i  <  /120, which implies a 

discretization into about 600 sublayers for safely exploring the 

considered spectral band, i.e., down to a wavelength of  = 1 /5. 

Analyzing shorter wavelengths would require discretizing even more 
densely. Instead of that, the analysis of each ZESST profile required 
computing only one single matrix, according to the methodology 
described in Annex B. Although a bit more complicated than the 
transfer matrix of a homogeneous layer, this single matrix is processed 
in much less time than is required to obtain the (approximate) one 
related to the classical profiles (i.e., as obtained after multiplying a 
series of constant-index matrices resulting from the spatial 
discretization). 

The reflectance spectra can be split into three groups, depending on 
the continuity/differentiability properties of the profiles. In Fig. 9 are 

presented those pertaining to 1C  and 2C  profiles, i.e., those with a 

continuous first derivative (cubic, cosine and ZESST profiles), resp. 
those with a continuous second derivative (quintic profiles). In Fig. 10 
are plotted the spectra of the discontinuous profiles (tanh profile and 

“tanh+RP” profile). These profiles are C  over an infinite support but 

here the support had to be truncated to  
1,0 z .  

For vanishing values of 1  we retrieve, for all profiles, the well-

known Fresnel reflection value for a bare interface (0.04 in the present 
case). Thereafter, all spectra show a global decrease of reflectance for 

increasing 1  (except for the “tanh+RP” spectrum with an overshoot 

at 10 zn 5.0 ). The reflectance decrease is more or less rapid, 

depending on the index profile shape.  

 

Fig. 9. Reflectance spectra of the 1C  and 2C  profiles reported in Figs. 

7-8 (same colors and line types) against the scaled reciprocal 

wavelength 10 zn . The spectra of the ZESST profiles of E -form 

(black) and H -form (red) are very close and show deep depressions 

alternating with those of the quintic profile in t = 1  (plain curve in 

blue). 

 

Fig. 10. Reflectance spectra of the tanh (grey) and “tanh+RP” (orange) 
profiles in Figs. 7-8; a black dashed line is added, which corresponds to 
the spectrum of the sech2 reflectionless potential (RP) alone (i.e., 
without the tanh ramp); the deep depression in the central area 
corresponds to the perfectly reflectionless condition at the AR design 

wavelength 10 znAR =0.5. 

It appears that the reflectance spectra of the 1C  and 2C  profiles in 

Fig. 9 are significantly lower than those of the third group in Fig. 10. In 
particular, due to the support truncation of the latter group, and hence 
the appearance of a refractive-index discontinuity, their spectra show 

ripples and cease to decrease for 10 zn  higher than about 3. In Fig. 

10 and Fig. 11 is also plotted the reflectance spectrum of the Kay-
Moses RP profile alone, i.e., without the tanh ramp. The perfect 

reflectionless condition is met for 10 zn =2, which corresponds to 



the design AR wavelength. However, on both sides of this depression, 
the reflectance is quite high (with respect to the other spectra). Next, 
two important observations can be made about adding a tanh ramp to 
the Kay-Moses RP: first, the reflectionless feature is erased; secondly, 
the resulting “tanh+RP” spectrum is higher everywhere than the 
underlying tanh spectrum. In addition, it is higher than any other AR 
profile considered in this paper (either the classic ones or the ZESST 
profiles). 

 

Fig. 11. Reflectance spectra of Figs. 9 and 10 reproduced in a linear 
scale (same colors and line types). Disregarding the dashed black line, 
which simply recalls the result of the plain sech2 “reflectionless” 
potential (RP), the other spectra correspond, in decreasing order of 
anti-reflection performances, to the “tanh+RP” profile (dashed orange), 
the “tanh” profile (dashed grey), both quintic profiles (dashed and plain 
blue) and a group formed of (both) cubic, (both) cosine and (both) 

 ̂sech -type profiles. For a better view of the performances at 

reflectance levels lower than about 10-3, one should refer to Figs. 9 and 
10. 

For the three classic profiles: cubic, cosine and quintic, a better 
reduction of reflectance is achieved by choosing the normalized optical 

depth 1  (continuous curves) instead of the physical depth 1zz  

(dashed curves) for the functional parameter t . In addition, the 

periodic minima are more pronounced. This preference for t = 1

was already noticed by Southwell for the quintic profiles [29]. 
The spectrum of the ZESST profiles is always (slightly) lower than 

that of the cubic profile expressed in 1 . It is actually closely 

comparable to that of the cosine profile expressed in 1 : the 

reflectance maxima of the ZESST profiles are slightly higher, however, 
the minima are much deeper. 

In Fig. 9, the spectra of the E -form and H -form ZESST profiles 

are very close, since the profiles themselves are very close (see Fig. 7 or 
Fig. 8). One interesting point is that when the wavelength is scaled by 

the total optical thickness (instead of 10 zn  in Fig. 9), these spectra 

perfectly overlap (this will be recalled later in Fig. 14). We are in the 
presence of two refractive-index profiles that, although distinct, lead to 
the same reflectance, whatever the considered wavelength. Other pairs 
of similarly spectrally indistinguishable profiles were described in [26]. 

Interestingly, the reflectance minima observed with the quintic 

profiles roughly correspond to 1 2j , 2j , whereas for all 

other profiles (except for the tanh and the tanh+RP profile) they are 

localized at 1
  412  j , i.e., nearly a quarter-wave apart. 

Disregarding the local minima, the global decrease of reflectance 
with decreasing wavelength soon stabilizes at a rate of 10-4/decade for 
the first group and 10-6/decade for the second group. These results are 
consistent with the general trend reported in [42, 44, 49, 50]: in the 

presence of a 1jC  transition profile (i.e., when the   th
j 1  derivative 

is continuous but not the thj ), the reflectance spectrum is expected to 

evolve like j2  for vanishing   (this relationship should, however, 

not be extrapolated for j , as pinpointed in [50]). As such, the 

steeper decrease of the quintic profile reflectance spectrum in Fig. 9 
would give an advantage to this particular profile for designing AR 
coatings. Nevertheless, this statement should be tempered since for 

10 zn <0.7 the ZESST profiles show better results than the quintic 

profile; thereafter the performances alternate, and for 10 zn >0.9 the 

reflectance is less than 10-4 for all three profiles anyway. In practice, the 
choice must then be made by jointly considering the spectral range of 
interest and the allowable thickness for the AR layer. 

Another point to consider is the influence of the incidence angle. 

Assuming again an index step 01 nn  of 1.5, the variation with the 

incidence angle of the ZESST profile spectra of the mean reflectance is 
described in Fig. 12 in logarithmic scale and in Fig. 13 in linear scale. 
The results for 

a =0° were obtained by implementing a single “high-

level” transfer matrix, as described in Annex B. For the other angle 
values, as discussed earlier in § 2.A, it was necessary to implement the 
classical transfer matrix method with a fine discretization of the ZESST 
profiles drawn in Fig. 8. 

 

Fig. 12. Mean reflectance spectra   2TMTE RR   of the ZESST profiles 

in Fig. 8 depending on the incidence angle a  ( E -form (black) and 

H -form (red)). From bottom to top: a =0°, 30°, 40°, 50°, 60°, 70°, 

80°. Index step 01 nn =1.5. 

As seen in Figs. 12-13, the E -form profile provides slightly better 

results than the H -form profile. In the former case, a reflectance 

lower than 1% is reached from normal to 60° incidence provided that 

10 zn >0.678, which means for wavelengths shorter than 1.47 10 zn . 

The wavelength should be shorter than 0.7 10 zn  (i.e., 10 zn >1.44) to 

obtain a reflectance lower than 0.1% over the same incidence range. In 
order to obtain less than 1% reflectance over the incidence range [0°-

70°], the wavelength should be shorter than 0.64 10 zn  (i.e., 10 zn



>1.56). This gives some indications for the design of ZESST-type 
omnidirectional AR coatings. 

 

Fig. 13. Same as Fig. 12 in a linear scale. 

4. COMPOSITE  ̂sech -TYPE PROFILES FOR C2 

MATCHING LAYERS 
The slower global reduction of the ZESST profile reflectance with a 
decreasing wavelength, as compared to the quintic profiles (see Fig. 9), 
was explained by the fact that the former are continuous up to the first 
derivative only, whereas the latter are continuous up to the second 

derivative. Stitching together several  ̂sech -type profiles offers a 

chance to build a solvable composite profile of better performance 
than a single ZESST profile. The objective is now to build a composite 
profile that would be continuous up to the second derivative at all 

nodes. Joining two  ̂sech -type profiles is not enough since we then 

have nine function specifications and only 2x4=8 free parameters. 

Joining three  ̂sech -type profiles is a feasible solution, since we then 

have twelve function specifications and as many as 3x4=12 free 
parameters. Furthermore, we have two degrees of freedom left for 
assigning the relative positions of the two internal nodes. A specific 
routine has been developed to identify the twelve unknown 
parameters by fusing a nonlinear solver devoted to six of them with a 
direct identification of the remaining six (linear) parameters. 

In Fig. 14 we describe the results obtained when distributing the 

two internal nodes evenly, i.e., at total =1/3 and 2/3 (to avoid any 

misinterpretation, the notation total  is chosen to describe the optical 

thickness of the whole matching layer, whether it is a 1-piece or a 3-
piece layer). The dashed curves of the two composite profiles (in black: 

for the E -form and in red for the H -form) can be compared with 

the former single-piece ZESST profiles and with the quintic profile. 
The reflectance spectra are reported in Fig. 15. As opposed to Fig. 9, 

the wavelength is now scaled by the total optical thickness. The E -

form and H -form 3-piece profiles give strictly the same reflectance 

spectrum (just as the E -form and H -form 1-piece ZESST profiles 

do) Complementary computations (not shown here) revealed that this 
is not the case when the two internal nodes are set asymmetrically 
with respect to the middle point. 

 

Fig. 14. In dashed lines: 2C  composite profiles obtained by joining 

three  ̂sech -type profiles; the circles indicate the connection nodes 

(in black: E -form, in red: H -form profiles). For comparison, we 

reproduced three curves from Fig. 7: continuous line in black: single 

ZESST profile of E -form, in red: ZESST profile of H -form, in blue: 

quintic profile expressed in t = 1 .  

 

Fig. 15. Reflectance spectra of the profiles in Fig. 12 (same colors and 

line types). The reflectance spectra of the E -form and H -form 

profiles overlap, whether they are from the 3-piece composite profiles 
(black dashed line) or from the 1-piece ZESST profiles (black 
continuous line). 

Fig. 15 confirms that the reflectance spectra of the 3-piece  ̂sech -

type profiles have the desired reduction rate of 10-6/decade. In the 
present case of equidistant nodes, we can observe ripples of high 

amplitude and width 1 (in 1  units) alternating with ripples of low 

amplitude and width 0.5. These low-amplitude ripples extend over 
quite large spectral bands, where the reflectance is exceptionally low 
(as opposed to the narrow reflectance minima observed with the other 
profiles, i.e., the quintic and the ZESST profiles). Nevertheless, 
antagonist effects can be noticed when comparing with the 1-piece 
ZESST profiles: better performances are (globally) reached with the 3-



piece  ̂sech  profiles at short wavelengths (typically for 
total  ), 

whereas the opposite is observed at long wavelengths (
total  ). 

5. SMOOTH 1D QUASICRYSTALS 
1D quasicrystals are structures made of layers arranged using well-

designed patterns with long-range order, but lacking translational 
symmetry [51, 52]. An aperiodic distribution of refractive index 
variations induces optical interferences, which, when compared to 
their periodic counterparts (photonic crystals), yield richer and more 
complex features in the transmission spectrum. Over the past thirty 
years, a large number of studies have been devoted to the exploration 
and exploitation of the interference peculiarities offered by Fibonacci 
quasicrystals and other deterministic aperiodic structures like Thue-
Morse, Rudin-Shapiro and period-doubling sequences (see e.g. [53-56] 
and the reviews [51, 52]). The aperiodic structures are generally 
obtained by applying specific substitution rules on two building blocks, 
say A  and B . In almost all previous works, A  and B  correspond to 

homogeneous layers defined by their indexes An , Bn  and optical 

thicknesses A , B . As a result, the index profile was a binary-level 

profile with a discontinuity at each AB or BA  interface. The research 
has been focused on the interplay between aperiodic sequences and 
optical scattering properties, in particular distinctive resonant states 
with various degrees of spatial confinement. Typical features are 
localized optical states (i.e., Anderson-like states) and pseudo-gaps 
separated by strongly fluctuating wavefunctions with power-law 
localization scaling, known as critical modes. These critical modes 
include extended fractal wavefunctions and result in self-similar spatial 
fluctuations [52, 56]. Another intriguing property of aperiodic 
multilayers is the appearance of perfect transmission resonances in the 
optical spectra (i.e., transmittance is exactly equal to unity) [57]. 
Nevertheless, only a small number of works took into consideration 
index profiles other than binary-level profiles. Namely, in [5, 58-61], 
one layer type, say A , has been changed to a graded-index layer (with 
linear or exponential profile); in [7] both layer types have been 
changed to graded-index layers. However, in all of these cases, the 
resulting profiles were still discontinuous. 

It is well known that the scattering properties of a photonic 
structure depend on the index variation amplitude and space scales. 
Therefore, the interplay between the Fourier spectrum of an aperiodic 
lattice and its energy spectrum has been the subject of intense research 
[51, 52]. The differentiability order of a profile also has an impact on 
reflectance [44], an aspect which, to the best of our knowledge, has not 
yet been considered in the field of quasicrystals. For this reason, we 
propose to generate smooth 1D quasicrystals using ZESST profiles and 
compare the optical response with that of their discrete counterparts, 
i.e., binary-level quasicrystals. The present illustration will be about 
deterministic aperiodic structures based on Fibonacci sequences.  

Fibonacci sequences are obtained by applying the following 

iteration rule:  
21  nnn SSS , initialized with  AS 1  and 

 ABS 2 . At fifth order, for example, we obtain  ABAABABAS 5 . 

For the discrete-QC, we assign, as usual, the same optical-thickness 

value to both layers: A = B = 1 . The smooth QC is constructed as 

follows: each AB  (resp. BA ) transition is “smoothed” and replaced by 

a ZESST profile of optical thickness 1  evolving from An  to Bn  (resp. 

from Bn  to An ). Wherever a AA  block is present, a layer of index An  

and optical thickness 1  is inserted between the two neighboring 

ZESST profiles. Both discrete-QC and smooth-QC are assumed to be 

bounded by infinite layers of index An  (notice that to avoid an index 

discontinuity at the right boundary if the sequence ended with B , a 

supplementary ZESST profile from Bn  to An  is added – this occurs for 

any even order in the Fibonacci sequence). The discrete and smooth 
profiles can be compared in Fig. 16.  

To compute the scattering properties of the discrete-QC, two 
elementary transfer matrices, one for each layer type, A and B , have 
to be prepared and multiplied according to the Fibonacci sequence. For 
the proposed smooth-QC, one needs to compute two transfer matrices 
as well: one for the homogeneous layer A  and one for the rising 
ZESST profile (the matrix of the falling ZESST profile is obtained by 
exchanging A and D entries in the latter matrix).  

In Fig. 17, we present the transmittance spectra for both discrete 

and smooth QC sequences at 12th order ( 12S ) with chosen refractive 

indices of An =1.6 and Bn =2.2 ( E -form profiles were used for the 

ZESST profiles; those of H -form provide very close results). The 

spectra are plotted over a wavenumber interval extending by 10% on 
each side of the characteristic wavenumber, for which both layers A  
and B  are quarter-wave. 

 

Fig. 16. In blue: schematic diagram showing the left part of an 
aperiodic lattice composed of two layers A  and B , arranged in a 

Fibonacci sequence ( An =1.6, Bn =2.2, same optical thickness for both 

layers, which is used as the  -unit). A smooth profile is obtained by 

substituting a rising (resp. falling) ZESST profile of E -form at each 

AB  (resp. BA ) interface. The circles indicate the nodes of the 
resulting smooth quasicrystal. 

At first glance, the spectrum of the smooth profile presents the same 
features as the discrete counterpart, i.e., many pseudo-gaps separated 
by critical modes showing a multifractal scaling with narrow 
transmission lines. By increasing the sequence order, we observe, in 
the same way as with homogeneous layers, a deepening of the pseudo 
gaps and the appearance of new narrow spectral features. Actually, 
quasi-localization of the light waves in a Fibonacci dielectric multilayer 
was demonstrated by the self-similarity of the transmission coefficient 
[54]. The main difference that can be observed in Fig. 17 is a slight shift 

of the features towards higher wavenumbers (when using H -form 

profiles instead -not represented here-, the shift is just slightly more 
pronounced). 

A more striking difference with the discrete-QC spectrum is 

observed for a reduced wavenumber 14  higher than 2 (i.e., for 



a wavelength   smaller than 2 1 ), see Fig. 18. In the spectral region 

corresponding to  [1.7, 2.3], the transmittance reaches high levels 
for both quasicrystals. Thereafter, the transmittance of the discrete QC 
again enters a perturbation region, which is very similar to the pseudo-

gap and multifractal region left from  =2. Actually, the discrete-QC 

spectrum shows a periodicity of 2 units in   and a symmetry about 

any integer value of  , as was highlighted in [53]. 

 

Fig. 17. Transmittance spectra of the binary-level Fibonacci sequence 

12S  (i.e., 233 layers) (in blue) and its smooth counterpart based on 

ZESST profiles of E -form (in black). An =1.6 and Bn =2.2. The 

abscissa 14  is the reduced wavenumber, where 1  is the common 

optical-thickness value for all elements. 

 

Fig. 18. Same as Fig. 17 over a larger spectral domain. 

On the contrary, the transmittance of the smooth QC remains at high 

levels for  >2, showing only a few narrow dips. The depth of these 

dips increases with the sequence order.  =2 corresponds to  =2 1 , 

i.e., a wavelength equal to the spatial period of the photonic crystal 
obtained by suppressing the AA  doublings in the Fibonacci sequences 
(these supernumerary A  layers can be seen as pseudo-random 

“defects”). Hence, for  < 2 1 , the smooth quasicrystals are essentially 

transparent, notwithstanding some sparse and thin stopbands. Only 

for wavelengths greater than 2 1  do they behave much like the 

classical two-level stepwise Fibonacci sequences. 
The strong difference in transmittance observed at high 

wavenumbers between the binary-level profile and the smooth profile 
should be related to the fact that the Fourier spectrum of the binary-
level profile has a higher content at high frequency than that of the 
smooth profile. In the end, we can notice that the transmittance 
spectrum of the smooth QC has lost all of the symmetry properties of 
the discrete QC counterpart.  

6. DISCUSSION AND CONCLUDING REMARKS 
We have described the main features of a pair of S-shaped refractive 
index profiles, together with their exact EM analytical solutions. These 

so-called ZESST profiles (Zero-End-Slope  ̂Sech -Type profiles) are a 

particular subclass of a more general class of solvable profiles, the 

 ̂sech -type profiles, which were obtained in [26] by applying the 

PROFIDT method (Darboux transformation method). For any value of 
the right-to-left index ratio of the S-shape, two solvable profiles are 

actually proposed: the so-called E -form and H -form profiles. 

They are defined in the optical-depth space and are aimed at modeling 
the EM fields for both the TE and TM modes. The EM-field expressions 
are exact, in closed-form and involve only elementary (hyperbolic) 
functions.  

Two of the four parameters that define each ZESST profile are non-
linear; however, empirical relations have been provided for easy but 
accurate determination. Practical tools are available to manage an 
analytical representation back in the physical-depth space (this applies 
for TE polarization; otherwise, the inverse Liouville transformation 
should be performed numerically). Analytical formulas have also been 
given to calculate the corresponding transfer matrices. All ingredients 
are thus available for the computation of the scattering properties of 
one or several S-shaped profiles bound together. Let us emphasize that 
this computation is exact. 

In this paper we explored the performances of ZESST profiles when 
used as matching (or antireflection) layers. They compare favorably 
with other profile solutions from the literature, in particular with the 
well-known quintic profiles. One needs to compute one single transfer 
matrix for the ZESST profile, as opposed to a multiplicity of them when 
dealing with the other matching-layer profiles, since they require the 
application of the classical analytical transfer matrix over very fine 
homogeneous layers. Thus, implementing ZESST profiles eliminates 
both the burden with the discretization-step criterion and the round-
off error problem induced by the fine discretization. The AR 
performance at high wavenumber can be increased further by 

changing from a single-piece ZESST profile to a 3-piece  ̂sech  profile, 

since the latter shows greater smoothness (i.e., it is continuous up to 
the 2nd derivative). Nevertheless, if the reflectance target for the AR 
coating at normal incidence is not less than 3.10-4, a single ZESST 
profile provides about the best solution among all of the profiles 

considered here: for any wavelength shorter than about 1.9 10 zn , the 

reflectance would be less than the aforementioned threshold (these 
numerical results were obtained for a 50% index step).  

The 3-element composite profile that has been considered in this 

paper is the first example of what we coined a “solvable  ̂sech -type 

spline”. Since the  ̂sech -type profiles are 4-parameter flexible 

functions, they could well be used in spline interpolation in lieu of the 
classical 3rd degree polynomials (cubic spline). The great advantage lies 

in that each  ̂sech -type profile element is (exactly) solvable and that 

any combination thereof is (exactly) solvable too: through a simple 



transfer-matrix multiplication one has access to the scattering 
properties of the whole synthetized profile. 

Solvable pseudo-splines are obtained by relaxing the constraint on 
the continuity of the second-derivative at the nodes (only the first 
derivative should be continuous). Joining together alternately rising 
and falling ZESST profiles with a progressively changing width and/or 
height yields such pseudo-splines. This gives rise to almost-periodic 
(solvable) index-profiles that can be used to model a huge number of 
optical devices, like apodized rugate filters, fiber Bragg filters and 
mirrors, chirped mirrors and photonic crystals (a brief introductory 
outline of such applications was provided in [26]). It has been shown in 

this paper that ZESST profiles, especially those of H -form, are very 

satisfactory substitution models for sine/cosine profiles of low to 
moderate amplitude, which is the case with Bragg filters, among 
others. The mean discrepancy with the cosine function can be less than 
1%, which is often well acceptable. 

With regard to the application to 1D photonic quasicrystals, the 
results presented in this paper provide a first glimpse of the 
opportunities offered by the ZESST profiles for the analysis of 
lightwave propagation in smooth quasicrystals. As a matter of fact, a 
photonic device with locally periodic and smooth variations of the 
refractive index can be easily modeled with ZESST profiles, as we have 
shown with Fibonacci sequences. The aperiodic deterministic 
sequences that have been almost exclusively considered so far deal 
with homogeneous layers. Introducing ZESST profiles therein allows 
the analysis of the interplay between smoothness and the scattering 
properties of the quasicrystals like pseudo band gaps and localized 
photonic states. Further work will be devoted to the nature of the 
“defects” that are deterministically inserted into the periodic sequence 
and the type of aperiodic sequence itself. Obviously, the ZESST profiles 
could also be used to study smooth periodic structures, i.e., photonic 
crystals. 

With the ZESST profiles and more generally with the  ̂sech -type 

profiles we now have at hand a high-level modeling tool that can be 
considered as an analytical Meccano able to fit to any (arbitrarily 
complex) graded index-profile and to easily provide the exact EM 
scattering properties. 

Obviously, this new approach would save much effort as compared 
to the classical transfer matrix method, as already quoted earlier. 
Moreover, let us recall that analytical modeling of apodized Bragg 
filters or chirped Bragg reflectors, even after introducing the low-
amplitude approximation, requires the implementation of a special 
function, namely the hypergeometric function [39, 40]. On the other 
side, another well-known technique, the coupled-mode method, is less 
demanding; yet, it is a perturbation-type theory that introduces various 
approximations; in particular, it is limited to low index modulation [30, 
41]. A third method requires computing an infinitely nested set of 
integrals involving the logarithmic derivative of the admittance profile; 
again, for a practical implementation, only the first orders can be taken 
into account [31]. In contrast, with the ZESST profiles there is no 
restriction either on the index modulation height or on its rate: the EM-
field computation is unconditionally exact. Assembling these S-form 
profiles and thereby multiplying the corresponding (high-level) 
transfer matrices, provides the scattering properties of the synthesized 
smooth multilayer without the discontinuity-induced artifacts that 
come along with the classical transfer matrix method with constant 
unit-cell profile. 

This represents a new paradigm for modeling 1D graded index 
media and opens interesting perspectives for the inversion process, i.e., 
the design of refractive index profiles aimed at providing specified 
optical scattering properties. 

Basically, the combination of the Liouville transformation and the 
PROFIDT method is applicable to any phenomenon that can be 

described by the following system of coupled first order ordinary 
differential equations: 
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where  zf  and  zg  are two real-valued, of same sign, 1C  

functions representing the variable parameters (see [24]). By 

eliminating G  or F , a Helmholtz equation with variable coefficients 

is obtained for F , resp. G  (i.e. the so-called F -form, resp. G -

form equation). The previous equations have been used to describe 

many types of evolutionary fields in physics. In the present paper, F  
is for the electric field, G  is for the magnetic field,  zf  is for 

   zzm pm

p 
1

cos  and  zg  is for    zzm pm

p 
1

cos . Other 

potential applications of the analytical tools are [24]: 1) electrical 
transmission lines with distributed inductance and conductance, 2) 
acoustic waves in a medium with graded mass density and sound 
velocity 3) longitudinal and shear elastic waves in a medium with 
graded mass density and elastic modulus, 4) ocean gravity waves. As 
such, the ZESST profile elements could be used for the analytical 
modeling of 1D phononic crystals and quasicrystals as well, which 
means structures with smooth periodic, resp. deterministic aperiodic, 
variations of the acoustic/elastic properties. 

The results presented so far assumed that permittivity and 
permeability are real-valued and positive. Actually, to apply the 
standard Liouville transformation, they just have to be of the same sign. 
Hence, the PROFIDT method could also be used to model double-
negative metamaterials (negative permittivity and permeability). 
Future work will be devoted to the exact analytical modeling of 
materials with complex-valued permittivity, i.e., complex-valued 
refractive index. One application is for materials with losses, another 
for materials with balanced gain and loss (PT-symmetric systems, i.e. 
systems unaffected after space-time reflection). 

ANNEX A 

The pseudoindex 
*n  and the refractive index n , are related via the 

variable incidence angle    according to pm
nn cos*  , where 

1pm  for the TE mode and 1pm  for the TM mode. Introducing 

the Snell-Descartes invariant aaa nI sin     sinn  and 

substituting    into the former relation, we get the two-way 

relations (see e.g. [1]): 
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In the latter equation, the plus or minus sign should be applied when 
the angle    is lower, resp. higher than 45°. 

  



ANNEX B 
The four entries of the analytical transfer matrix 

E
M  for a profile 

element obtained by the PROFIDT method are given by [26]: 
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where the subscripts 0 and 1 indicate that the corresponding functions 

are evaluated at 0 , resp. at 1  ; 1,01,01,0 ss  and G , H , I , 

J ,   involve the values taken at the two-layer edges by the 

independent functions  
0,kK   and  

0,kP   used to express the E 

and H fields and by their derivatives: 
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It is easy to verify that 
E

M  matrix is unimodular (i.e., its 

determinant is 1). Based on the expressions of the functions  
0,kK   

and  
0,kP   related to the  ̂sech -type profiles (see Eq. (10)), the 

four terms G , H , I , J  become: 
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where 
22

0


 ck  , whereas 

0 , 
1  are the values taken at the 

layer edges by   ˆtanh
1

c
. In addition, 2

02 ki . 

We see that the four entries of the transfer matrix are fully 
determined by the following series of parameters: the end-values of 
the  s  profile, i.e., 

0s  and 
1s , the end slopes 

0s  and 
1s , the reduced 

wavenumber 
10k , or equivalently 1

. The two other parameters 

c
1  and   that intervene in Eq. (B3) via 

0 , 
1  and   are 

directly determined from the knowledge of 
0s , 

1s , 
0s  and 

1s . In the 

case of ZESST profiles, the derivatives 
0s  and 

1s  are zero, thereby 

implying that five terms in the expressions of the four entries in Eq. 
(B1) vanish. 

The complex amplitude reflectance r  and the intensity reflectance 

R  of a layer (or a multilayer), as represented in Fig. 1, are given by: 
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  (B1) 

where A, B, C, D are the entries of the transfer matrix of the layer (or 

multilayer), and *

an  and *

sn  are the pseudo-indices of the incident 

medium, resp. substrate [1].  
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