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1 Introduction and notations

We begin with some notations, that will be used all along the paper. Let Xy, ..., X,, be n independent
and identically distributed (i.i.d.) random variables with values in R? (d > 1), with common distribution

. Let pu, be the empirical distribution of the X;’s, that is

1 n

Let X denote a random variable with distribution . For any z € R?, let |z| = max{|z1|,. .., |z4|}.
Define then the tail of the distribution u by

H(t) =P(|X]| > t) = u({z € R? such that |z| > t}).
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As usual, for any ¢ > 1, the weak moment of order ¢ of the random variable X is defined by
| X | := suptH(t) ,
>0
and the strong moment of order g > 1 is defined by

IX]¢ = E(X]) = g / 19 (1)t
0

For p > 1, the Wasserstein distance between two probability measures v1,v2 on (Rd,B(Rd)) is
defined by

WP(s1,00) = in / & — y P2 w(de, dy).
R4 xRd

well(v1,v2)

where | - |5 is the euclidean norm on R? and TI(vy, v5) is the set of probability measures on the product
space (R? x R B(RY) @ B(RY)) with margins v; and vs.

In this paper, we prove deviation inequalities, moment inequalities and almost sure results for
the quantity Wp(un, i), when X has a weak or strong moment of order rp for r > 1. As in [16],
the upper bounds will be different according as p > dmin{(r — 1)/r,1/2} (small dimension case) or
p < dmin{(r — 1)/r,1/2} (large dimension case). Most of the proofs are based on Lemma 6 in [16]
(see the inequality (6.4) in Section 6), which may be seen as an extension of Ebralidze’s inequality [15]
to the case d > 1. Hence we shall use the same approach as in [10], where we combined Ebralidze’s
inequality with truncation arguments to get moment bounds for W, (ftp, 1) when d = 1.

There are many ways to see that the upper bounds obtained in the present paper are optimal in
some sense, by considering the special cases d = 1, p = 1, p = 2, or by following the general discussion
in [16], and we shall make some comments about this question all along the paper. However, the
optimality for large d is only a kind of minimax optimality: one can see that the rates are exact for
compactly supported measures which are not singular with respect to the Lebesgue measure on R? (by
using, for instance, Theorem 2 in [12]).

In fact, since the rates depend on the dimension d, it is easy to see that they cannot be optimal for
all measures: for instance the rates will be faster as announced if the measure p is supported on a linear
subspace of R? with dimension strictly less than d. This is of course not the end of the story, and the
problem can be formulated in the general context of metric spaces (X, d). For instance, for compactly
supported measures, Boissard and Le Gouic [9] proved that the rates of convergence depend on the
behavior of the metric entropy of the support of 1 (with an extension to non-compact support in their
Corollary 1.3). In the same context, Bach and Weed [2] obtain sharper results by generalizing some
ideas going back to Dudley ([14], case p = 1). They introduce the notion of Wasserstein dimension
dy(p) of the measure p, and prove that nP/SE(W} (tin, 1)) converges to 0 for any s > dy(p) (with sharp
lower bounds in most cases).

Note that our context and that of Bach and Weed are clearly distinct: we consider measures on
R? having only a finite moment of order rp for r > 1, while they consider measures on compact metric

spaces. However, the Wasserstein dimension is well defined for any probability measure (thanks to



Prohorov’s theorem), and some arguments in [2] are common with [12] and [16]. A reasonable question
is then: in the case of a singular measures on R?, are the results of the present paper still valid if we
replace the dimension d by any d’ € (d) (), d]?

The paper is organized as follows: in Section 2 we state some deviations inequalities for W),(un, 1)
under weak moment assumptions. In Section 3 we bound up the probability of large and moderate
deviations. In Section 4 we present some almost sure results, and in Section 5 we give some upper
bounds for the moments of order r of W) (py, 1) (von Bahr-Esseen and Rosenthal type bounds) under

strong moment assumptions. The proofs are given in Section 6.
All along the paper, we shall use the notation f(n,u,z) < g(n, p, ), which means that there exists
a positive constant C, not depending on n, i, z such that f(n, u,z) < Cg(n, u,x) for all positive integer

n and all positive real .

2 Deviation inequalities under weak moments conditions

In this section, we give some upper bound for the quantity P(W} (15, ) > x) when the random variables

X; have a weak moment of order rp for some r > 1. We first consider the case where r € (1,2).

Theorem 2.1. If || X||;pw < 00 for some r € (1,2), then

X|7pw
7” s ifp>d(r—1)/r

3ﬂ"nrfl

X2 o (logn)" /=) \\ "
BV () > ) < { 1l )(LH%+<pqu ifp=d(r~ 1)/r

X170 ifpe1,d(r—1)/r)

mrnrp/d

for any x > 0, where log, () = max{0,logz}.

Remark 2.1. As will be clear from the proof, the upper bounds of Theorem 2.1 still hold if the quantity
P(W} (pin, pt) > ) is replaced by its maximal version

P ( max kW] (pug, p1) > nm) .

1<k<n

Since [|WE (g, p)ll1 < (r/(r — 1)) WP (1tny i) ||, according to the discussion after Theorem 1 in [16],
if p# d(r —1)/r, one can always find some measure p for which the rates of Theorem 2.1 are reached
(see example (e) in [16] for p > d(r — 1)/r and example (c) in [16] for p < d(r — 1)/7).

We now consider the case where r > 2. We follow the approach of Fournier and Guillin [16], but we
use a different upper bound for the quantity controlled in their Lemma 13 (see the proof of Theorem

2.2 for more details).



Theorem 2.2. If || X||,pw < 00 for some r € (2,00), then for any q¢ > r,

P x X (17,00 1 = !
P(WE (pn, ) > x) < a | n, X0 + + ; P/ H(t)dt )
Tp,W

r'nr—1 anq/Q

for any x > 0, where

exp(—cna?)lz<a if p>d/2
a(n,x) =C < exp(—cn(z/log(2 + $_1))2)12SA if p=d/2
exp(—enz®/?) 1< ifpe(l,d/2)

for some positive constants C,c depending only on p,d, and a positive constant A depending only on

p,d,r.

Remark 2.2. Let us compare our inequality with that of Theorem 2 of Fournier and Guillin [16] (under
the moment condition (3) in [16]). We first note that the inequality in [16] is stated under a strong
moment of order rp for r > 2, but their proof works also under a weak moment of order rp. Hence,
under the assumptions of our Theorem 2.2, Fournier and Guillin obtained the bound (we assume here
that || X||;pw = 1 for the sake of simplicity):

n

p
P(Wp (/'LTL? /"L) > .'L') <a (n7 x) + (nx>(rp_6)/p

, (2.1)

for any € > 0 (the constant implicitly involved in the inequality depending on ¢). In particular, one

cannot infer from (2.1) that

X|[2
lim sup "~ (W] (ttn, 1) > ) < X

=
n—00 X

which follows from our Theorem 2.2.

3 Large and moderate deviations

We consider here the probability of moderate deviations, that is

P <W5(Mna/‘) > nlx_a) )

for @ < 1 in a certain range and = > 0. As usual, the case o = 1 is the probability of large deviations.

As for partial sums, we shall establish two type of results, under weak moment conditions or under
strong moment conditions. If the random variables have a weak moment of order rp for some r > 1,
the results of Subsection 3.1 are immediate corollaries of the theorems of the preceding section. On the
contrary, the Baum-Katz type results of Subsection 3.2 cannot be derived from the results of Section 2

and will be proved in Subsection 6.4.



3.1 Weak moments
As a consequence of Theorem 2.1, we obtain the following corollary.

Corollary 3.1. If || X||;pw < 00 for some r € (1,2), then,
o Ifp>d(r—1)/randl/r<a<l,

X170

lim sup n® P (W;’(,un, w) >

n—oo
o Ifp=d(r—1)/randl/r<a <1,
or-? v\ 1K

x/l"
o Ifpe(l,dir—1)/r) and (d—p)/d<a <1,
X7

lim sup n(Pr—(I=e)rd)/dp (W;(un,u) > L) L ———.

P00 nl—a 2T

Remark 3.1. Let us comment on the case p = 1,d = 1. In that case, del Barrio et al. [4] proved
that, for 3 € (1,2), n®=V/BW, (p,, p) is stochastically bounded if and only if || X||s., < co (see their
Theorem 2.2). This is consistent with the first inequality of Corollary 3.1 applied with » = 5 and
a=1/r.

Remark 3.2. Let us now comment on the case p = 2,d = 1. In that case del Barrio et al. [5] proved
that, if the distribution function F of X is twice differentiable and if F’ o F~! is a regularly varying
function in the neighborhood of 0 and 1, then there exists a sequence of positive numbers v,, tending
to 0o as n — oo, such that v, W3 (pun, 1) converges in distribution to a non degenerate distribution.
For instance, it follows from their Theorem 4.7 that, if X is a positive random variable, F' is twice
differentiable and F(t) = (1 —t~P) for any t > to and some § > 2, then n®=2/BW2 (11, 1) converges
in distribution to a non degenerate distribution. In that case, there is a weak moment of order 3, and,
for 5 € (2,4), the first inequality of Corollary 3.1 applied with » = §/2 and o = 1/r gives

1X115...
2B8/2

limsup P (n(5_2)/'8W22(,un,u) > $> <

n—oo

Hence, in the case where 8 € (2,4), our result is consistent with that given in [5], and holds without

assuming any regularity on F'.
As a consequence of Theorem 2.2, we obtain the following corollary.
Corollary 3.2. If || X||;pw < 00 for some r € (2,00), then, for any
1 d—p
€ o 7 | 1 )
o <max (2 p ) ]

T
nl—a

X N7

x’f’

lim sup n® P (Wg(un, =

n—00

)«



3.2 Baum-Katz type results

In this subsection, we shall prove some deviation results in the spirit of Baum and Katz [7]. Recall
that, for partial sums S,, = Y] +--- 4+ Y, of i.i.d real-valued random variables such that ||Yi||, < oo for
some r > 1 and E(Y;) = 0, one has: for any o > 1/2 such that 1/r < a <1, and any = > 0,

oo
Znar*QIP’ ( max |Sg| > nax> < 00.
1<k<n

n=1

We first consider the case where the variables have a strong moment of order rp for r € (1,2).

Theorem 3.3. If || X||,, < 0o for some r € (1,2), then, for any x > 0,

o Ifp>d(r—1)/randl/r<a<l,

oo
ar—2 D «
Zn P (fgl%xn kWP (pge, 1) > n x> < 0.

n=1

e Ifpe(l,d(r—1)/r) and a € ((d—p)/d, 1],

(pr—(1—a)rd—d)/d D o
;n P <1I§ni?§Xn kW2 (g, p) > n x) < 00.

o Ifpe(ldir—1)/r),

[ee)
1
_ 14 (d—p)/d 1/r
ng_l - P (fg}f&é{nkwp (g, pt) >n (logn) 3:) < 00.

Remark 3.3. Our proof does not allow to deal with the case where p = d(r — 1)/r. As an interesting
consequence of Theorem 3.3, we shall obtain almost sure convergence rates for the sequence W5 (i, 1)

(see Corollary 4.1 of the next section).
We now consider the case where the variables have a strong moment of order rp for r > 2.

Theorem 3.4. If || X||,p < 0o for some r € (2,00), then, for any x > 0 and any

o€ <max (;,T) ,1] ,

o0
-2
;nm P <II£I?§Xn kWP (pk, 1) > n‘%) < 00.



4 Almost sure results

Using well known arguments, we derive from Theorem 3.3 the following almost sure rates of convergence
for the sequence W) (pn, 1) (taking o = 1/r in the case where p > d(r — 1)/r, and applying the third
item in the case where p < d(r —1)/r).

Corollary 4.1. If | X||,p < 0o for some r € (1,2), then

o Ifp>d(r—1)/r,
lim n(’"_l)/ng(un,u) =0 a.s.

n—0o0

e Ifpe(l,dir—1)/r), y
nP

WP —
ni)n;o (log n)l/r Wp (l"LTZJ /"L) =0 as.

Remark 4.1. Let us comment on these almost sure results in the case where p=1and d < r/(r —1).

Recall the dual expression of Wi (i, p):

Wi (pin, p) = sup 1Z(f(Xk)_N(f))| (4.1)
feM nk:l

where A; is the the set of functions f such that |f(x) — f(y)| < |x —y|2. Since the function g : x — |z|s
belongs to Ay, we get

> (I Xkl2 = E(1Xkl2))]| -

k=1

1 n
Wi (pn, ) > - |

Now, by the classical Marcinkiewicz-Zygmund theorem (see [20]) for i.i.d. random variables, we know
that

n

> (1Xkl2 — E(|Xkl2))

k=1

] n(rfl)/r
lim

n—o0 n

=0 a.s.

if and only if || X||, < co. It follows that, for p = 1, the rates given in Corollary 4.1 are optimal in the
case where d < r/(r — 1).

We now give some almost sure rates of convergence in the case where fooo tP=1\/H(t)dt < co. Note
that this condition is a bit more restrictive than || X||2, < oo (but is satisfied, for instance, if || X||,, < 0o

for some r > 2).

Theorem 4.2. Assume that [~ t*~1\/H(t)dt < oc.

e Ifp>d/2, there exists an universal positive constant C depending only on (p,d) such that

n [o¢]
li — WP(pun, ) < L /H(t)dt a.s.
fm sup loglogan(u L) _C/O (t)dt a.s

e Ifp€[l,d/2), there exists an universal positive constant C' depending only on (p,d) such that

n p/d 00
- — P( 11 p1) < P~/ H(t)dt a.s.
lim sup (loglogn) WP (hn, 1) < C’/O (t) a.s

n—oo
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Remark 4.2. In the case p > d/2, the rate /n/loglogn has been obtained recently by Dolera and

Reggazini ([11], Theorem 2.3) under the more restrictive condition ||.X||,, < oo for some r > 2.

Remark 4.3. In the case p = 1,d = 1, it follows from the central limit theorem for Wy (uy, 1) (see
[4]) and from Theorem 10.12 in [18] that the sequence (y/n/loglogn Wi (i, it))n>0 is almost surely
relatively compact if [ \/H (t)dt < co, which is consistent with the first item of Theorem 4.2.

Remark 4.4. For p = 1, concerning the rate of Corollary 4.1 when d > r/(r—1) or the rate of Theorem
4.2 when d > 2, the situation is not as clear as in the small dimension case. According to Talagrand
(23], if d > 2 and p is the uniform measure on [0, 1]%, Wy (pu, 1) is, almost surely, exactly of order n~/,
More generally, let us recall a result by Dobri¢ and Yukich [13]: if d > 2 and p is compactly supported,

then, almost surely,

¢ (d) /(fp( )@/ < Timn inf YW (i, 1) < limsup n/ AW (pn, 1) < () /(f,x DD/ (4.9)

n—=oo n—o00

where ¢(d), ¢ (d) depend only on d, and f, is the density of the absolutely continuous part of p (hence
the limit is zero if y is singular with respect to the Lebesgue measure on R?). Actually, it was announced
n [13] that ¢/(d) = ¢(d), but a gap in the proof has been pointed out in [6].

Remark 4.5. If p < d/2, Barthe and Bordenave [6] (see their Theorem 2) proved that, almost surely,

(@) [ (£ TP/ < tim ik o W ) < imasup 0 W) < 5o(@) [ ()P (0.3

n—=o0 n—00

provided || X ||, < oo for some r > 4d/(d—2p), which is a generalization of (4.2). For p < d/2, Theorem
4.2 is difficult to compare with (4.3), because the results do not hold under the same assumptions on
d and H. A reasonable questions is: does (4.3) hold if [P~ /H(t)dt < co and p < d/2?

5 Moment inequalities

T

» When the variables have a

In this section, we give some upper bounds for the moments ||[W} (pin, 1|
strong moment of order rp.
As will be clear from the proofs, the maximal versions of these inequalities hold, namely: the

quantity ||[WJ (g, p)]|, can be replaced by

r

nT

max kvv—(uka )

1<k<n

r

in all the statements of this section.



5.1 Moment of order 1 and 2

Theorem 5.1. Let g € (1,2]. If || X||, < oo, then, for any M >0,

oo

| et @ e [T e @) e de ifp > dia -1/
0 nle=D/a [, =

W2 s )], < / T H () Ly dt + 2T

o8 / =L H(E) 4P,y dt if p=d(q—1)/q
0 0

oo 1 o0
| e @ e [ @) P gt e (1 - D)
0 0
where the constant implicitly involved does not depend on M.

Remark 5.1. In particular, if H(¢t) < CtP(log(1 +t))~2 for some C' > 0,a > 1, then

1
9l = 0 (Goemr ) -

Remark 5.2. If || X ||, < oo for r € (1,2) and p # d(r — 1) /r, we easily infer from Theorem 5.1 that

p
7HXHZP’U} itp>dr—-1)/r
Wp< )H < n(r_ )/T
130l <9 xpe
v ifpe[l,dir—1)/r)

which can also be deduced from Theorem 2.1. If p = d(r — 1) /7, we get
X £y (log n)?

W (s )|, <

np/d
Now, if || X||2p,w < 00, we get from Theorem 5.1 that
(1 X|5, . logn
|| ”2p,w g lfp > d/2
Vn
1 X1[5,,,(logn)?
HWIg(Mn,M)H1<< pf;ﬁ if p=d/2
X 15,0 :

Finally, if [} tr=1\/H(t) dt < oo, the rates in the cases p > d/2 and p = d/2 can be slightly improved
(taking ¢ = 2 and M = oo in Theorem 5.1); this can be directly deduced from Theorem 5.2 below.
Note that all those bounds are consistent with that given in Theorem 1 of [16], and slightly more
precise in terms of the moment conditions. Hence, the discussion on the optimality of the rates in
[16] is also valid for our Theorem 5.1 (see Remark 5.3 below). For p < d/2 and || X||; < oo for
some ¢ > dp/(d — p), it follows from Theorem 2(ii) in [12] that liminf, e n?/® |[WE (tn, )|, > 0 if
1 has a non degenerate absolutely continuous part with respect to the Lebesgue measure, and that
lim sup,, _, o0 7/ ||WE (4in, 1) ||, = 0 if o is singular. Still for p < d/2, we refer to the paper [2], which
shows that, for compactly supported singular measures, the rates of convergence of |W} (pn, p)|1 can

be much faster than n—?/4.



Theorem 5.2. If [~ t*~1\/H(t)dt < oo, then

n

[e') 2
[WE (11, )| |2 < (logn)* < =L /H () dt) ifp=d/2
0

@(/ﬂmtp—l\/mclty ifp€(l,d/2)

Remark 5.3. According to the discussion after Theorem 1 in [16], if p # d/2, one can always find some

1( ootp—lx/H(t)th if p>d/2
0

measure p for which the rate of Theorem 5.2 is reached (see example (a) and (b) in [16] for p > d/2
and example (c) in [16] for p < d/2).

Note also that, for E(Wi(un, 1)) instead of || W7 (pn, 1) ]2, the bounds of Theorem 5.2 can be obtained
from the general bound given in Theorem 3.8 of [19], under the condition [ "~ VH(t)dt < oo (taking
a ball of radius r = H'(a) to bound up the term 7% in [19], and noting that [;* =L\ /H(t) dt < oo
is equivalent to fOI(H_l(a))pa_1/2 da < 00).

In the case d = 1,p = 1, del Barrio et al. [4] proved that /nWj (i, 1) is stochastically bounded if
and only if [;® VH(t)dt < oo (see their Theorem 2.1(b)), which is consistent with the first inequality
of Theorem 5.2. For d = 1,p > 1, we refer to the paper by Bobkov and Ledoux [8] for some conditions
on u ensuring faster rates of convergence. Finally, when p = 1,d = 2 and p is the uniform measure over
[0,1]2, Ajtai et al. [1] proved that E(W1 (i, ) is exactly of order (logn/n)'/2, while we get a rate of
order logn/y/n, which is therefore suboptimal in that particular case. For other discussions about the

rates, see for instance [17], Sections 2.3 and 2.4.

5.2 von Bahr-Esseen type inequalities

In this subsection, we shall prove some moment inequalities in the spirit of von Bahr and Esseen [3].
Recall that, for partial sums S,, = Y1 +- - -+Y,, of i.i.d real-valued random variables such that ||Y1 ||, < co

for some r € [1,2] and E(Y7) = 0, the inequality of von Bahr and Esseen reads as follows:

Sn
n

T2l
nr—l

(5.1)

T
In the case case where r € (1,2), we prove the following result.

Theorem 5.3. If || X||,, < 0o for some r € (1,2), then

X
. Hnﬂlp ifp>d(r—1)/r
HWzIf(/‘”’”)Hr < HX”;P
Fooifpelldr—1)/r)
nrp/d
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Remark 5.4. For d = 1, the first inequality of Theorem 5.3 has been proved in [10]. Our proof does

not allow to deal with the case where p = d(r — 1)/r. However, in that case, it is easy to see that

gl < SEE- ([t

r nrfl

(same proof as the second inequality of Theorem 5.2). For p = 1 and d < r/(r — 1), using the dual
expression of Wi (pun,, p) (see (4.1)), we get the upper bound

n

LS () — )

k=1

XTI

nr—1 ’

< (5.2)

sup
feA

T

where A; is the the set of functions f such that |f(z) — f(y)| < | — y|2. Note that (5.2) may be seen

as a uniform version of the inequality (5.1) over the class A;.

5.3 Rosenthal type inequalities

In this subsection, we shall prove some moment inequalities in the spirit of Rosenthal [22]. Recall that,
for partial sums S,, = Y] + -+ + Y}, of i.i.d real-valued random variables such that ||Y7]|, < oo for some
r > 2 and E(Y7) = 0, the inequality of Rosenthal reads as follows: there exists two positive constants

c1(r) and c2(r) such that

Su " Y15
‘ o ) < c1(r) 2 + co(r)

We refer to Pinelis [21] for the expression of the possible constants ¢ (r) and ca(r).

[[Yl7

nr—l :

In the case where r > 2, we prove the following result.

Theorem 5.4. If || X||,p, < oo for some r > 2, then

1 > " Xk .
—7 < i P~ /H(t) dt) + w if p>d(r—1)/r
1 > " v
— o HE dE) e X1 ifd/2<p<dr—1)/r
W2, )l < {77 o et
(log n) td/z‘l\/ﬂdt (logn) X1 ifp=d/2
) (t)dt ) +-—72—X[;p fp=d/
n / 0 n /
XI5 .
\ rord ifpe(l,d/2)
&(2p—d)

where, for the second inequality, ~v can be taken as v = Ar—2+2) for any € > 0 (and the constants

implicitely involved in the inequality depend on ).

Remark 5.5. For d = 1, the first inequality of Theorem 5.4 has been proved in [10]. As a consequence
of the two first inequalities of Theorem 5.4, we obtain that, if p > d/2,

i sup W o ) < [ H@ .
0

n—oo

11



As a consequence of the third inequality of Theorem 5.4, we obtain that, if p = d/2,

inasup W2 o)l < [ 0 HD
0

n—oo

Note also that, according to the discussion after Theorem 1 in [16], if p # d/2, one can always find
some measure £ for which the rates of Theorem 5.4 are reached (see example (a) in [16] for p > d/2
and example (c) in [16] for p < d/2).

6 Proofs

The starting point of the proofs is Lemmas 5 and 6 in [16], which we recall below.

For ¢ > 0, let P, be the natural partition of (—1,1]¢ into 2% translations of (—27¢,27¢]%. Let also
By = (—1,1]% and for any integer m > 1, B,, = (—2™,27m]¢\ (-=2m~1 2m=1]4_ For a set F C R% and
a > 0, we use the standard notation aF' = {ax : * € F}. For a probability measure v on R? and
m > 0, let Rp,,v be the probability measure on (—1,1]¢ defined as the image of v|g,, /v(B,,) by the
map z — x/2™. For two probability measures x and v on RY, by Lemma 5 in [16], there exists a

positive constant x4 depending only on p and d such that

W;);(:u’ V) < K:p,de(lu’a V) ) (61)
where
Dy(p,v) i= Y 2°™|( B m) + > 2P (p AV(Bm))Dp(RB,, 11, RB, V) s (6.2)
m>0 m>0
with o W(2™F A By)  v(2™F N By
— v
Ry, 1, R, V) = 9Pt — m 6.3
Drl > FZ; w(Bw) v (Bo) (63
In addition, by Lemma 6 in [16],
3 2P -1
D) < (5250 ) Ayl
where
Ap(pv) = 20" " 27PE N " (2™ F N By) — v(2™F N By)l.
m>0 >0 FePpP,
From the considerations above, there exists a constant C' depending only on p and d such that
W2 (s 1) < CAp(pg, 1) (6.4)

where uy, = %Zle 0x,. This inequality may be seen as an extension to the case d > 1 of Ebralidze’s
inequality [15], which we used in [10] to obtain moment bounds for W} (y,,, ) when d = 1.
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As in [10] we shall use truncation arguments. For a positive real M, let Cy; = [—~M, M]<,

My ) =) 27 27PN | (27 F 0 By N Cay) — (2™ F N By N Cay)|
m>0 >0 FePy
and
My ) =Y 27 27PN (27 F 0 By, N Cy) — (27 F N By NC)|-
m>0 >0 FePy

With these notations, it follows that

Ap(pirs ) < Ap ar (s 1) + Bp,ar (s 1) - (6.5)

For the proofs, we shall follow the order of the theorems, except for Theorem 5.3 whose proof comes

naturally after those of Theorems 2.1 and 2.2.

6.1 Proof of Theorem 2.1

Let M > 0 and x > 0. Starting from (6.4) and (6.5), we get that

p
P (112152( kWP (b 1) > na:) <P <1131?X kAp v (g, o) > (na:/26’)>

+P (fgn]?%:n kBp nr(puk, 1) > (nac/2C)> . (6.6)

Let y = z/2C. By Markov’s inequality at order g € (r,2) and s € [1,r),

[lmaxy << kAp n (s 1)l

P (IIEI?X kA ar(pok, 1) > ny> < iy 7 (6.7)
lmaxi<p<n kBp ar(p, 1) |7

P (fg&x kBpn (e, ) > ny) < = ‘nnsyz : (6.8)

To deal with (6.7), we first note that

| max By aroas, )|

< E 2pm E 2*1’5‘ max E |kuk(2™F N By, NChyr) — kp(2™F N By, mCM)!H . (6.9)
SRS q
m>0 >0

Now, clearly

ke (27F O By, 0 Cag) — k(2" F A B, O H
‘ggggﬂZ\uk( m N Car) = ki m el

< H X (kjae( B (1Car) + kpt( B 0 Car)) H <20 (u(Bm N Car))Y . (6.10)
SRS q

13



On the other hand, by the (maximal version of) von Bahr-Essen inequality (see [3]),

H max [ky(27F 0 By 01 Ca) — kp(2"F 0 By cM)\Hq < (2™ F O By N Car)
q

so that, by using Holder’s inequality and the fact that |P,| = 2¢¢,

Z ‘ jmax kep (27 F N By NCay) — ku(QWFHBmﬂCMﬂH < 2bda=D/apl/a (B, N Cup))Y? . (6.11)
q

Combining (6.7), (6.10) and (6.11), we obtain that

1 . (g _
P < max kAp ar(pk, 1) > ny> < " Z 2P (u( By, N CM))I/q Z opt Wi (1,n (a=1)/agtd(q 1)/q)

1<k<n
m>0 £>0

(6.12)

In the same way, for the term (6.8), we obtain the upper bound

1 1
P <1f<n,3§ kBp,nr (ks 1) > ny) < > 2 (B NNV g7 1 (1,n—($—1>/52“<8—1>/8)
m=0 £>0

(6.13)

From (6.12) and (6.13), we see that three cases arise:

e If p > d(r — 1)/r, then, taking ¢ > r such that p > d(¢ — 1)/q and s = 1, we get the upper bounds

P <1r<n]§<x kAp v (1, 1) > ny)

q

> 2 (BN Ca)? | <

m>0

e q
sy 1 1/
ni-lys na—1ya (/0 T (H(t)) 1t<Mdt> , (6.14)

and

1 (o.9]
P <1g1]?X kBp nr(fn, 1) > ny> < / tp_lH(t)1t>Mdt. (6.15)
YJo

Using that H(t) < || X ||rpwt~ "™ for r € (1,2), we infer from (6.6), (6.14) and (6.15) that

1 Mpla—)
P < max kW) (ug, 1) > nx) < | X35 + = :

1<k<n xMp(r=1) = pa—lgq
Taking M = (nz)'/?, we obtain the desired result when p > d(r — 1)/r.

e If p=d(r —1)/r, then, taking ¢ = r, we get the upper bound

P <1r<n]§§ kAp v (1, 1) > ny)

(1 1 r o0 r
Ogl > 2P (B 0 Car)) M <<(O§n)r (/0 tpl(H(t))l/’”ltSMdt> . (6.16)

n' m>0 n 1y

14



Using that H(t) < || X||rbwt™"P for r € (1,2), we infer from (6.6), (6.15) and (6.16) that

P EWE (p, 1) > x| < || X |72 S O S =)
11232( Hiks pt) = Tir TP gMp(r=1)  pr-lgr 8+ [ X rp,0 .

Taking M = (nz)'/?, we obtain the desired result when p = d(r — 1)/r.

o If p < d(r—1)/r, then, taking ¢ > r and s € (1,r) such that p < d(s—1)/s, we get the upper bounds

P (g}gg kAp v (b, 1) > ny)

> 2 (uBnnCa))? | <

m>0

<

(/Ooo tpl(H(t))l/q1t<Mdt>q , (6.17)

nap/dqya nap/dqya

and

P (fg}gg kBp, v (b, 1) > ny>

S

m C S 1 o — S °
s | S 2 B0 €| < ([T ) 1) L 018)

m>0

Using that H(t) < || X ||rpwt™ " for r € (1,2), we infer from (6.6), (6.17) and (6.18) that

. 1 Mpla—r)
P (o Vo) > n0) < X (s * i |

Taking M = n'/42'/P we obtain the desired result when p < d(r — 1)/r.

6.2 Proof of Theorem 2.2

Let » > 2. Note first that, by homogeneity, the general inequality may be deduced from the case
where || X||;pw = 1 by considering the variables X;/|| X ||,p». Hence, from now, we shall assume that
1X g = L.

According to the beginning of the proof of Theorem 2 in [16], we get that

WE (piny 1) < C > 2P |1 (By) — p(By)| + CVE, (6.19)

m>0

for some positive constant C' = C), 4, where the random variable V¥ is such that
P(VP >z/(2C)) < a(n,x). (6.20)

Consequently, it remains to bound up the quantity

> 27" |un(Bp) — p(Bp)| = 2/ (20)

m>0

15



For a positive real M, let Cp; = [~ M, M]¢,

A v (s 1) = Y 27" pr(Bin N Car) = (B N Cor)|

m>0

and

By i (pies 1) = Y 2" (B N Cp) = (B N C5y )]

m>0

With these notations,

S 2" 4 (Br) — w(Bu)| > 2/ (2C) | < B (A5 3y (pn 1) > 2/(4C))

m>0

+ P (B} pr(pins ) > x/(4C)) . (6.21)

Let y = x/4C. By Markov’s inequality at order ¢ > 2 and 1,

q
HA un,u)Hq

P (A} ps(ptn, 1) > y) < /i : (6.22)
* |35 as )|

P (By v (pns 1) > y) < ; (6.23)

Applying Rosenthal’s inequality, we get

* 1 m
[Ap a1 (ks p)llg < n Z 27" 112 (By, N Cor) +

m>0

Zzpm Ya(B,, N Cy)

ql/q

1 o
p—1 p—1rrl/q
< 7 Jo t ‘/H(t)lté"fdt+n(q—1)/q/0 P H 9 (t) 1< prdt .

Choosing g > r, it follows that

p(g—r)/q 1/q
145 s )y < —= / o @+ (supt’"pmt))

>0
p(g—7)/q

1
<<% i T 'VH dt+ — /T (6.24)

the last inequality being true since we assumed that sup;,.ot"PH(t) = 1.
On another hand,

1By ar (pims i)l <Y 27" (B N Cp)
n>0

o
< / PUH (8) 1w apdt < MPOT) supt™P H (1) < MPUT) (6.25)
0 t>0

16



Gathering (6.21) - (6.25), we get that for any ¢ > r,

Mpla—r)  pyp(l-r)

q
3 2 n(Bu) = p(B)| > 2/(20) | < </ ﬁdt) pint T

m>0

Hence choosing M = n'/Pz1/?_ we infer from (6.19), (6.20) and (6.26) that for any ¢ > r,

o q
P (W} (kn, 1) > x) < a(n,z) + Tlf S </0 tp_lx/H(t)dt> ,

'l pane/?

which is the desired inequality when sup;-q t""H(t) = || X |rpw = 1.

6.3 Proof of Theorem 5.3

We start from the elementary equality

n’f‘

14
max. kWE (1, 1)

— > r—1 P
) T/o x P(lgllfg{ kWP (i, )>nx>da:.

Then, we use the upper bounds (6.6), (6.12) and (6.13). We consider two cases:

9

X

(6.26)

(6.27)

(6.28)

o If p > d(r — 1)/r, let ¢ > 7 such that p > d(q — 1)/q, and let M = (nz)"/?. From (6.6), (6.14) and

(6.15) we get the upper bound

r—1
/x P <1Ii1]§ig( KW (e, p) > nx) dx

<</ z" 2 (/ tp_lH(t)1t>Mdt>
0 0

Note that
* r—2 > p—1
/ x (/ t H(t)1t>(m)1/pdt)
0 0

Let 8 < (¢ —1)/q. Applying Hoélder’s inequality, we obtain

1 o0 r—1—g o0 p1 g q
nq—l/o T (/0 t (H(t)) ltg(nx)updt dx

< n:ﬂ / 2" 1 (pg)a-1-aP)/p (/ tq(pHfB)H(t)lK(m)l/pdt) dr
0 0

nla—1=aB)/p

trple( )dt<< ” H

<

Taking S close enough to (¢ —1)/q in such a way that g+ 1 —7r— (¢ — 1 —¢fB)/p > 1, we get

1 ~ r—1-q Ootpfl H()Y1 dt qd ||X||:§

17

o0 [e%e] q
a1 ( / tp_l(H(t))l/qltSMdt) dz .
0 0

i / t9P=148) f (¢) (/ lequ(qlqﬁ)/plxztp/ndm) dt .
0 0

(6.29)

(6.30)

(6.31)

(6.32)



Gathering (6.29), (6.30) and (6.32), we obtain the desired result.
elf p<d(r—1)/r,let ¢ >r, s€ (1,r) such that p < d(s — 1)/s, and let M = n'/?2'/P. From (6.6),
(6.17) (6.18) we get the upper bound

1 o (e.9] S
r—1 D r—1—s p—1 1/s
/x P <1E1]?§nkwp (tgey o) > nm) dr < —pjd /0 x </0 tPTH(H(1)) 1t>Mdt> dx

[ee] o] q
+1d/ z e (/ tp_l(H(t))l/qlKMdt) dr. (6.33)
nqp/ 0 0 -

Proceeding exactly as for (6.31)-(6.32), with the choice M = n'/4z'/? we get

1 * r—1—q > p—1 H 1/q d qd 1 > Tp—lH d ”X”:g 4
W . X ) t ( (t)) ].tgnl/dxl/p t T K W 0 t (t) T K in/d . (63 )
In the same way, we get
1 > r—1l—s > r=1(Hg 1/s d ° d 1 > =1 (H)d ”XH:g
W o x ) t ( (t)) 1t>n1/dx1/1’ t x K W o t (t) t K npr/d . (635)

Gathering (6.33), (6.34) and (6.35), we obtain the desired result.

6.4 Proof of Theorem 3.3

Let r € (1,2). We start from the upper bounds (6.6), (6.12) and (6.13).

e If p > d(r —1)/r, let g € (r,2] such that p > d(q — 1)/q and let M = n®/?. From (6.6), (6.14) and
(6.15) we get the upper bound

l—«a

x4

P < max kW] (pg, p) > no‘:c> < .

e8] nl—qa 00 q
| 01 e < / tp—1<H<t>>1/Q1t<na/pdt) |
1<k<n 0 0 =

Hence, it remains to prove that

o ~ o) 0 q
Z na(r_l)_l/o tp_lH(t)ltp/a>ndt < oo and Zna(r—q)—l </O tp_l(H(t))l/q]-tp/O‘Sndt> < 0.
n=1 n=1

(6.36)

Interverting the sum and the integral, we easily get that

oo o) 00
> netr=h /0 P H () /0, dt < /0 " H (t)dt < || X||Br < oo
n=1

Arguing as in (6.31) with 5 < (¢ —1)/q, we get
o0 q (o.9]
< / tp_l(H(t))l/qltp/a<ndt) < pola1=aB)/p / 1P~ [ (1)1 0 e dt -
0 - 0 -

Hence, the second series in (6.36) will be summable provided

Z po(r—a)+alg—1-q8)/p-1 / t‘J(p—HB)H(t)ltp/aSndt < 00 (6.37)
n=1 0
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Taking f close enough to (¢ — 1)/q so that a(r — q) + a(q¢ — 1 — ¢8)/p < 0 and interverting the sum
and the integral, we get that

3 pelr-atale1-a o1 / 10D (1)1, 0l < / () de < X < oo
_ 0 0

which ends the proof of (6.36) and then the proof of the theorem when p > d(r —1)/r.
elfp<d(r—1)/r let g € (r,2], s € (1,r) such that p < d(s—1)/s, and let M = nP~41=)/(P) From
(6.6), (6.17) and (6.18), we get the upper bound

P ( max kWP (i, pt) > na$> <« b (/ tp1(H(t))1/s].t>n(pd(1a))/(dp)dt)
0

1<k<n nsp/ds
nd—ao

[e’s) q
</ tp_l(H(t))l/q1t<n(pd(1a))/(dp)dt) . (6.38)
0 <

napr/dyaq
Proceeding as in (6.37) (taking the quantity 8 < (¢ —1)/q close enough to (¢ —1)/q in such a way that
(p—d(1—a))((r—q)+(¢—1—pBq)/p) <0), we get that

a)r nt—1 < I T
Zn’”’ (1=ajrd=d)/d____ </ tr 1(lL-’(lt))l/qlepd<1a))/(dp)df) < [ X5 < oo (6.39)
0

nqp/d

In the same, we get

—Ssx

ns
anr (1-a)rd—d)/d’>

[e.9] S
ey (/ tp_l(H(t))l/s1t>n(p—d(l—a))/(dp) dt) < HX‘ P < o0. (6.40)
0

The second item of Theorem 3.3 follows from (6.38), (6.39) and (6.40).
o If p <d(r—1)/r,let ¢ € (r,2], s € (1,7) such that p < d(s — 1)/s, and let M = (logn)'/?". From
(6.6), (6.17) and (6.18), we get the upper bound

- T 1 > - s °
P ( max k‘Wp<IUk, ) > n(d p)/d(logn)l/ 1’) < W <A tP 1(H(t))1/ 1t>(10gn)l/prdt>

1<k<n

1 00 q
B p—1 l/q
Proceeding as in (6.37) (taking the quantity 8 < (¢ —1)/q close enough to (¢ —1)/q in such a way that

(q/r) — (¢ —1—Bq)/(pr) > 1), we get that

ZW </O " (H (1)) ‘11t<(logn)1/prdt) < | XBr < oo (6.42)

n=1
In the same, we get

o0 1 ) ~ . s )
> ([0 1 ) < 1T < (6.43)
n=1

The third item of Theorem 3.3 follows from (6.41), (6.42) and (6.43).
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6.5 Proof of Theorem 3.4

Let r > 2. As in the proof of Theorem 2.2, we assume without loss of generality that || X||,p.w = 1;
hence, we can use directly some of the upper bounds given in the proof of Theorem 2.2.
From (6.19), we see that

D < pm — . .
Jmax kW (g, 1) < C Z:Oz max \kpir(Bum) — ku(Bm)| + C Jmax KV (6.44)

Now, for any = > 0

P <1I£1]?§n kVE > :c/(2C’)> < ;IP’ (kVP > z/(2C)) < nlrg?é(nIP’ (kVP > z/(2C)) .

By (6.20), it follows that, for any = > 0,
1<k<n

P <12113§Xn kVE > x/(20)> <n max a(k,z/k) <na(n,z/n), (6.45)

the last inequality being true because k — a(k,z/k) is increasing. Now, by definition of a(n,z), we

1 d—p
o€ (max (2’d>’1] ,

ar—2 /4 o
Zn P (1I<nka<xnk:Vk >n x/(2C’)> < 00.

n=1

infer that, for any

Hence, it remains to prove that
o0
HZI nr=2p Z:Ozpm Jmax |kpur(Bm) — kp(Bm)| = n®z/(20) | < 00. (6.46)
— m>

Arguing as in the proof of Theorem 2.2, and using a maximal version of Rosenthal’s inequality (see for

instance [21]), we get that, for any ¢ > r and M > 0,

(1—a)q 00 q
P> 27" max |kpg(Bm) — ku(Bm)| > n®z/(2C) | < o tP=L/H(t)dt
xq'nﬂ/2 0

1<k<n
m>0
2

nl—qa 00 q n1—2a 00
- < / tp_lHl/q(t)ltSMdt> + < tp_lx/H(t)ledt) . (6.47)
0 0

x4

Clearly, since a € (1/2,1], taking ¢ large enough, we get that

e n(l—a)q 00 q
an_2 tr=1/H(t)dt) <oo.
= na/2 0

Let M = n®/? and 8 > 1/2. Applying Hélder’s inequality, we get

oo 2 o0
(/ tplmltp/oondt) < na(125)/p/ t2(p71+ﬁ)H(t)1tP/a>ndt'

0 0
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Hence, the sum over n of the last term in (6.47) multiplied by n® =2 will be finite provided

Zna(r2)+a(12/3)/p1/ tQ(p’Hﬁ)H(t)ltp/amdt < 0.
0

n=1
Taking [ close enough to 1/2 so that a(r — 2) + a(1 — 25)/p > 0 and interverting the sum and the
integral, we get that

§ - pal-2)tali-29)/p-1 / 2OV (1)1, 0, dt < / P H (1)t < | X[ < oo

n=1 0 0

Arguing as in (6.31) with 8 < (¢ — 1)/q, we get
o] q 00
</ tp_lHl/q(t)ltp/a<ndt> < na(q—l—ﬁq)/l’/ 1P H (1)1 0 o dt -
0 - 0 -

Hence, the sum over n of the second term in (6.47) multiplied by n®" =2 will be finite provided

§ " pelr-ar+ale-1-ga)/p-1 / 190140 [ (1)1, 0t < 00
0

n=1
Taking f close enough to (¢ — 1)/q so that a(r — q) + a(¢ — 1 — Bq)/p < 0 and interverting the sum
and the integral, we get that

& 0o 0o
> pelrmaytela=i=fa)/p=1 / 1P ID H (£)1 /0 dt < / T H(t)dt < || X || < oo

n=1 0 0

All the previous considerations end the proof of (6.46) and then of the theorem.

6.6 Proof of Theorem 4.2

Recall that

2P — 1 _
Dyp(Rmtin; R ) = —5— ) 2 Y
>1 FePpy

where F,, = 2™ F N B,, (see (6.3)). Define, for any k > 1,

1/2
ne = [e* 7] and my = ngyp — ng .

Note that ng11 < 2eng and my ~ 2-1f—1/2

n
1
Hngm = E 5Xi 5
n—ng .
1=ngp+1

ng, as k — 0o. Setting

we first write that, for ny +1 <n < ngyq,

pn(Fn) — p(F)
fin(Bm)  pw(Bm) ) ] ) ~

_ M (Fo) = p(F)) (0 = 10) (e on(Fm) = po(Em)) - 16 Bim) = pin(Bim)

nﬂn(Bm) n,U«n(Bm) Mn(Bm)M(Bm)
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Taking into account that, for any positive measure v,
D 2PN w(F) < (2P = 1) 'w(B),
>1 FeP,

simple algebras lead to the following inequality: for ny +1 < n < ngy1,

22_pg Z nk|ﬂnk(F( m < 22 pl Z Mnk(ﬁm) . N(Fm)

>1 FeP, s >1 Fep, | (Bm)  1(Bm)

1 oy (Bm) — pin(Bim)| 1 |pny (Bm) — p(Bm)|
2P —1 tin(Bm) 2P =1 fin(Bm) .

+

Similarly, for ny +1 <n < ngy1,

—pl (n— nk)‘ﬂnk,n(Fm) - N(Fm)’ (n —ng) —pl Mnk,N<Fm) N(Fm)

27" 110 (Bon) S LY 2 B B
(1 = nk) |pngn(Bm) — i (Bm)| | (n = nk) |pngn(Bm) — #(Bm)|
(27 = 1)n tin(Bim) (27 = 1)n pin(Bm) '

So overall, for ng +1 <n < ngyq,

~—

(n —ng)

Dp(RB,, Hns R, 1t) < Dp(RB,, Hing s RB, 1) + Dy(RB,, Hng,ns RB, 1)

T 1 |ttn,,(Bim) — fin(Bm)| n 1 |ty (Bm) — p(Bm)| 1 |#n(Bim) — (B
2 tin(Bim) 2 tin(Bm) 2 tin(Bm)
4 =) Y (B) = B 0= 1) bt (B) = 0l Bu)l 1
2n tin(Bm) 2n tin(Bim)
o Ifp>d/2, let
[logl o
Up = 808N and V= P~/ H(t)dt .
n 0
Starting from (6.2) and considering (6.48), it follows that
max Dolitn, 1) < Z 2Pmy, p(RBmunk’RBmu)
ne+1<n<ngqq >0 Ung41
- Dy(R R
4 max (TL nk‘) Z 2pmM(Bm) p( B Mg, Bmlu)
n+1<n<ngiq n >0 Unk+1
— B,) — u(B
np<n<ngiq 2n >0 Ungi1
— (B
+  max Z gpm e (Bm) = 1(Buw)| g 49
nk+1§nSnk+1 >0 Ungq1
We first deal with the third term in the right-hand side of (6.49). With this aim, let
1/(2p)
ng
" <LLnk> (6.30)
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with § a positive constant not depending on n; that will be chosen later, and the notations Lx =
log(z V e) and LLx = L(Lz). Define C,, = [~M,, , M,,]¢ and note that

|t (Bm) = p(Bm)| < [pn(Bim 0 Cry) = (B 0 Coy )| + [0 (B N Cry) — (B N Cry )|

Clearly

B, NC¢ 1 > *
ngm“( m NG, < / tp_lH(t)1t>Mnkdt<</ tQP‘IH(t)1t>Mnkdt—>0, as k — 00
0

m>0 Unk+1 Unk+1 0
(6.51)
On the other hand,
N1 NEk+1
max B,NC: )< — 1y, 1. < — 1y, 1gx, o,
o nax pn(Bm N Cy,) < - ; xeBny x>,y < ; {Xi€Bm} L{X[>eM;}
where c is a universal positive constant. Hence to prove that
n(Bm NCE
max Z pm ) — 0, almost surely, as k — oo, (6.52)
nkgngnkﬁ»l Unk+1
it suffices to prove that
1 n
P Z Z 2" x,eBny 1 x| >em;y — 0, almost surely, as n — oco. (6.53)
" =1 m>0

But

> D 2P(X; € B, | Xi| > M) <> —
=1 ViLLi = i>1 VY

/ p 1H 1t>CM dt

<</ tP7 H () dt < 0.
0

By using Kronecker’s lemma and recalling that nv, = (nLLn)'/2, this shows that (6.53) holds and so
(6.52) does also.

We show now that there exists a positive constant C such that, almost surely,

(Bm N Cny) — W(Bm N Cny)|

limsup max Z oprm ‘,un

k—oo Mk <n<nk+1

<QV. (6.54)

U”k+1

Using Markov’s inequality and next Rosenthal’s inequality (with the constants given in (4.2) of Theorem
4.1 in [21]), as in the proof of Theorem 2.2, we infer that there exist positive universal constants ¢; and
co such that for any ¢ > 2 and A > 0,

P opm B, N — u(B,, N > \V
nk;ﬂgﬁﬂ% |10 (B 0 Cry) — (B N Cy)| > Ungi1

q q - .

‘1 /2 ) . .
S\ ¥2n] ¢ S 7 v q 2= )Y dt)
- ()\VnkvnHl) q nk+lv + <)‘V”kvnk+l> q N1 (/0 (H(t)) 1< M,
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Select now

q = qr = yloglogn; with v > 2,
and take A = \, = 2c1e? V- With this choice of gy, it follows that

T T
C1 Qk/2 w/2 - <201‘3\F> —ax
E _— n < E E e % < o0o.

k>1 k>1

On the other hand, by Holder’s inequality, setting 5 = p — 2p/q,

o] q o]
(/0 tp_l(H(t))l/qltSMnkdt) gp—q2q‘1+2q—1Mﬁg—2pﬁl—‘I/o tP7 H (t)dt .

Concerning the constant 6 appearing in the selection of My, given in (6.50), select it such that

4\/%0257’7 ol
MVp o '

Let K; be such that qx, > 4. It follows that

q o0 q
2 a -1 1/
g P (H(t)) 1 dt

E>K;
ak
4+/2ecy 6P log1
< 5 } , IVECR0T ) e 08Tk 52 } : e~ log log 1y, < 00 .
M Vp N
kZKl k’ZKI
So, overall,

Z P max Z 20" 13y (B N Cry,) — (B N Cry )| = AV, | < o0,

np<n<n
B> K k=U=TREL >0

which proves (6.54) with C' = A, by the direct part of the Borel-Cantelli lemma. Hence combining

(6.51), (6.52) and (6.54), it follows that, almost surely,

limsup max Z 2prm ‘,un(Bm) — M(Bm)‘ <MV

k—oo MkSNSNpy1 m>0 Ung41

With similar arguments, one can prove that, almost surely,

— B,,) — u(B
hmsup max n nk Zzpm|ﬂnk,n< m) :u( m)‘ —0.

k—oo Mk S OS n m>0 Umﬁq

It follows that, almost surely,

D Dy(R R
lim sup max M < 2\, V + limsup Z N p(R By s RB, )

k—oo MNkt1<n<ngiq Unp, k—o0 m>0 Ung41

Dy (RB,, Hongms RB,, 1)

+limsup  max (n=nw) Z 2P (B,

k—oo Nkt1<n<ngiq w0 UnkJrl
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(6.55)

(6.56)

(6.57)



Let now

k1/2
k= pln2|

Note that
m>sp+2 m>sk+2

<C, tp_lH(t)dtgéprsk/ tP~LH(t)dt. (6.58)
25k 0

It follows that

D o
hm Z 2P DR s R t) 0 a.s. (6.59)
Un
® m>ept1 k1
Next, let
2m—1 1 1
b = / P H)dt o + | P/ HE)dt <y and B= Y byn =V + | 7 \/H(t)dt.
om—2 0 mZO 0
Note that
Sk+1
(Z 2pm (RBmMnkaRBm ) > CB’Unk+1>
sp+1
S Z ]P) (2pmM<Bm)Dp<RB7n/’Lnk7RB'm/’L) Z Cbmvnk_,_l) .
m=0

Proceeding as in the proof of Theorem 2 in [16] (case p > d/2), and noting that

2777,71

u(Br) < P(X| > 271 < <2ml )

om—2

\/H(t)dt>

2m1

1
§<2(m_2)p / “YWH dt) = 2%PQ=2mPp2 - (6.60)

we derive that, there exists a positive universal constant a such that

sp+1
P (Z 2P 1( By ) Dp(R By, ong s RBon 14) = CanHl)

m=0
sp+1

< Y e (=aC?b ;) (2" u(Byn))
2

a k1/2
24

< (sk +2)exp ( log log nk> < el 2T
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Therefore, if C' is large enough,

sep+1
>p (Z 2P 1( By ) Dp(R B,y iy s R, 1) > Cank+1> < 0. (6.61)

k>1
Starting from (6.59) and (6.61), it follows that

D,(R R
hmsupZQI’m Bm) P( B, Hny s BmM)

k—o0 m>0 vnk+1

<CB a.s. (6.62)

On another hand, using (6.58), we get that

k—o0 "k+1<"<nk+1 m>spt2 Ungqa

=0 a.s. (6.63)

In addition, noticing that D,(Rg,, fing.ns RB,, 1) = Dp(RB,, in—ny,, RB,, 1), we get that

Sk+1
n — nk pm >
]P) (nk+1122§nk+1 Z 2 (RBmunk,na RBm,LL) CB/U”IC-{»I)
Nk41 sk+1
Z Z ( meu(Bm)Dp(RBmun_nk,RBmM) > Cbmvnm) )

n=ngr+1 m=0

Proceeding as before, we get that

sp+1
n—mnm
>p (w max L) > 2" w(Bin) Dp(R b, tingens Rpbt) = CankH)

1<n<n n
k>4 =Tkl m=0

k41 sp+1 aC2n2b2 12
S z( )
k>4 n=ng+1 m=0 n_nk)2 pm'u(Bm)

sp+1 2,212 2
aC*ni by, vy,
< g Ngt+1 — Nk) E exp k
k>4 ! ( (k41 —nk)QQPmp(Bm)>

< Z ek exp (—Iﬁkl/Q log k) < oo, (6.64)
k>4

where k is a positive constant depending on a, C' and p. This proves that, almost surely,

B D N,
lim max n T Z 2P 1 (Bm) p(R B Horgms R, 1) =0. (6.65)

k—oonp+1<n<ngiq n Unjyq

Starting from (6.57) and taking into account (6.62), (6.63) and (6.65), it follows that there exists an

universal constant C),, depending on p such that

D
lim sup 717(“”’ ")

n—00 Un

<G,V as.
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To conclude the case p > d/2, it suffices to use inequality (6.1).
e If p € [1,d/2), we proceed as for p > d/2, choosing now

<loglogn>p/d
vy = | ———— .
n

Let us give the main steps of the proof. We start again from (6.49). To deal with the two last terms
in the right-hand side of (6.49), contrary to the case where p > d/2, we do not need here to make a
truncation procedure. Indeed, by Markov’s inequality at order 2, we infer that there exists a positive

universal constant ¢ such that, for any £ > 0,

1 2
opm B > eV < _ V2
nkgﬁ%ﬁkﬂ Z ‘:un ( m)’ ZE&VUny, | SC (EVnkvnkH) Nk+1
1
S S iapd ;
e2n, "%(log log ny,)2p/d

which, by an application of the direct part of Borel-Cantelli’s lemma, proves that (6.55) holds with
Ay = 0. Similarly (6.56) holds and then (6.57) does also. Hence, it remains to deal with the two last
terms in inequality (6.57). This can be done as in the previous case. To handle the probabilities of
deviations appearing in (6.61) and (6.64), we proceed again as in the proof of Theorem 2 in [16] (but
this time considering the case p < d/2). For instance, concerning the probability of deviation appearing

n (6.61), this leads to the following inequality: there exists an universal positive constant a such that

sp+1
(Z 2pm (RBm/‘I’TLk7RBmM) > CankJrl)
sp+1 ) ) i/p
d m
< mz::oexp (—aC P(loglogng)u(Bm,) <2pm,u(Bm)> ) )

where the quantities s;, B and b, have been introduced previously. The probability of deviation
appearing in (6.64) can be handled similarly, and the result follows by taking into account that
(W(B))P/4 < (u(Byn))"/? and inequality (6.60).

6.7 Proof of Theorem 5.1

Let ¢ € (1,2] and M > 0. From (6.4) and (6.5), we get the upper bound
fH max kWp “’“’“)Hl < o (H max kBp nr(p, 1 H + H max kAp ar(p, 1 H )

1<k<n 1<k<n 1<k<n

Using (6.10), (6.11) and the same arguments as to get (6.15), it follows that
fH max kW] (pg, 1 )Hl <</ P H (8) 14 prdt
0

1<k<n
+ ngm (B N Car) 1/!122 =Pl 1hin (1 n—(a—1/q9td(q— 1)/q)

m>0 >0
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Then, using the fact that ), 2P™(u(Bpm N Cu))V < I tP=L(H(t))"/914<prdt, we conclude as in
Subsection 6.1 by considering the three cases p > d(q—1)/q, p=d(¢—1)/q and p < d(q—1)/q.

6.8 Proof of Theorem 5.2

From (6.4), we have that

max kAp(pi, 1)

C
n ||1<k<n

2 2

From (6.10) and (6.11) with M = oo, we get the upper bound

| max kwp /'Lkv << Z 2pm B ))1/222*Mmin (172@d/2/\/ﬁ>
1<k<n m>0 >0
< ( / t”l(H(t))l/2dt> 3" 2% min (1,2“/2/\/5) .
0

£>0

Then we conclude as in Subsection 6.1 by considering the three cases p > d/2, p = d/2 and p < d/2.

6.9 Proof of Theorem 5.4

Let r > 2. Starting from (6.28), we infer that, for any positive constant vy,

k 14
F || max W2 (e, 14)

T o0
<o+ r/ 2" IP < max kW] (pg, p1) > nﬂ:) dr, (6.66)
: - 1<k<n

and we use the upper bound (6.6) to deal with the deviation probability in (6.66). Let y = z/2C and
M > 0. By Markov’s inequality at order ¢ > r and 2,

Imaxi<<pn b Ap nr (pgs w)II7
P (gggg kAp n (e, ) > ny> < iyt 1, (6.67)
| maxi<p<n kBpar(pk, M)Hg
< — - . .
P <1I£1]§L<X kBp M(Mka H) > ny> = ’I’L2y2 (6 68)
To deal with (6.68), we proceed as to get (6.12), and we obtain
2
m( ¢ )12 ¢ 0d/2
P <1I£l?x kBp nr(fuk, 1) > ny) Z 2P (u( By, N CYy ZZ P min (1 2 /f)
m>0 >0
(6.69)

Let us now handle (6.67). With this aim, in a sake of clarity, let us first recall inequality (6.9),

| max by (i ]|,

< Z 2pmz2_p£H max Z |kpp(2™F N By, NCar) — k(2™ F N By, ﬂCM)|H .
q

1<k<n
m>0 >0
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By using a maximal version of Rosenthal’s inequality (see for instance [21]),

‘ max [y (2" F 0 By 0 Car) — ku(ZmFmBmﬂCM)\H < VT (2™ F 0 By 0 Cap)) /2
q
+ 09 (u(2™F N By N Cap)) Y9,

so that, by using Holder’s inequality (twice) and the fact that |P,| = 2%,

Z H;}l,?z \epaso (2 F O By 0 Cag) — ku(QmFmBmmCMMH < 282 /5 (u( By N Cap)) 2
q

+ 2tdla=N/ap1/9 (1(B,, N Car))V9 . (6.70)

So, starting from (6.9) and taking into account (6.10) and (6.70) together with the fact that for non-

negative reals a, b, ¢, min(a, b + ¢) < min(a, b) + min(a, c), we get

‘ max k:ApM(uk,u)Hq < n(l + 1), (6.71)
where
=3 23 2P min ( (B N Car)) M, n=Y228/2 (1(B,, N CM))1/2)
m>0 (>0
and

Zzpmzz pf 1t(Bm ﬁCM))l/qmm <1 n—(a=1)/a9td(q— 1)/q> _

m>0 >0
Combining (6.67) and (6.71), we obtain that

> < (I +12)q.

i (6.72)

P (f?z?f kAp ar(pg, 1) > ny

From (6.72), we see that four cases arise:

e p>d(r—1)/r. In that case p > d/2, and

I <n™ 1/222pm (B NCur ))1/2<<n*1/2 tpil\/m:ltgj\/[dt.
m>0 0

Consequently

o] o] q
/ eI dy < nT Y2 </ tp_I\/H(t)dt>
Un 0
Choosing v, = n~ Y2 [ tP=1\/H(t)dt, we get
/ "y < T ( / tplx/H(t)dt) : (6.73)
Un 0

Let us now deal with the term involving I5. First, we choose ¢ close enough to r in such a way that
p>d(q—1)/q. In that case

I <~ @D/ orm (4(B,, N Cy)) T < 07 Wq/ PTLH ()Y < ppdt
m>0 0
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Let M = (nz)Y/P. Arguing as in (6.31) with 8 < (¢ — 1)/q, we get

0 (g=1-Bq)/p [oo oo

/ :Er—l—q]gdx < n—1/ tq(p—1+/3)H(t)/ xr—l—q$(q—1—6q)/p1m>tp/n dx dt .

0 nt 0 0 -

Taking S close enough to (¢ — 1)/q in such a way that r — ¢+ (¢ — 1 — Bq)/p < 0, we get that
/ " de < 0~ Y / P H (t)dt < n” T |X IR (6.74)
0 0

From (6.72), (6.73) and (6.74), we get that

/ 2" P <11313§ kAp v (ps 1) > m/(zc)> dx < n~"/? ( / tplx/H(t)dt> +n D) x|
Un =n 0
(6.75)

In the same way, since p > d/2, we infer from (6.69) that

2

1 1/2
P (s WBpartinsm) > ) < g | 3227 (B
m=

<« (/Ooo tpl\/%1t>Mdt>2 .

nx?

Proceeding again as in (6.31) with 5 > 1/2, we infer that

/ 2" P ( max kBp ar(pk, 1) > nx/(20)> dx

1<k<n
(1-28)/p o e
< n/ t2(p_1+f6)H(t)/ acr_?’ac(l_%)/plxqp/n dxdt.
n 0 0

Taking /3 close enough to 1/2 in such a way that (r —2) + (1 — 28)/p > 0, we get that

[e.e] oo

/ 2" P (1@33 kB vt (ps 1) > m/(QC)) dz < n~ 0= / P H (t)dt < n” U7V X|[2 . (6.76)

Vn Skxn 0

Finally, starting from (6.66) with v, = n~/2 S tP~1\/H(t)dt, and gathering (6.6), (6.67), (6.68),
(6.75) and (6.76), Theorem 5.4 is proved in the case where p > d(r — 1) /r.
e d/2 <p<d(r—1)/r. In that case we use the upper bound (6.73) without any changes. Let us now
deal with the term involving I5. Starting from the definition of Is, and considering the two cases where
either 2¢ < n/d or 2¢ > n'/4 we infer that

I <747 2P (B N Cyy )T < P/ / PV H ()Y 1< ppdt
m>0 0

Let M = (nx)'/? /u, for some sequence of positive numbers (uy,)n>o that will be chosen later. Arguing

as in (6.74), we get

/ a" 1 dy <« ndTT P/ dyp(r=d) / tPLH (t)dt < TP/ R X || (6.77)
0 0
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In the same way, arguing as to get (6.76),

o r—1
[ (s KBartna ) > na/20)) s

< n—(r—l)uz(r—2) / tTp—lH(t)dt < n—(r—l)uﬁ(T—Q) ||X||:£ . (678)
0

Now nq_"“_p‘Z/dugf*(I)p = n_(r_l)uﬁ(rﬂ) iff ul = n-1/(@=2)p(1-p/d)a/(a=2)  With this choice of u, and

taking ¢ = r + €, we have

nd~ TP/ dy (=P — =T/ d(p(d=p)/d ypya=r — pmrp/dp (p=d)(a=r)/(d(a=2)) — p=rp/dpEp=d)/(d(r=2+<))

Hence, with this choice of u,, the upper bounds (6.73), (6.77) and (6.78) give the desired inequality for
d/2<p<d(r—1)/r.
e p < d/2. Note first that, by homogeneity, the general inequality may be deduced from the case where
| X||rp =1 by considering the variables X;/||X||,. Hence, from now, we shall assume that ||X||,, = 1.
Let M = (nz)YP/u, for some sequence of positive numbers (u,),~o. We first note that, since
q>d/(d—p) (indeed ¢ > 2 and d/(d — p) < 2), the upper bound (6.77) holds. Taking u,, = n'/?/n'/¢,
we get
o0
/0 " dr < 0P (6.79)

Let us now deal with the term involving ;. Starting from the definition of I, and considering the

two cases where
either  2¢ < nYI(u(B,, N Car))E DD o 28 > p1a(1(B,, N Cyy)) D/ (D) |
we infer that

I, < n P Z 2P (14( By N CM))(der(q—?))/(dq) < nP/d /OO =L (H (t)) dHPla=2))/(da) gy (6.80)

m>0 0

We choose now ¢ > r such that (d+ p(q —2))/(dgq) > 1/r (this is true whatever ¢ if p > d/r, otherwise
we need to choose r < ¢ < r(d —2p)/(d —rp)). Since | X||,, =1, H(t) < min(1,¢7"?), which together
(6.80) and the choice of ¢ implies that I; < n~?/¢. Consequently, taking v, = n~?/?,

/ eI dr < n~W/dyr=a « p7re/d (6.81)

From (6.72), (6.79) and (6.81), we get that

<k<

/ P (1max kAp v (e, po) > nm/(2C’)> dx < n~P/4. (6.82)
Un n
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On another hand, since p < d/2, we infer from (6.69) that

2
1 1/2
’ (113?? k By ar (s 1) > ny> < i | 2 27 (B N Chy))
m>0
1 ~ o 2
<K W (/0 7y H(t)1t>Mdt>
Proceeding again as in (6.78), we get
00 1 uﬁ(T—Q) o} 1 Jd
/v 2P (1gll?<xn kBp a (g, 1) > nx/(2C’)> dr < n((r2)d+2p)/d/0 t"PTrH (t)dt < n” P (6.83)

the last inequality being true because u,, = n'/?/n'/? and || X||,, = 1.
Finally, starting from (6.66) with v, = n~?/¢_ and gathering (6.6), (6.82) and (6.83), Theorem 5.4
is proved in the case where p < d/2 and ||.X||,, = 1.

e p = d/2. Again, without loss of generality we can assume that || X||,4/2 = 1. We proceed as before
to handle the term fUO: 2" P(maxy<g<n KAy (i, ) > nx/(20))dz. We take ¢ > r and use the
Rosenthal inequality. We then infer that

L < n Y ?logn </ td/21\/H(t)1t<Mdt> +n /2 </ 421\ /H(t) log(l/H(t))lKMdt) .
0

0

Therefore, if we choose

v > n~ Y2 max (logn/oo /271 /H (t)dt, /Oo 271 /H (t) 10g(1/H(t))dt> =:v,(1), (6.84)
0 0

we get

/:o "1 < 02 (logn)" (/Ooo td/Q—l\/IWdt)r +n7"/? </Oo td/2—1J@10g(1/H(t))dt>T

0

Since H(t) < min(1,t="%?) and r > 2, it follows that

/ 2 de < 0/ (log n)” ( /0 L2 /H (D) dt) +n (6.85)

On another hand, we have

00 S o0 1
/ "1 dr < nq/Z/ x" 1 (/ td/21Hl/q(t)1t<Mdt) dx .
Un, Un 0

M = (nz)*? Ju, with u, = n'/?,

Selecting

we get, by taking into account previous computations, that

e < [ =, (6.86)
Un 0
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We handle now the quantity fUO: 2" P(maxi<g<p kBp ar (pk, ) > naz/(2C))dz. We shall apply this
time the Rosenthal inequality as we did to handle || max;<p<p kAp ar(p, pt)|lq, but with ¢ € (2,7). We
then infer that

max kB (pk, )| < n(Ji+J2+ ), (6.87)
with ~
Jp =n"1/2 logn/ Y271 /H ()1 prdt
0
Ja =2 [ H log(1/H () s s,
0
and

Jz = n1/2/ t2 HY (1)1 g dt
0

Note that since M = (nx)Q/ d Juy, with u, = nt/d, applying Holder’s inequality as in previous computa-
tions, we get

/ 2 iy < ) /O 42V (1) d (6.88)

On another hand, using that H(t) < min(1,¢ "%?), we have (since r > 2 and M%? = z\/n),

00 00 00 q
/ 2" < n~Y?(log n)q/ g1 (/ td/QItTd/4dt) dx
Un Un M

< n"4(log n)q/ "=y « Y (log n) 0T v "2

Therefore if
vp > 0”2 (logn)?" =: vn(2), (6.89)

we get,
/ 2" < T2 (logn)? . (6.90)

We handle now the term involving J,. We have
00 o] [ee] q
/ "1 gddye = nq/Q/ x 1 (/ td/zlmmg(l/H(t))ledt) dx .
Un Un 0
If v, > n~'/2, using that H(t) < min(1,¢"%?2), simple computations lead to
/ " de < n~"2(nvp) Y2 {(log(v/rnvn )T + 1}
Therefore, if (6.89) holds, we get

/ 2" de < 72 (logn)?. (6.91)

So finally if we choose
vp, = max(vy (1), v,(2)) ,
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the constraints (6.84) and (6.89) are satisfied. Starting from (6.66), and gathering the bounds (6.6),
(6.85), (6.86), (6.87), (6.88), (6.90), and (6.91), we get the desired inequality in the case || X||,4/2 = 1.
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