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Abstract

This paper addresses delayed (also known as anechoic) source separation when

the source shape can be modeled by parameterized waveforms. An Alternating

Least Squares (ALS) scheme is proposed to estimate the source shape parameters

in a first step and both the mixing coefficients and the delays in a second step.

For the challenging delay parameter estimation step, we adopt a strategy inspired

by greedy algorithms. For highly correlated sources, the separation becomes

ambiguous, and a second algorithm is proposed: a regularization term is added to

favor slow delay evolution within each source. Results on synthetic and real data

demonstrate the effectiveness of both algorithms compared to state-of-the-art

methods for highly correlated Gaussian waveforms.

Keywords: Source separation, anechoic unmixing, correlated sources, delays.

1. Introduction

We consider the detection and estimation of patterns with varying character-

istics in a temporal sequence of signals. This problem arises when dealing with

decomposition of spectra, i.e., the estimation of emission lines (the so-called

peaks) in a series of spectroscopic signals. The peak characteristics are assumed

to evolve slowly through the sequence. In optical spectroscopy, acquisitions are

obtained when varying a physical parameter. For instance, in time-resolved
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Figure 1: (a) Synthetic sequence of spectra, each containing 3 Gaussian waveforms (peaks).

(b) The peaks and their labels. Each color represents the peaks sharing the same label.

photoelectron spectroscopy, several spectra are acquired at different times [37].

In astrophysics, the study of galaxy kinematics [11, 43] leads to the acquisition

of multispectral images where each pixel identifies with a spectrum whose peaks

undergo varying delays due to the redshift and internal gas motions (Doppler

effect). In chemometrics as well [20], external variations such as temperature or

viscosity induce a spectrum shift and variation.

In many applications, prior knowledge or experiments allow the practitioner

to model the peaks by a parameterized waveform, e.g., Gaussian [43, 24] or

Lorentzian [14] functions. The first goal of this work is to estimate the amplitudes,

delays and shape parameters of the peaks in each spectrum. The second goal is

to match together the estimated peaks occurring in different spectra, that is to

assign a distinct label to each peak arising in a given spectrum. We will assume

that the shape parameters of the peaks having the same label are invariant from

one spectrum to another. Fig. 1 shows an example of synthetic spectra and the

expected output.

The problem was addressed in the Bayesian framework for a one-dimensional

sequence of spectra [24], modeled as the sum of Gaussian waveforms with Marko-

vian priors on their parameters to promote a slow evolution. The parameters
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and labels were then estimated using a reversible jump Monte Carlo Markov

chain algorithm. This method can deal with varying shape parameters of the

peaks having the same label but suffers from high computation time.

Another statistical approach has been proposed in [44], which models each

signal in the sequence as a shifted version of a periodic, unknown waveform. The

shift and the amplitude of the function are also unknown. In contrast to our

problem, the author considers a unique waveform in each signal and there is no

assumption of slow evolution of the unknowns through the sequence.

The problem can also be seen as a sparse approximation problem using an

overcomplete dictionary, constructed by sampling the peak parameters in the case

of parameterized peaks [1, 3, 39, 45]. Processing multiple spectra can be addressed

by estimating the peak parameters separately for each spectrum, then matching

the peaks together. However, this approach does not take the slow evolution

knowledge into account during peak estimation. Alternatively, joint sparse

approximation use a common dictionary for all the signals. Most approaches

assume that the data signals are simultaneously sparse (they share a common

support), which is often referred to as the Multiple Measurement Vector case [41].

However, simultaneous sparsity is a very restrictive assumption which does not

hold when the peaks have different delays in the spectra. Dynamic approaches

like recursive sparse approximation [42] compute the sparse approximation of

a spectrum from the knowledge of the sparse approximation of the previous

spectra. Social sparsity was introduced in [18] by promoting a structure between

the sparse representation of consecutive data signals with less restrictive support

assumptions. However, these approaches require a precise definition of the

neighborhood which is not always possible, and hence they are not well-suited

to the problem of peak estimation and labeling. Sparse approximation methods

have also been used for deep learning [33] in case of a convolutional dictionary.

However, such approaches require a large dataset of already decomposed data

which is not always available.

Finally, the problem can be seen as a delayed source separation problem [7]

where peaks with the same label are associated with unknown sources, and
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observed spectra are seen as mixtures. The reader is referred to [30] for a

review of source mixing models, e.g, instantaneous, anechoic and echoic, and the

related source separation approaches. Delayed source separation is a specific

case of convolutive source separation [5, 17] where the filter kernels are Dirac

functions. The main advantage of this approach is that estimation and labeling

of peaks are done simultaneously, thus avoiding a two-step approach. Note that

in optical spectroscopy, the number of sources is often smaller than the number

of mixtures, yielding overdetermined source separation. Many contributions of

the literature were addressed in audio signal processing where delayed source

separation is also referred to as anechoic source separation. The sources are

not parameterized and have to be estimated either in a blind or semi-blind

framework. Since the problem is ill-posed, regularization is necessary, e.g., by

imposing non-negativity of the sources and mixing coefficients (see [28] in the

case of instantaneous mixtures). Besides, strong assumptions such as source

independence and decorrelation are often made. When dealing with delays,

most approaches rely on delay linearization strategies such as applying Taylor

expansion on the mixtures in the temporal domain [6, 16]. Another strategy is to

analyze the mixtures in the frequency [26, 32] or time-frequency [29, 31] domains,

so that delays become phases which allows one to use instantaneous source

separation approaches coupled with phase estimation methods. However, the

independence and non-correlation assumptions are often not valid in many real-

world applications [8]. Efforts have been done though to relax these assumptions.

In [34], the strong W-disjoint orthogonality assumption needed in the DUET

algorithm [46] and the assumption that the sources must be orthogonal in the

time-frequency domain are relaxed: each source must be dominant at least in

one time-frequency window. However, this assumption becomes invalid when

the evolution of a source delay is fast from one mixture to another or when

two delayed source signals significantly overlap in some mixtures. In optical

spectroscopy, some delayed source separation methods have been proposed.

In [13, 15], a time warping strategy was used to cancel the effect of the delays

on each mixture after finding the delays over a predefined discrete grid using an
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exhaustive search strategy. The sources and amplitudes were then estimated in

the linear least squares sense. However, the exhaustive search is not feasible when

the delays take many values. In [27], the Non-negative Matrix Factorization

(NMF) method was extended to consider delays: non-negative amplitudes and

sources were found by using multiplicative updates, and delays were estimated

with a gradient descent algorithm coupled with a maximizing cross-correlation

procedure to reduce the effect of local minima. However, our experiments (see

Section 5) showed that this method performs poorly for highly correlated sources.

In addition, it is not straightforward to impose a slow evolution of the delays.

Hereafter, the terms mixture and source respectively represent an observed

spectrum and a peak having the same label in the observed spectra. An original

algorithm is proposed to address delayed source separation when the sources are

defined as parameterized functions. The problem is stated as an optimization

problem in Section 2 and a sparse-based Alternating Least Squares (ALS) strategy

is proposed in Section 3. This method was sketched in [25] but in this paper we

provide more detailed problem formulation and we analyze the separation limits

of the method. The latter limits motivate us to develop the brand new method

of Section 4: the slow delay evolution prior is considered to better discriminate

spectrally overlapping and similar sources. Finally, results on synthetic and real

data are presented in Section 5.

The notations are as follows. Bold and lowercase variables correspond to

vectors. Bold and uppercase variables correspond to matrices. The i-th row

and j-th column of a matrix M are respectively denoted as M i: and M :j .

The notation
(
u
)
+

refers to
(
u
)
+

= max(u, 0). The arrow notations ↘ and ↗
respectively refer to the decrement and increment operators.
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2. Parameterized Source Separation

Let us consider I mixtures xi(λ), each being the noisy sum of J parameterized

sources s(λ;wj) such that:

xi(λ) =

J∑
j=1

aijs(λ− cij ;wj) + ni(λ) i = 1, . . . , I (1)

where aij ∈ R+ is the amplitude of source j in mixture i (the application

considered in this paper shows emission lines but not absorption lines), cij ∈ R

is the delay of source j in mixture i, wj ∈ R is the shape parameter of source j,

and ni(λ) represents observation and modeling errors. Throughout the paper,

the number of sources J is supposed to be known. Since the sources are

parameterized, the delayed source separation problem comes to the estimation

of the amplitudes aij , delays cij and shape parameters wj . For the sake of

clarity, we will consider that the shape parameter is scalar, but the extension

to a multidimensional parameter is straightforward. Furthermore, the sources

are supposed to be modeled with the same parameterized function, however, the

proposed method works even when the functions are different. Of course, using

the same parameterized function yields highly correlated sources; we will see

that the proposed method remains accurate in this case.

It is known [29, 35] that even in the noiseless case, model (1) suffers from at

least three indeterminacies, namely, scale, permutation and phase inderminacies,

the latter being related to the fact that a source signal is known up to some

arbitrary delay. The use of parameterized sources helps to overcome the scale

and the phase ambiguities by imposing their energy to be equal to a specified

value and to set their maximum amplitude for λ = 0. Besides, the permutation

ambiguity cannot be alleviated but does not yield any aftereffect.

The delays are supposed to be discretized over a grid with step ∆, thus

cij = `ij∆ with `ij ∈ N. Note that ∆ may be lower than the sampling

step of the mixture signals, which is set to 1 without loss of generality. In

addition, the sources are supposed to be normalized. As said before, nor-

malization allows us to overcome the scale indeterminacy. We denote by
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xi =
[
xi(1) xi(2) . . . xi(N)

]T
the vector gathering the samples of the

i-th mixture. Similarly, the samples of each delayed source are gathered in a

vector s[`ij ;wj ] defined as the unit-norm vector satisfying:

s[`ij ;wj ] ∝
[
s(1− `ij∆;wj) s(2− `ij∆;wj) . . . s(N − `ij∆;wj)

]T
, (2)

where ∝ refers to proportionality. Equation (1) now reads:

xi =

J∑
j=1

aijs[`ij ;wj ] + ni, i = 1, . . . , I, (3)

where ni refers to the noise in mixture i. Supposing the noise to be white and

Gaussian, the maximum likelihood estimator is obtained by minimizing the

criterion:

E(A,L,w) =

I∑
i=1

ε(Ai:,Li:,w), (4)

where ε(Ai:,Li:,w) is the quadratic error related to mixture i:

ε(Ai:,Li:,w) =

∥∥∥∥xi −
J∑

j=1

aijs[`ij ;wj ]

∥∥∥∥2
2

, (5)

and A ∈ RI×J
+ , L ∈ NI×J , w ∈ RJ

+ respectively gather the amplitudes aij ,

delays `ij and shape parameters wj for mixtures i and sources j:

A =


a11 . . . a1J
...

. . .
...

aI1 . . . aIJ

 =


A1:

...

AI:

 (6)

L =


`11 . . . `1J
...

. . .
...

`I1 . . . `IJ

 =


L1:

...

LI:

 (7)

w =
[
w1 . . . wJ

]T
. (8)

Therefore, the source separation problem is formulated as the following

constrained minimization problem:

min
A≥0,L,w

E(A,L,w). (9)
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Figure 2: (a) A noisy mixture of two Gaussian sources (I = 1, J = 2) with a∗11 = 6.0, a∗12 =

2.7, `∗11∆ = 50, `∗12∆ = 65, w∗
1 = 5, w∗

2 = 4, N = 100. (b) The criterionL1: → ε(A∗
1:,L1:,w∗)

admits local minimizers and flat surfaces. The red × indicates the global minimizer.

3. Sparse-based Alternating Least Squares

The optimization problem (9) is challenging because of the non-convexity of

the criterion E, induced by the nonlinearity of model (3) with respect to L and

w. As an example, Fig. 2 displays the variations of criterion E(A,L,w) with

respect to L in the case of I = 1 mixture and J = 2 sources: one can see that it

admits multiple local minimizers as well as flat regions, making its optimization

difficult even for this simple example.

ALS is an iterative descent strategy in which criterion E is minimized with

respect to a block of variables while fixing the others, and vice versa. The

algorithm stops if the criterion decrease at one iteration becomes lower than a

tolerance ρ. ALS is not guaranteed to converge towards the global minimizer

of (9) since it is a block minimization of a non-convex criterion. However,

this method is often used in delayed source separation, where e.g., the sources,

delays and amplitudes are alternately estimated [15, 26, 29]. However, the latter

methods suffer from several limitations, as stated in section 1, making them

unsuitable for the considered problem.

The proposed ALS scheme is given in Algorithm 1. The criterion is alternately
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Algorithm 1: ALS scheme for min
A,L,w

E(A,L,w).

Initialization: Â = L̂ = 0I×J , ŵ∼ U[wmin,wmax]J

1 do

2 (A0,L0,w0)← (Â, L̂, ŵ)

3 for i = 1↗I do

4 (Âi:, L̂i:)← argmin
Ai:,Li:

ε(Ai:,Li:, ŵ) (see Algorithm 2)

5 end

6 ŵ ← argmin
w

E
(
Â, L̂,w

)
7 while E(A0,L0,w0)−E(Â,L̂,ŵ)

E(A0,L0,w0)
≥ ρ

optimized with respect to the source shape parameters w on the one hand and the

delays L and amplitudes A on the other hand. The shape estimation subproblem

is a continuous non-linear least-squares problem:

ŵ ← argmin
w

E(A,L,w), (10)

and is solved using the Levenberg-Marquardt algorithm [21]. In the first iteration,

the shape parameters are initialized from the uniform distribution U[wmin,wmax]J

where wmin and wmax are the extreme values defined by the user. In the following

iterations, w is initialized with the estimates obtained at the previous iteration.

The amplitude and delay estimation is the main challenge:

(Â, L̂)← argmin
A≥0,L

E(A,L,w). (11)

It is detailed hereafter.

3.1. Amplitude and Delay Estimation

It follows from (4) that problem (11) is separable to I independent sub-

problems:

min
Ai:≥0,Li:

ε(Ai:,Li:,w) ∀i. (12)
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Figure 3: Sparse representation model of a mixture xi with J = 3 sources. Each block Sj of

the dictionary gathers the delayed versions of s[`ij ;wj ]. The sparse representation is structured

so that each block vector αij is 1-sparse.

We propose to minimize each ε(Ai:,Li:,w) using a sparse approximation algo-

rithm aiming to sparsely represent mixture i in an overcomplete dictionary. This

choice is justified because spectroscopic signals contain very few peaks.

3.1.1. Dictionary Formulation

The dictionary is a block matrix [S1, . . . ,SJ ], with Sj ∈ RN×M the block

gathering M delayed versions of source j (see Fig. 3):

Sj =
[
s[0;wj ] s[1;wj ] ... s[M − 1;wj ]

]
. (13)

Each mixture xi is approximated as:

xi ≈
J∑

j=1

Sjαij (14)

where αij = [0, . . . , aij , . . . , 0]T ∈ RM
+ is a 1-sparse vector, so that each source

appears at most once in each mixture (see Fig. 3). The value and index of the

non-zero element in αij respectively indicate the amplitude aij and delay `ij .
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Thus, the optimization problem (12) can be rewritten as:

min
∀j,αij≥0

∥∥∥∥xi −
J∑

j=1

Sjαij

∥∥∥∥2
2

s.t. ∀ j, ‖αij‖0 ≤ 1, (15)

where the `0 “norm” ‖ · ‖0 counts the number of non-zero coefficients in a vector.

3.1.2. NN-OMP-like Implementation for Delayed Source Separation

Greedy algorithms are effective and efficient when the sparsity level J is

small and known [40]. In addition, their structure is simple and can be easily

adapted to the recovery of structured sparse representations. The non-negative

orthogonal matching pursuit (NN-OMP) algorithm [4] is an iterative algorithm

composed of three steps:

1. the so-called forward selection step consists in choosing the column of the

dictionary that is the most positively correlated with the residual;

2. the amplitudes corresponding to the chosen columns are updated by solving

a non-negative least–squares estimation problem [19];

3. the residual is updated by removing the contributions of the chosen columns.

NN-OMP considers the constraint in (15) to be
∑J

j=1 ‖αij‖0 ≤ J . However, this

constraint does not enforce the sources to appear at most once in each mixture.

Therefore, the proposed implementation (Algorithm 2) consists in forcing the

sparse vector to be structured in blocks, each αij being 1-sparse:

1. the dictionary column that is the most positively correlated with the

residual is selected, yielding the corresponding source ĵ and its delay ̂̀iĵ
(lines 2–6). The selected source ĵ is then added to the list J of selected

sources (line 7) so that the dictionary columns embedded in the blocks Sj

for sources j ∈ J will not be tested in the next iterations;

2. the amplitudes of the selected sources gathered in J are estimated by

solving the non-negative linear least–squares problem:

Âi: ← argmin
Ai:

ε(Ai:, L̂i:, ŵ) s.t.

 AiJ ≥ 0

AiJ = 0,
(16)

where J̄ denotes the complementary subset of J (line 8);
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Algorithm 2: Implementation of (Âi:, L̂i:)← argmin
Ai:,Li:

ε(Ai:,Li:, ŵ)

Initialization: Âi: = L̂i: = 01×J , J = ∅, ri = xi

1 for k = 1↗ J do

2 for j ∈ {1, . . . , J}\J do

3 ˜̀
ij ← argmax

`

(
rTi s[`; ŵj ]

)
+

4 end

5 ĵ ← argmax
j /∈J

(
rTi s[

˜̀
ij ; ŵj ]

)
+

6 ̂̀
iĵ ← ˜̀

iĵ

7 J ← J ∪ { ĵ }
8 Update amplitudes ÂiJ according to (16)

9 ri ← xi −
∑
j∈J

âijs[̂̀ij ; ŵj ]

10 end

11 if ε(A0
i:,L

0
i:, ŵ) < ε(Âi:, L̂i:, ŵ) then (Âi:, L̂i:)← (A0

i:,L
0
i:) end

3. lastly, the residual vector ri is updated (line 9).

The main difference between NN-OMP and our implementation lies in the

first step. Also, line 11 ensures a decrease of the criterion by invalidating the

estimates if they produce a criterion value greater than the value obtained at

the previous iteration of Algorithm 1. Furthermore, Algorithm 2 offers the

possibility to obtain a variable number of sources per mixture: an additional

stopping criterion may be added such that the loop breaks if the residual norm

‖ri‖2 becomes lower than a threshold, e.g., related to the noise variance.

Finally, we also investigated recent methods to refine delay estimation, which

is constrained to be on a grid. Indeed, the discretization induced by sampling the

sources in the dictionary yields a bias in the estimation, as already been discussed

in [38]. The easiest way to reduce this bias is to decrease the value of ∆, but this

results in a bigger dictionary, and in turn, in an increase of the computational

burden. So, we tested an interpolation extension proposed in [9, 10]. It turned
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out that this extension is more time-consuming than a simple decrease in the

sampling step ∆. Therefore, we rather choose to work with a fine grid.

3.2. Shape Discriminating Limit

Algorithm 1 is able to assign the estimated peaks to the right source because

the sources can be discriminated by their shape parameter (see Fig. 3). We are

interested in finding the resolution limit, that is the least difference between the

shape parameters of two sources beyond which the sources can be discriminated.

For this purpose, we consider I = 40 mixtures each with N = 200 samples, and

J = 2 Gaussians sources of widths w1 and w2 and with constant delays through

the mixtures. We gradually vary the ratio w2/w1 from 0.5 to 1.5. For each ratio,

we measure the switch percentage defined as the percentage of wrongly assigned

peaks over the total number of peaks (a peak is wrongly assigned if it belongs

to source 1 while it is assigned to source 2 and vice versa). The experiment is

repeated for three SNRs (Fig. 4). The SNR is defined as ten times the log-ratio

of the mean energy of the noiseless mixtures with the noise variance σ2
n:

SNR = 10 log10

[
1

σ2
n · I ·N

I∑
i=1

∥∥∥∥ J∑
j=1

a∗ijs[`
∗
ij ;w

∗
j ]

∥∥∥∥2
2

]
, (17)

where the ∗ symbol represents the value of the ground-truth parameters. The

results show that for high SNR, the proposed method can separate the sources

whatever the ratio w2/w1 (except of course when both parameters are equal).

The ability to separate the sources decreases with the SNR. This motivates us

to introduce a regularization term to overcome this limitation.

4. Slow Delay Evolution Enforcement

4.1. Regularized Criterion

This section aims at promoting slow evolution for each source delay L

through the mixtures for two reasons. First, the slow evolution is, in practice,

the consequence of a short acquisition time between measurements (such as

in photoelectron spectroscopy [12]) or neighboring sensors (such as in galaxy
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Figure 4: Switch percentage with respect to the ratio of Gaussian widths, for three SNRs.

kinematics [11] or audio recorded mixtures [6]). Second, it would help to

discriminate highly correlated sources. To this end, a regularization term R(L)

is added to the data-fit term E(A,L,w) defined in (4):

F (A,L,w) = E(A,L,w) + τR(L) (18)

where τ is the regularization parameter to be set by the user. For the sake

of clarity, we assume in the sequel that i is a one-dimensional index. The

regularization term R(L) measures the sum of squared differences between

consecutive delays:

R(L) =

I∑
i=2

J∑
j=1

(
`ij − `(i−1)j

)2
. (19)

Criterion F is optimized using Algorithm 3 which is based on an ALS scheme.

Since R(L) does not depend on w, the shape estimation (line 4) is identical

to (10). Thus, it is computed using the Levenberg-Marquardt algorithm. On the

contrary, the amplitude and delay estimation step (line 3) differs from (11)-(12)

because F does not read as a separable sum with respect to Li:. Indeed, the
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Algorithm 3: ALS scheme for min
A,L,w

F (A,L,w).

Initialization: Â = L̂ = 0I×J , ŵ∼ U[wmin,wmax]J

1 do

2 (A0,L0,w0)← (Â, L̂, ŵ)

3 (Â, L̂)← argmin
A,L

F (A,L, ŵ) (see Algorithm 4)

4 ŵ ← argmin
w

F
(
Â, L̂,w

)
5 while F (A0,L0,w0)−F (Â,L̂,ŵ)

F (A0,L0,w0)
≥ ρ

terms (`ij − `(i−1)j)2 appearing in the regularization term R(L) not only depend

on `ij but also on `(i−1)j . Let us now detail the update rules for A and L.

Algorithm 4: Implementation of (Â, L̂)← argmin
A,L

F (A,L, ŵ)

Initialization: Â = L̂ = Ltemp = 0I×J , J = ∅, ri = xi ∀i
1 for k = 1↗ J do

2 for j ∈ {1, . . . , J}\J do

3 Compute L̃:j defined in (22) using Algorithm 5

4 end

5 ĵ ← argmax
j /∈J

I∑
i=1

(
rTi s[

˜̀
ij ; ŵj ]

)2
+
− τ

I∑
i=2

(˜̀
ij − ˜̀(i−1)j)2

6 J ← J ∪ { ĵ }
7 Ltemp

:̂j
← L̃:̂j

8 Atemp ← argmin
A

F (A,Ltemp, ŵ) s.t. {A:J ≥ 0,A:J = 0}

9 if F (Atemp,Ltemp, ŵ) > F (Â, L̂, ŵ) then Break end

10
(
Â, L̂

)
←
(
Atemp,Ltemp

)
11 for i = 1↗ I do ri ← xi −

∑
j∈J

âijs[̂̀ij ; ŵj ] end

12 end

13 if F (A0,L0, ŵ) < F (Â, L̂, ŵ) then (Â, L̂)← (A0,L0) end

15



4.2. Amplitude and Slow Delay Estimation

Algorithm 4 is proposed to optimize F (A,L,w) with respect to A and L. It

is a greedy algorithm in the spirit of Algorithm 2, and, in this way, reproduces the

three steps of the NN-OMP framework already stated in Section 3.1.2. However,

Algorithm 4 takes all mixtures as inputs while Algorithm 2 considers a single

mixture. The estimation of the source delays in line 3 of Algorithm 4 is deferred

to Algorithm 5.

At each iteration, the source ĵ inducing the largest decrease of criterion F

is selected (lines 2–5) and added to the list of selected sources J (line 6). The

corresponding delays Ltemp

:̂j
are computed. Then, the amplitudes of the selected

sources in J in all the mixtures are estimated using a non-negative least squares

solver (line 8). Finally, the residual vectors of all the mixtures are updated (line

11). Note that adding a new source results in a decrease of the data-fit term

E(A,L,w) but makes the regularization term R(L) increasing. In other words,

the criterion F (A,L,w) = E(A,L,w) + τR(L) can either increase or decrease.

Therefore, the condition in line 9 is set to break the loop in case of an increase

of F , so that Algorithm 4 is indeed a descent algorithm. Similarly, the condition

in line 13 ensures a decrease of the criterion by invalidating the estimates if they

produce a criterion value that is larger than the value obtained at the previous

iteration of Algorithm 3.

4.3. Delay Estimation with an ICM-like Algorithm

Let us now specify the rule for selecting the source ĵ among all candidate

sources j /∈ J . Since ĵ is defined as the source yielding the largest decrease of

criterion F , lines 2–4 in Algorithm 4 aim at estimating, for each source j that

has not already been selected, the value of the corresponding delays L:j (denoted

by L̃:j) as well as the value of F obtained while considering the set of sources

J ∪ {j}. To do so, one needs to consider the minimization of F (A,L,w) with

respect to A:j and L:j , while fixing the values of L:j′ and A:j′ for j′ ∈ J :

L̃:j ← argmin
L:j

min
A:j≥0

I∑
i=1

∥∥∥∥ri − aijs[`ij ; ŵj ]

∥∥∥∥2
2

+ τ

I∑
i=2

(`ij − `(i−1)j)2. (20)

16



The minimization of (20) with respect to A:j while fixing L:j has a closed form

solution:

∀i, aij =
(
rTi s[`ij ; ŵj ]

)
+
. (21)

Plugging back (21) into (20), (20) simplifies to:

L̃:j ← argmax
L:j

I∑
i=1

(
rTi s[`ij ; ŵj ]

)2
+
− τ

I∑
i=2

(`ij − `(i−1)j)2. (22)

which is the cost function appearing at line 5 in Algorithm 4.

Because (22) is a combinatorial problem, we resort to the Iterated Conditional

Modes (ICM) algorithm [2] which is a popular coordinate-wise optimization

method in image processing. While it converges to a local optimizer, it generally

gives good results. The proposed implementation to solve (22) is given in

Algorithm 5. Specifically, at each iteration (lines 9–15), all mixtures i ∈ {1, . . . , I}
are swept using the following way: a starting mixture i0 is randomly chosen

(line 10), then the delays in mixtures i0 + 1 to I are sequentially estimated,

and the same procedure is used for mixtures i0 − 1 to 1. Whenever a mixture

i ∈ {1, . . . , I} is visited, the related delay ˜̀ij is estimated (in lines 12–14) by

maximizing the criterion in (22) with respect to `ij whilst fixing the other delays˜̀
i′j with i′ 6= i. The convergence is reached when the relative distance between

the estimates of two consecutive iterates is smaller than a tolerance threshold ξ

(line 16).

The initialization is performed in the same way (lines 1–7), the major differ-

ence being that, at the first iteration, some delays are not yet estimated and,

in consequence, cannot be considered in (22). So, we simply discard the terms

with unknown values from the equation. Note also that the first mixture to be

considered is the one maximizing the data-fit term (line 1).

4.4. Remarks

If no regularization is considered (i.e., τ = 0), then F (A,L,w) = E(A,L,w).

We then recommend to use Algorithm 1 rather than Algorithm 3 since the former

exploits the separability of the criterion. Conversely, when τ tends to infinity, the

17



Algorithm 5: Implementation of

L̃:j ← argmax
L:j

I∑
i=1

(
rTi s[`ij ; ŵj ]

)2
+
− τ

I∑
i=2

(`ij − `(i−1)j)2

Initialization: L̃:j = 0I×1

1 (i0, ˜̀i0j)← argmax
i,`

(
rTi s[`; ŵj ]

)2
+

2 for i = (i0 + 1)↗ I do

3 ˜̀
ij ← argmax

`

(
rTi s[`; ŵj ]

)2
+
− τ(`− ˜̀(i−1)j)2

4 end

5 for i = (i0 − 1)↘ 1 do

6 ˜̀
ij ← argmax

`

(
rTi s[`; ŵj ]

)2
+
− τ(`− ˜̀(i+1)j)

2

7 end

8 do

9 L̃
old

:j ← L̃:j

10 i0 ∼ U{1,...,I}
11 for i = i0 ↗ I and i = (i0 − 1) ↘ 1 do

12 if i = 1 then ˜̀ij ← argmax
`

(
rTi s[`; ŵj ]

)2
+
− τ(`− ˜̀(i+1)j)

2 end

13 if i = I then ˜̀ij ← argmax
`

(
rTi s[`; ŵj ]

)2
+
− τ(`− ˜̀(i−1)j)2 end

14 if 1 < i < I then ˜̀ij ←
argmax

`

(
rTi s[`; ŵj ]

)2
+
− τ(`− ˜̀(i−1)j)2 − τ(`− ˜̀(i+1)j)

2 end

15 end

16 while
∥∥L̃:j − L̃

old

:j

∥∥2
2
/
∥∥L̃old

:j

∥∥2
2
< ξ

delays related to each source are necessarily constant: `ij = `i′j , ∀i, i′. Therefore,

the sparse vectors αij ∀i share a common support (see Fig. 5(c)). The estimation

of L:j in (22) becomes:

L̃:j = [˜̀j , . . . , ˜̀j ] with ˜̀
j ← argmax

`

I∑
i=1

(
rTi s[`; ŵj ]

)2
+
, (23)

and can be obtained using an exhaustive search by testing the M possibilities for

`. This is very similar to the S-OMP algorithm [41] (which is a greedy algorithm

18
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Figure 5: Examples of sparse model for J = 3 sources and I = 6 mixtures where the white

and the colored squares respectively represent the zero and non-zero amplitudes. Each column

corresponds to a mixture i, and is divided into J blocks representing the sources (each source is

indicated with a unique color). (a) Case of no delay regularization. (b) Case of a slow-moving

regularization. (c) Case of a very strong regularization, resulting in a simultaneous sparse

approximation with constant support for all mixtures.

for sparse recovery of vectors having a common support) with the difference that

the vectors αij are 1-sparse.

5. Numerical Results

5.1. Comparison on Synthetic Mixtures

Algorithms 1 and 3 are compared with state-of-the-art methods that are able

to separate highly correlated sources.

5.1.1. Evaluation of Non-Parameterized Methods

First of all, we evaluate two competing methods dealing with delayed source

separation [27] and convolutive source separation [5]. The latter estimates the
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Figure 6: Synthetic data used for comparison: 40 mixtures with 4 sources and SNR = 15 dB.

impulse responses connecting each source to each mixture, whose location and

intensity of the maximum values yield the delays and amplitudes.

The methods are evaluated on simulated data with I = 40 mixtures of

N = 200 samples, J = 4 sources and SNR = 15 dB. The sources are Gaussian,

i.e., s(λ;wj) = exp(−λ2/2w2
j ). The amplitudes and delays of each Gaussian

waveform are continuously generated from polynomials of degree 2, 3 or 4.

Besides, the shape parameters, i.e., the standard deviations of the Gaussian

sources are set to w∗ =
[
4 4 1.5 6

]T
. The data are displayed in Fig. 6 and

show noticeable behavior: two sources (around λ = 50) are very close and highly

correlated (Gaussians with same width, equal to 4); there are several overlaps of

the sources; and the number of sources per mixture is not constant.

The estimated sources with the non-parameterized methods [5, 27] are shown

in Fig. 7, and the mixture reconstruction and estimated amplitudes and delays are

displayed in Fig. 8. The mixture reconstruction obtained with the method of [27]

is half satisfactory. On the one hand, the sources s1 and s2 are Gaussian-shaped

and their amplitudes and delays roughly correspond to the ground truth. On the
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Figure 7: Ground truth and estimated sources with the methods of [27] and [5].

other hand, the sources s3 and s4 are bimodal (so they do not match with the

ground truth) and actually fit the two ground-truth sources with similar shapes

around λ = 50. Regarding the method of [5], the estimated sources present a

dominant peak with small oscillations, so they are not close to the ground truth.

Besides, the mixture reconstruction is very noisy and the parameter estimates

do not completely match with the ground-truth. In conclusion, this example

shows that the methods of [5, 27] are not able to deal with highly correlated

sources, partly because they do not consider the highly informative knowledge

of parametric sources.

5.1.2. Comparison with a Parameterized Method

We now compare the non-regularized and regularized methods (which respec-

tively refer to Algorithms 1 and 3) with a Bayesian method [24] that explicitely

exploits the knowledge of parametrized source shapes for decomposing a sequence

of spectra. The methods are tested with the data displayed in Fig. 6. The three

methods model the sources by Gaussians so the shape parameter is the Gaussian

width. This is a positive scalar, therefore a trust-region reflective algorithm is

used instead of the Levenberg-Marquardt algorithm because it is able to consider

the positivity constraint. The stopping constant of the proposed methods is

ρ = 10−4; the delay sampling step is set to ∆ = 0.2; the regularization parameter

is empirically tuned to τ = 1.5 · 10−2. The ICM stopping constant is set to
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Figure 8: Results on the synthetic data of Fig. 6. The columns respectively the reconstructed

mixtures, the estimated delays and the estimated amplitudes. Each source is represented with

unique color and marker. The ground truth delays and amplitudes are plotted in gray lines.

ξ = 10−4.

The results are displayed in Fig. 9. The reconstruction of the mixtures is

equally good for the proposed methods and the method of [24]. This is confirmed

by Tab. 1 which compares the methods in terms of (i) computation time; (ii)

Mean Squared Error (MSE) defined as
∑I

i ‖ri‖22/(N · I); (iii) amplitude, delay

and shape error, defined as:

‖C∗ − Ĉ‖2F
‖C∗‖2F

,
‖A∗ − Â‖2F
‖A∗‖2F

and
‖w∗ − ŵ‖22
‖w∗‖22

(24)

where ‖ · ‖F denotes the Frobenius norm and C = ∆L is the delay matrix for

the proposed methods.

The estimated shape parameters are very close to the ground-truth, re-

spectively ŵ =
[
4.0 3.9 1.4 5.6

]T
and ŵ =

[
3.9 4.0 1.4 5.9

]T
for the

non-regularized and regularized methods. With the method of [24], the shape

parameters can vary within a source, and a source does not necessarily ap-

pear in all the mixtures. But the variations remain small for the considered

data so that we can consider the means of the estimated shape parameters:

ŵ =
[
3.9 3.9 1.5 6.0

]T
which is also close to the ground-truth.
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Figure 9: Results on the synthetic data of Fig. 6. The first column displays the reconstructed

mixtures as well as the estimated sources. The second and third columns display the estimated

delays and amplitudes. Each source is represented with unique color and marker. The ground

truth delays and amplitudes are plotted in gray lines.

Considering the non-regularized method, the delay and amplitude estimates

are not satisfactory despite the good reconstruction and source estimation. This

can be explained by the fact that when some sources have the same shape

parameter, the identification becomes ambiguous (see Section 3.2). On the

contrary, the regularized method yields improved estimates as well as the method

of [24]. These results are numerically validated in Tab. 1.

5.1.3. Conclusion

These simulations show that a parametrized method is of interest when

dealing with highly correlated sources. The proposed regularization ensures to
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non-regularized regularized [24]

Time (s) 1.4 0.5 44.2

MSE 0.11 0.13 0.09

Shape error 4.9 · 10−3 7.0 · 10−4 1.4 · 10−3

Delay error 8.4 · 10−2 3.5 · 10−5 1.2 · 10−5

Amplitude error 1.7 · 10−2 6.1 · 10−3 2.5 · 10−3

Table 1: Numerical performance of the compared methods on the synthetic mixtures plotted

in Figure 6. The delay and amplitude error are defined in (24).

separate correctly the sources with very similar shape parameters. The proposed

methods give accurate results within a very low computation time. On the

contrary, the method of [24], while very effective, is 15 to 30 times slower than

the proposed methods. Note however, that the latter model is more versatile

since the shape parameter are allowed to vary within a source and additional

priors on the shapes and amplitudes are considered.

5.2. Influence of the SNR

We now investigate the influence of the SNR on the performance of the

proposed methods. A first example of synthetic mixtures with I = 15 and J = 2

is displayed in Fig. 10 to show that the proposed methods are robust to the

SNR: the conclusion of section 5.1 remains, that is, both proposed methods yield

good reconstruction and source quality whatever the SNR. Also, Fig. 10 shows

the benefit of using a regularization on the delays. Recall that the permutation

indetermination, which can be clearly noticed in this example, has no influence

on the parameter estimation.

Furthermore, we perform statistical simulations to compare both proposed

methods with the method of [24]. The methods of [5] and [27] are not tested

since they do not yield accurate outputs. The simulations are set for SNR values

varying between 0 and 30 dB. For each SNR, 100 datasets with Gaussian sources

are generated, each with I = 30 mixtures, J = 3 sources and N = 200 samples.

The shape parameters are chosen randomly between 0.5 and 5; the delays and
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Figure 10: Synthetic data with 2 sources at two different SNR, and the related reconstruction

and estimated sources with both proposed methods.

amplitudes are generated by polynomial functions with random coefficients and

degrees varying between 2 and 4; the delay sampling step is equal to ∆ = 0.2;

the stopping constant is set to ρ = 10−4 for both proposed methods; the ICM

stopping constant is set to ξ = 10−4 and the regularization parameter is set to

τ = 4 · 10−3. The results are shown in Fig. 11 where, for each SNR, the average

of the results obtained for the 100 generated datasets is plotted.

As expected, the MSE decreases as the SNR increases for the three methods

(Fig. 11a), and it should be noticed that the variations are very similar. The

delay and amplitude errors of the non-regularized method improve when the SNR

increases but it is shown that the non-regularized method has lower performance

than its competitors. On the contrary, the regularized method gives improved

estimation of the amplitudes and delays. In addition, introducing a regularization

on the delays yields estimates that are robust to the noise variation; this is not the

case for the amplitudes for which no assumption of slow evolution is considered.

The method of [24] behaves similar to the regularized method in terms of delay

error, whilst its amplitude error is generally worse than the proposed methods
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Figure 11: Comparison of the non-regularized (green �) and the regularized (red ◦) proposed

methods with the method of [24] (blue +) with respect to the SNR.

(except for low SNR). Again, it is shown that the method of [24] is much slower

than the proposed methods (approximately 20 times slower). Therefore, the

regularized method is competitive with the method in [24] with much lower

computation time.

5.3. Results on Real Photoelectron Data

Time-resolved photoelectron spectroscopy [37] is an experimental tool which

allows to study the energy relaxation occurring after absorption of a photon by
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an isolated molecule, atom or a blend of both. The energy relaxation is probed by

ionization of the excited system with another delayed photon, thereby ejecting a

so-called photoelectron. The distribution of the photoelectrons according to their

energy is measured at different times to get a temporal sequence of photoelectron

spectra and is given by the estimated source characteristics (amplitudes, delays,

shapes). The delays C indicate the energy from which photoemission is occurring

and the area under each source, which depends on both the amplitudes A and

shapes w, corresponds to the relative number of emitted photoelectrons at

the corresponding energy. The experiment presented in this paper studies the

relaxation of an atom of barium [23, 24].
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Figure 12: Photoelectron spectra (I = 44 mixtures).

The regularized method was applied to the sequence of photoelectron spectra

shown in Fig. 12: the goal is to determine how the energy, intensity, and width

of the peaks (i.e., delays, amplitudes and shapes of the sources) evolve through

the sequence, indicating the temporal changes undergone by the studied system.

The sequence gathers I = 44 spectra (covering a duration of 3.47 ps), each of

N = 181 samples (from 0.02 eV to 2.52 eV). The sources are modeled by Gaussian
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Regularized method Method of [24]
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(a) Reconstruction + delays
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(b) Reconstruction + delays
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(c) estimated continuum
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(d) estimated continuum
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Figure 13: The reconstruction and the estimated continuum, delays and amplitudes using

the regularized method (first column) and the method of [24] (second column). The es-

timated shape parameters of regularized method are ŵ = [0.057, 0.049, 0.025, 0.09, 0.06]T

and for the method of [24] after averaging the estimates for each source are ŵ =

[0.066, 0.064, 0.039, 0.037, 0.071, 0.05]T .
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functions, which is the usual model for the peaks in photoelectron spectroscopy1.

The grid sampling step is set to ∆ = 5 · 10−4 and the regularization term is set

to τ = 2 · 10−5. The stopping constant ρ and the ICM stopping constant are

respectively set to ρ = 10−4 and ξ = 10−4. Besides, the photoelectron spectra

include a background that must be estimated and removed from the spectra.

The background in each mixture i is modeled as an exponential of the form

αi exp(−λ/β). An additional step is added to the ALS scheme in Algorithm 3

to estimate the new unknowns (the I weights αi and a single β value) by using

the Levenberg-Marquardt algorithm.

The results obtained with the regularized method and the method of [24]

are presented in Fig. 13: both approaches appear roughly similar concerning

delay and shape error. However, differences can be observed: (i) the estimated

continuum provided is much smoother for the regularized method, which was a

source of noise in the method [24]; (ii) the regularized method rather improves

the shape of the main band by addition of nearby new sources than focusing

on the low intensity energy ones as seen for method [24]. Such behavior looks

reasonable according to the shape of the decay simulated [22]. (iii) The method

of [24] is able to deal with a varying number of peaks through the mixtures,

whereas in the proposed method the J sources are present in all the mixtures.

Nevertheless, small amplitudes can be cancelled by applying a threshold. (iv)

Last but not least, the proposed method is about 560 times faster (7.5 seconds for

the regularized method versus 70 minutes for the method of [24]). In conclusion,

the proposed method appears to be both effective and efficient.

Software

The Matlab codes associated with this article will be freely available in case

of publication.

1Note that choosing a model not “consistent” with the shape of real peaks may yield an

increase of the number of estimated sources.
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6. Conclusion

This paper studies the delayed source separation when source signals are

supposed to be parameterized, which is a valid assumption in many spectroscopy

applications. An ALS scheme is proposed to alternatively estimate the shape

parameters and the amplitudes and delays. For the challenging delay parameter

estimation step, we propose a greedy strategy using parametric dictionaries

whereas the sparse representation is structured to respect the mixing model. We

present two algorithms that follow the same ALS scheme: in the first, only the

data-fit criterion is considered whilst in the second an additional regularization

term is added to promote slow delay evolution within each source. The proposed

methods outperform the state-of-the-art delayed source separation methods

when sources are highly correlated. Furthermore, it is as effective as the best

competitors with much lower computation time. Results on real data confirm

the effectiveness and the efficiency of the proposed methods. Future works will

be dedicated to studying the benefit of a warm-start initialization of A and

L in Algorithms 2 and 4, so as to benefit from the estimated parameters of

previous ALS iterations. Although this idea seems natural, the update of delay

parameters would then require to design discrete search algorithms having a

more complex structure than greedy search algorithms. Another perspective of

this work would be to estimate the number of sources: strategies such as Akaike

information criterion or Bayesian information criterion [36] could be a first step

to explore. Finally, a third perspective would be to deal with sources whose

shape parameters evolve through the mixtures.
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