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Abstract
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1 Introduction and notations

We begin with some notations, that will be used all along the paper. Let Xy, ..., X,, be n independent
and identically distributed (i.i.d.) random variables with values in R?, with common distribution .
Let u, be the empirical distribution of the X;’s, that is

17’L
=— 0x, -

Let X denote a random variable with distribution p. For any z € RY, let |z| = max{|z1], ..., |zq|}-
Define then the tail of the distribution u by

H(t) = P(|X| > t) = u({z € R? such that |z| > t}).
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As usual, for any ¢ > 1, the weak moment of order ¢ of the random variable X is defined by
| X[ 2 := suptH(t) ,
teR
and the strong moment of order g > 1 is defined by

118 = E(|X]9) = g / 19 H (t)dt
0

For p > 1, the Wasserstein distance between two probability measures vi,v5 on (RY B(R?)) is
defined by

W2(n1,0m) = inf / & — yf} n(de, dy),
R4 xRd

well(vy,v2)

where | - |5 is the euclidean norm on R? and TI(vq, ) is the set of probability measures on the product
space (R? x R?, B(RY) ® B(RY)) with margins v, and vs.

In this paper, we prove deviation inequalities, moment inequalities and almost sure results for
the quantity Wp(in, 1), when X has a weak or strong moment of order rp for r > 1. As in [13],
the upper bounds will be different according as p > dmin{(r — 1)/r,1/2} (small dimension case) or
p < dmin{(r — 1)/r,1/2} (large dimension case). Most of the proofs are based on Lemma 6 in [13]
(see the inequality (6.4) in Section 6), which may be seen as an extension of Ebralidze’s inequality [12]
to the case d > 1. Hence we shall use the same approach as in [8], where we combined Ebralidze’s
inequality with truncation arguments to get moment bounds for Wp(pp, ) when d = 1.

There are many ways to see that the upper bounds obtained in the present paper are optimal in
some sense, by considering the special cases d =1, p =1, p = 2, or by following the general discussion
in [13], and we shall make some comments about this question all along the paper. However, the
optimality for large d is only a kind of minimax optimality: one can see that the rates are exact for
compactly supported measures which are not singular with respect to the Lebesgue measure on R? (by
using, for instance, Theorem 2 in [9]).

In fact, since the rates depend on the dimension d, it is easy to see that they cannot be optimal for
all measures: for instance the rates will be faster as announced if the measure y is supported on a linear
subspace of R? with dimension strictly less than d. This is of course not the end of the story, and the
problem can be formulated in the general context of metric spaces (X, d). For instance, for compactly
supported measures, Boissard and Le Gouic [7] proved that the rates of convergence depend on the
behavior of the metric entropy of the support of p (with an extension to non-compact support in their
Corollary 1.3). In the same context, Bach and Weed [2] obtain sharper results by generalizing some
ideas going back to Dudley ([11], case p = 1). They introduce the notion of Wasserstein dimension
dy(p) of the measure p, and prove that nP/SE(WE (fin, 1)) converges to 0 for any s > dy(p) (with sharp
lower bounds in most cases).

Note that our context and that of Bach and Weed are clearly distincts: we consider measures on
R? having only a finite moment of order rp for r > 1, while they consider measures on compact metric

spaces. However, the Wasserstein dimension is well defined for any probability measure (thanks to



Prohorov’s theorem), and some arguments in [2] are common with [9] and [13]. A reasonable question
is then: in the case of a singular measures on R?, are the results of the present paper still valid if we
replace the dimension d by any d' € (dj(u),d]?

The paper is organized as follows: in Section 2 we state some deviations inequalities for W), (un, 1)
under weak moment assumptions. In Section 3 we bound up the probability of large and moderate
deviations. In Section 4 we present some almost sure results, and in Section 5 we give some upper
bounds for the moments of order r of W),(py, 1) (von Bahr-Esseen and Rosenthal type bounds) under

strong moment assumptions. The proofs are given in Section 6.

All along the paper, we shall use the notation f(n, u,x) < g(n, u, z), which means that there exists
a positive constant C', not depending on n, u, z such that f(n,u,x) < Cg(n,u,x) for all positive integer

n and all positive real x.

2 Deviation inequalities under weak moments conditions

In this section, we give some upper bound for the quantity P(W} (i, 1) > ) when the random variables

X; have a weak moment of order rp for some r > 1. We first consider the case where r € (1,2).

Theorem 2.1. If || X||;pw < 00 for some r € (1,2), then for any x > 0,

X[ |
’.’%'7"7‘1% ifp>d(r—1)/r
|1 X |75 w(log n)" gUppr/@r=)\\"
PW (i, ) > ) < o 1+ log, T ifp=dor—1)/r
X 7.0 |
m ifpe[l,d(r—1)/r)

where log, () = max{0,log x}.

Remark 2.1. As will be clear from the proof, the upper bounds of Theorem 2.1 still hold if the quantity
P(W} (pin, pt) > ) is replaced by its maximal version

P <1I£kagxn kWP (pges 1) > n:r:) .

Since [|WE (pn, p)ll1 < (r/(r — 1)) ||WP (1n, 1) |50, according to the discussion after Theorem 1 in [13],
if p # d(r — 1)/r, one can always find some measure p for which the rates of Theorem 2.1 are reached
(see example (e) in [13] for p > d(r — 1)/r and example (c¢) in [13] for p < d(r — 1)/r).

We now consider the case where r > 2. We follow the approach of Fournier and Guillin [13], but we
use a different upper bound for the quantity controlled in their Lemma 13 (see the proof of Theorem

2.2 for more details).



Theorem 2.2. If | X||,pw < 00 for some r € (2,00), then, for any x >0 and any q > 7,

X ;p w 1 [e’) B q
POV s 10> ) < 0 (o ) + i s o (%ot o)
p,W

1 anq/2

where
exp(—cnr?) 1< if p>d/2
a(n,z) = C S exp(—cn(x/log(2 + afl))Q)lmSA if p=d/2
exp(—cnxd/p)lmSA if pe[l,d/2)

for some positive constants C,c depending only on p,d, and a positive constant A depending only on

p,d,T.

Remark 2.2. Let us compare our inequality with that of Theorem 2 of Fournier and Guillin [13] (under
the moment condition (3) in [13]). We first note that the inequality in [13] is stated under a strong
moment of order rp for r > 2, but their proof works also under a weak moment of order rp. Hence,
under the assumptions of our Theorem 2.2, Fournier and Guillin obtained the bound (we assume here
that || X||;pw = 1 for the sake of simplicity):

n

P(W) (hny 1) > ) < a(n, ) + W ;

(2.1)

for any € > 0 (the constant implicitly involved in the inequality depending on ). In particular, one

cannot infer from (2.1) that

X|[™2
limsup 2"~ P (W (i, 1) > x) < [ X0

r
n—00 x

which follows from our Theorem 2.2.

3 Large and moderate deviations

We consider here the probability of moderate deviations, that is

P (WEtns) > =) -

for < 1 in a certain range. As usual, the case a = 1 is the probability of large deviations.

As for partial sums, we shall establish two type of results, under weak moment conditions or under
strong moment conditions. If the random variables have a weak moment of order rp for some r > 1,
the results of Subsection 3.1 are immediate corollaries of the theorems of the preceding section. On the
contrary, the Baum-Katz type results of Subsection 3.2 cannot be derived from the results of Section 2

and will be proved in Subsection 6.4.



3.1 Weak moments
As a consequence of Theorem 2.1, we obtain the following corollary.

Corollary 3.1. If || X||;pw < 00 for some r € (1,2), then for any x > 0,
e Ifp>d(r—1)/r and1/r <a <1,

X5
lim sup nar—l]p <W£(ﬂn7,ua) > X ) < H ”TP,w .

00 nl—oz x"

o Ifp=d(r—1)/r and 1/r <a <1,
ar—1

, n x X N7
hyrln_)solip W]P’ (Wg(,un,,u) > nl—a) <

e Ifpel,dir—1)/r) and (d—p)/d <a <1,

: (pr—(1—a)rd)/d D x HXH:g,w
lim supn P <Wp (fn, ) > F) L —.

r
n—00 x

Remark 3.1. Let us comment on the case p = 1,d = 1. In that case, del Barrio et al. [4] proved
that, for 3 € (1,2), n®=V/BW,(p,, p) is stochastically bounded if and only if || X||., < co (see their
Theorem 2.2). This is consistent with the first inequality of Corollary 3.1 applied with » = £ and
a=1/r.

Remark 3.2. Let us now comment on the case p = 2,d = 1. In that case del Barrio et al. [5] proved
that, if the distribution function F of X is twice differentiable and if F’ o F~! is a regularly varying
function in the neighborhood of 0 and 1, then there exists a sequence of positive numbers v,, tending
to 0o as n — oo, such that v, W3 (pun, ) converges in distribution to a non degenerate distribution.
For instance, it follow from their Theorem 4.7 that, if X is a positive random variable, F' is twice
differentiable and F(t) = (1 — t~#) for any t > to and some £ > 2, then n(®=2/8WZ(u,,, 1) converges
in distribution to a non degenerate distribution. In that case, there is a weak moment of order 3, and,
for 5 € (2,4), the first inequality of Corollary 3.1 applied with » = 3/2 and o = 1/r gives

X8
tmsup <"(ﬁ_2)/ﬁW§(un,u) > m) < 1Xlls
n—00 2872

Hence, in the case where 8 € (2,4), our result is consistent with that given in [5], and holds without

assuming any regularity on F'.
As a consequence of Theorem 2.2, we obtain the following corollary.

Corollary 3.2. If || X|,pw < 0o for some r € (2,00), then, for any x > 0 and any

1 d—p
s . 1
aG(max(z, >,],

") I
x

lim sup n® P (Wg(un, w) >

n—»00 nl-a



3.2 Baum-Katz type results

We first consider the case where the variables have a strong moment of order rp for r € (1,2).

Theorem 3.3. If || X||,p < oo for some r € (1,2), then for any x > 0,
e Ifp>d(r—1)/r and1/r <a <1,

o
-2
nz:lno” P <lr§nl?§Xn EW D (pgs 1) > no‘x> < 00.

o Ifpel,d(ir—1)/r) and a € ((d—p)/d, 1],

(pr—(1—a)rd—d)/d D a
;n P (1215?71 kW2 (g, ) > n x) < 00.

hd pr € [1,d(T - 1)/T);

— 1
hl P (d—p)/d 1r
31 - P <1r§11]?§><n EWP (g, p) > n (logn) x> < 00.

Remark 3.3. Our proof does not allow to deal with the case where p = d(r — 1)/r. As an interesting
consequence of Theorem 3.3, we shall obtain almost sure convergence rates for the sequence W} (1, )

(see Corollary 4.1 of the next section).
We now consider the case where the variables have a strong moment of order rp for r > 2.

Theorem 3.4. If | X||,p, < oo for some r € (2,00), then, for any

1 d—p
S A I
ae(max<2, ; ) ]
ar—2 D a
nzln P<lr%1]?%<nkWp(Mk,p)>n :c> < 00.

4 Almost sure results

Using well known arguments, we derive from Theorem 3.3 the following almost sure rates of convergence
for the sequence W2 (pin, 1) (taking o = 1/r in the case where p > d(r — 1)/r, and applying the third
item in the case where p > d(r — 1)/r).

Corollary 4.1. If || X||,, < oo for some r € (1,2), then
o Ifp>d(r—1)/r,
lim n(r_l)/ng(pn,p) =0 a.s.

n—o0



° pr S [17d(74 - 1)/T)7 1d
nP
1 _ p =
nh_r)n (Tog m)i7" W2 (i, i) =0 a.s.

Remark 4.1. Let us comment on these almost sure results in the case where p =1 and d < r/(r —1).

Starting from the dual definition of Wi (uy,, i), we get that

> (Xl —E(|Xk|2))' : (4.1)

1
Wi (ptn, ) > —
n k=1

Now, by the classical Marcinkiewicz-Zygmund theorem (see [15]) for i.i.d. random variables, we know

that

n

Z (1 Xkl2 — E(|Xk[2) )‘ =0 a.s.

k=1

(r=1)/r
lim i

n—o0 n

if and only if || X||, < oo. It follows that, for p = 1, the rates of Corollary 4.1 are optimal is the case
where d < r/(r —1).

We now give some almost sure rates of convergence in the case where fooo tP=1\/H(t)dt < 0o. Note
that this condition is a bit more restrictive than || X||2, < oo (but is satisfied, for instance, if || X||,, < 0o

for some r > 2).

Theorem 4.2. Assume that [~ t*~1\/H(t)dt < oo.

e Ifp>d/2, there exists an universal positive constant C' depending only on (p,d) such that

n [oe)
li ——WP(n,p) < C | tPTL/H@)dt a.s.
l,ﬂis;ip’/loglogn Ptns p) < /0 (t)dt a.s

e Ifpe[l,d/2), there exists an universal positive constant C depending only on (p,d) such that

p/d o]
> Wg’(pn,p)gc/o tr=Y/H(t)dt a.s.

lim sup <7
n—oo \loglogn

Remark 4.2. In the case p = 1,d = 1, it follows from the central limit theorem for Wi (uy,, 1) (see
[4]) and from Theorem 10.12 in [14] that the sequence (y/n/loglogn Wi (fn, it))n>0 is almost surely
relatively compact if fooo VH(t)dt < oo, which is consistent with the first item of Theorem 4.2.

Remark 4.3. For p = 1, concerning the rate of Corollary 4.1 when d > r/(r — 1) or the rate Theorem
4.2 when d > 2, the situation is not as clear as in the small dimension case. According to Talagrand
1/d

[17], if d > 2 and p is the uniform measure on [0, 1%, Wy (u,, 1) is exactly of order n~/? almost surely.

More generally, let us recall a famous result by Dobri¢ and Yukich [10]: if d > 2 and p is compactly
supported, then

lim W, (i, 1) = ¢(d) / (fu(zx))d=D/d o, (4.2)

n—o0



where ¢(d) depends only on d, and f, is the density of the absolutely continuous part of u (hence the
limit is zero if u is singular with respect to the Lebesgue measure on R%). Corollary 4.1 or Theorem
4.2 are difficult to compare with (4.2), because the results do not hold under the same assumptions

on d and r. Some reasonable questions are : can we prove (4.2) if || X||, < oo for some r € (1,2) and

d>r/(r—1)?7 can we prove (4.2) if [ \/H(t)dt < oo and d > 27

5 Moment inequalities

T

» When the variables have a

In this section, we give some upper bounds for the moments ||[W} (tin, 1|
strong moment of order rp.

As will be clear from the proofs, the maximal versions of these inequalities hold, meaning that the
quantity |[W}5 (pn, p)|], can be replaced by

T

1

nT‘

k P
max. Wh (e, 1)

T

in all the statements of this section.

5.1 Moment of order 1 and 2

Theorem 5.1. Let g € (1,2]. If || X, < oo, then, for any M > 0,

( oo 1 o0
/ tpilH(t)le dt + /1 / tpil(H(t))l/qltSM dt ifp>d(qg—1)/q
0 n 0

HWI?(IU'THIU’)Hl < / P H (8) L ar dit + g1

0 /i /0 tpfl(H(t))(dfp)/thM dt ifp=d(qg—1)/q

/ PVH (8)Lyspg dE + —7 / PV H@) P A pdt ifpe(1,dg—1)/q)
0 0

where the constant implicitly involved does not depend on M.

Remark 5.1. In particular, if H(t) < Ct P(log(1 +t))~? for some C' > 0,a > 1, then

19l =0 (Gt )

Remark 5.2. If || X[, < oo for r € (1,2) and p # d(r — 1)/r, we easily infer from Theorem 5.1 that

Xlrpw
LLJS”/T ip > dir=1)/r

X170

oo ifpe[l,dir—1)/r)

2 )], <

which can also be deduced from Theorem 2.1. If p = d(r — 1)/r, we get

X |IFp.0 (log )
np/d )

HW;?(NVL,N)Hl <



Now, if || X||2p.w < 00, we get from Theorem 5.1 that

(11X 5,0 logn

NG
hpw(logn)?

\/ﬁ
R

p
2p,w .

if p>dj/2

Xl

W5 (ks )|, < if p = d/2

Finally, if fooo tp_l\/mdt < 00, the rates in the cases p > d/2 and p = d/2 can be slightly improved
(taking ¢ = 2 and M = oo in Theorem 5.1); this can be directly deduced from Theorem 5.2 below.
Note that all those bounds are consistent with that given in Theorem 1 of [13], and slightly more
precise in terms of the moment conditions. Hence, the discussion on the optimality of the rates in
[13] is also valid for our Theorem 5.1 (see Remark 5.3 below). For p > d/2 and || X||; < oo for
some ¢ > dp/(d — p), it follows from Theorem 2(ii) in [9] that lim inf, oo n?/ ||W} (tn, p)||; > 0 if
1 has a non degenerate absolutely continuous part with respect to the Lebesgue measure, and that
lim sup,, _, o WP/ ||WE (1in, p)||, = 0 if o is singular. Still for p < d/2, we refer to the paper [2], which
shows that, for compactly supported singular measures, the rates of convergence of ||[W) (pin, p)|l1 can

be much faster than n—?/9.

Theorem 5.2. If [[°tP~1\/H(t)dt < oo, then

1/ [ 2

— </ P~/ H (t) dt> if p>d/2

n \Jo

p 2 (log(n))* ([ 1 2

W5 (s )|, < § == trH(t)dt ) ifp=d/2
0

([ twmdtf ipelld)

Remark 5.3. According to the discussion after Theorem 1 in [13], if p # d/2, one can always find some

measure  for which the rate of Theorem 5.2 is reached (see example (a) and (b) in [13] for p > d/2
and example (c) in [13] for p < d/2). Note also, that, in the case d = 1,p = 1, del Barrio et al. [4]
proved that \/nWi (pin, 1) is stochastically bounded if and only if [i* VH(t)dt < oo (see their Theorem
2.1(b)), which is consistent with the first inequality of Theorem 5.2. For d = 1,p > 1, we refer to the
paper by Bobkov and Ledoux [6] for some conditions on u ensuring faster rates of convergence. Finally,
when p = 1,d = 2 and p is the uniform measure over [0, 1]?, Ajtai et al. [1] proved that E(Wq (s, 1))
1/2

is exactly of order (logn/n)'/#, while we get a rate of order log n/y/n, which is therefore suboptimal in

that particular case.

5.2 von Bahr-Esseen type inequalities

We now consider the case where r € (1, 2).



Theorem 5.3. If | X ||,y < 0o for some r € (1,2), then

D
B s ar -
= ifpelld(r—1)/r)
nrp/d

Remark 5.4. For d = 1, the first inequality of Theorem 5.3 has been proved in [§8]. Our proof does

not allow to deal with the case where p = d(r — 1)/r. However, in that case, it is easy to see that

W2, )| < 1082 ( /0 e () dt>r

nr—l

(same proof as the second inequality of Theorem 5.2). For p = 1 and d < r/(r — 1), using the dual
definition of Wy (un, i), we get the upper bound

n T

LS () — ()

k=1

X1

sup < (5.1)

feA

T

where A is the the set of functions f such that |f(z) — f(y)| < |x — y|. Note that (5.1) may be seen

as a uniform version of the von Bahr-Esseen inequality (see [3]) over the class A;.

5.3 Rosenthal type inequalities
We consider now the case where r > 2.

Theorem 5.4. If || X||,p, < oo for some r > 2, then
(1 0 X
— tP=1\/H(t) dt +w ifp>d(r—1)/r
nr/2 0 nr—1
1 o0 T
= < tplw/H(t)dt> + i HXH:? ifd/2<p<d(r—1)/r
0

r/2 r/d
W2 (i, )l < { " "
. ' (log n)r > d/2—1 ' (log n)2 Tp ;
el WA VE® ) + X i p=df2
| X |75 .
ol ifpell,d/2)

where, for the second inequality, ~ can be taken as v = de(gipz_ fg) for any € > 0 (and the constants

implicitely involved in the inequality depend on ).
Remark 5.5. For d = 1, the first inequality of Theorem 5.4 has been proved in [8]. As a consequence
of the two first inequalities of Theorem 5.4, we obtain that, if p > d/2,
[e.e]
lim sup VA [ W2, )| < [ 87 /H (D) dt
n—00 0
As a consequence of the third inequality of Theorem 5.4, we obtain that, if p = d/2,
. n R
lim sup Vi W2 (g, )|l < tP=L\/H(t)dt .
0

n—00 10g n

10



6 Proofs

The starting point of the proofs is Lemmas 5 and 6 in [13], which we recall below.

For £ > 0, let P, be the natural partition of (—1,1]% into 2% translations of (—27¢,2¢]¢. Let also
By = (—1,1]% and for any integer m > 1, B,, = (=2™,27]¢\ (-=2m~1,2m~1]9_ For a set F C R% and
a > 0, we use the standard notation aF = {ax : * € F}. For a probability measure v on R? and
m > 0, let Rp,,v be the probability measure on (—1,1]¢ defined as the image of v|g,, /v(B,,) by the
map z — x/2™. For two probability measures p and v on R%, by Lemma 5 in [13], there exists a

positive constant x, 4 depending only on p and d such that

Wz?(ﬂay) < "ip,d’Dp(:u'vV) ) (6.1)
where
Dy, v) = Y 27" |u( B w)l + Y 27" (u AV(Bm))Dp(RB,, 1 RB,u V) 5 (6.2)
m>0 m>0
with 21 w(2™F N By,) (2™F N By,)
— v
Dy(Rp, . Rp,v) = —— > 27 3 |E ~ m (6.3)
>1 Fep, M(Bm) V(Bm)
In addition, by Lemma 5 in [13],
3 2r—1
Dyl < (5325 ) Aplason)
where
v)=3 22" 2Pt N |u(2"F N By) — v(2"F N By)| .
m>0 >0 FeP,
From the considerations above, there exists a constant C depending only on p and d such that
W (ks ) < CAp(pges 1) (6.4)

where pj, = %z;g:l 0x,. This inequality may be seen as an extension to the case d > 1 of Ebralidze’s
inequality [12], which we used in [8] to obtain moment bounds for W) (i, 1) when d = 1.

As in [8] we shall use truncation arguments. For a positive real M, let Cyy = [~ M, M]%,
,uk, ZmeZQ pt Z |,uk QmFﬂBmﬂCM) (QmFﬂBmﬂCM)|
m>0 £>0 FeP,
and
By (s ) = 2™y 27PN " {1 (27 F N By N Clyp) — (2™ F N By N Cy)]
m>0 >0 FePpy

With these notations, it follows from (6.4) that

Ap(pu, 1) < Ap ar (i, 1) + By ar (s 1) - (6.5)

For the proofs, we shall follow the order of the theorems, except for Theorem 5.3 whose proof comes
naturally after that of Theorems 2.1 and 2.2.

11



6.1 Proof of Theorem 2.1

Starting from (6.5), we get that

p <
P (s K9V > o) < (o KApar(on ) > (n0/20) )

+ 7 (s KBpar( ) > (10/20)) . (69

Let y = x/2C. By Markov’s inequality at order ¢ € (r,2) and s € [1,7),

([maxi<r<n b Ap,a (prs |7

P (lglggn kAp v (e, 1) > ny) < iyt 1, (6.7)
| maxi<p<pn kBp ar(pr, 1) ||

P <1r§n,3§<n k By, n (b, 1) > ny> < = —"nsy’; s, (6.8)

To deal with (6.7), we first note that

kA
max. p.M (ks 1)

q

< Y 2y o max > k(2™ F 0 By, 0 Cy) — k(2™ F N By, N Cay)|
FePy

1<k<n
m>0 >0 .

Now, clearly
kup(2™F N B —ku(2"FNB
1?12{%;' k(2™ F 0 By NCay) — k(2™ F N By, NCir)|
I3
q

<

< 2n (uW(Bm NCx )Y . (6.9)

1rgnlggxn (kpw(Bm NCar) + kp(Bm N Car))

On the other hand, by the (maximal version of) von Bahr-Essen inequality (see [3]),

q
< np2mF N By, NCh),

H max |kpp(2™F N B, NCpr) — kp(2™F N By, NCay)|
1<k<n q

so that, by using Holder’s inequality and the fact that |[P,| = 2¢¢,

max |kpk(2"EF N By, NCar) — k(2™ EF N By, N Car)|

td(g—1)/q,,1/q 1/q
1<k<n <2 n (M(Bm N CM)) .

q

(6.10)
Combining (6.7), (6.9) and (6.10), we obtain that

q

1 1 1 (g— _
pm /4 (¢—1)/q9td(q—1)/q
P <1r§nkaé<n kAp ar(pn, o) > ny> < " m5202 (u(Bp NCar)) ;>0 5p7 10in (1,71 2 >

(6.11)
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In the same way, for the term (6.8), we obtain the upper bound

1 S 1 . —(s— S S— S

P (fgléié( kByp nr (e, p1) > ny) < — Z 2P (u(Byy, ﬂC&))l/ Z opf Tin <1,n (s—1)/sgld(s—1)/ )
m>0 >0

(6:12)

From (6.11) and (6.12), we see that three cases arise:

e If p > d(r — 1)/r, then, taking ¢ > r such that p > d(q — 1)/q and s = 1, we get the upper bounds

P <1r<nlgx kAp m (pie, 1) > ny)

q
1 1/
< na—lya Z 27" (u(Bm NC)) | <

(/OOO tpl(H(t))l/thMdt)q , (6.13)

m>0 anlyq
and
P < max kBp v (p, 1) > ny> < —/ tPTrH (8) 1y dt (6.14)
1<k<n Y Jo

Using that H(t) < || X ||rp.wt ™" for r € (1,2), we infer from (6.6), (6.13) and (6.14) that

1 MP(Q*T)
P < max /{?Wp(ﬂk, ) > nx) < HXHrp, + ’

1<k<n xMPrr—1) nd—1pq
Taking M = (nz)'/?, we obtain the desired result when p > d(r — 1)/r.

o If p=d(r — 1)/r, then, taking ¢ = r, we get the upper bound

P (1%?5 kAp m (pe, 1) > ny)

logl S (u(BnCan)" | < (b%n): (/Oootp_l(H(t))l/rlthdt>r. (6.15)

nr o n"ly
Using that H(t) < || X||7hwt ™" for r € (1,2), we infer from (6.6), (6.14) and (6.15) that

1 (log n)" M "
p -
P (1121]?? kW2 (g, 1) > naz> < I X178. (x -+ Ty <1 +log (H Hrp,w)) > .

Taking M = (nz)'/?, we obtain the desired result when p = d(r — 1)/r.

o If p < d(r—1)/r, then, taking ¢ > r and s € (1, r) such that p < d(s —1)/s, we get the upper bounds

P (11335 kAp, v (e, 1) > ny)

q

1
€ i | S 2 B e | <
Y m>0

</Ooo tpl(H(t))l/qltSMdt>r , (6.16)

nar/dya
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and

P B
<1r£;?§nk o M (ks 1) > ny>

1
nsp/dys

1
nsp/dys

S (WBaNCNY | <

m>0

(/OOO tp‘l(H(t))1/81t>Mdt>S , (6.17)

Using that H(t) < || X ||rp.wt ™" for r € (1,2), we infer from (6.6), (6.16) and (6.17) that

) . 1 Mpla—r)
P <1I§nl?§Xn kWp (Mk‘a M) > nx) < HXHrp,w nsp/dstp(r—s) + nqp/d.%'q .

Taking M = n'/4z'/?, we obtain the desired result when p < d(r — 1)/r.

6.2 Proof of Theorem 2.2

Let » > 2. Note first that, by homogeneity, the general inequality may be deduced from the case

where ||X||;pw = 1 by considering the variables X;/||X||;p . Hence, from now, we shall assume that

[ X [lrp = 1.
According to the beginning of the proof of Theorem 2 in [13], we get that
W (s 1) < C 3 2™ [ (Bon) — (B)| + V., (6.18)
m>0

for some positive constant C' = C, 4, where the random variable V;!" is such that
P(VP > z/(2C)) < a(n,x). (6.19)

Consequently, it remains to bound up the quantity

P> 2" |un(Bm) — p(Bm)| = z/(20)

m>0

For a positive real M, let Cpy = [ M, M]¢,
A (s 1) =D 2P (B N Cag) — pu( By N Cag)|
m>0

and

By (b ) = > 2P (B N Cip) — (B N Cp)|
m>0

With these notations,

P> 27 [n(Bm) — p(Bm)| = 2/(2C) | <P (A5 3(pn, i) > 2/(4C))

m>0

+P (By ar(pn, ) > 2/(4C)) . (6.20)

14



Let y = x/4C. By Markov’s inequality at order ¢ > 2 and 1,

q
HA un,u)Hq
P (A} a1 (s 1) > y) < yq : (6.21)
P (B v, 1) > y) < ; (6.22)
Applying Rosenthal’s inequality, we get
N 1 1/2 1 1/
1A, v (s g < /n Z 2P 2 (B N Car) + Py Z 2P (B, N Cr)
m>0
1
< N tp "WH (t) < pdt t / P HY () 1< prdt
0
Choosing q > r, it follows that
1 1 pla—r)/q 1/q
45 astimenly < = [0 A+ 2 (s ()
’ NN -D/a \'~p
1 MP q-7)/q
< N e LHt)dt + — (6.23)
the last inequality being true since we assumed that sup,ot"?H(t) = 1.
On another hand,
1By as (s 1) [11 €Y 27" (B N Cip)
n>0
[e.e]
< /0 PUH (8) 1w ppdt < MPOT) sup t"PH () < MPA-T) (6.24)
Gathering (6.20) - (6.24), we get that for any ¢ > r,
1 00 a  pgpla—r)  ppp(l-r)
> 27" |un(B) — w(Bp)| > 2/(20) | < — P H(t)dt ) + — + ;
= xind/2 \ J, xini—1 x
m=
(6.25)
Hence choosing M = n'/Pz/?  we infer from (6.18), (6.19) and (6.25) that for any g > 7,
P 1 1 > p—1 !
P (WP (pin, 1) > ) < a(n,z) + e S i P~/ H(t)dt ) (6.26)
which is the desired inequality when sup;sq t"PH (t) = || X |rhw =
6.3 Proof of Theorem 5.3
We start from the elementary equality
R — r—
o | kWD (1t 1) ) 7“/0 P <1r<nl?X KW P (g, 1) > nx) dx . (6.27)




Then, we use the upper bounds (6.6), (6.11) and (6.12). We consider two cases:

o If p > d(r — 1)/r, let ¢ > r such that p > d(q — 1)/q, and let M = (nz)'/?. From (6.6), (6.13) and
(6.14) we get the upper bound

r—1 D
/w P (121]?%(” W2 (g, p) > nm) dx

) o0 1 [e%¢] [e%] q
<</ z" 2 (/ tp_lH(t)1t>Mdt> dx + ql/ a1 (/ tp_l(H(t))l/qlKMdt) dr. (6.28)
0 0 n 0 0 B

Note that

X7
2

(6.29)

nr-

0 0 1 0
A xT_Q (/0 tp_lH(t)1t>(nm)l/pdt> dr < F A trp_lH(t)dt <

Let 8 < (¢ —1)/q. Applying Holder’s inequality, we obtain

1 > r—1l—q * p—1 1/q a
s [T ([T e ) ) o

- / & () a1 ( / tq(””5)H<t)1t<<m>1/pdt> dx
n 0 -

0
(g—1=gB)/p oo 00
n — /0 $a(=1+8) 1 (1) </0 mr1q+(q1q5)/P1x2tp/ndx> dt. (6.30)

Taking S close enough to (¢ — 1)/q in such a way that g+ 1 —7r— (¢ —1—¢B)/p > 1, we get

| N A Ll 1 ! R
/ a1 ( / = (H (1) q1t<(nm)1/l7dt> do < : (6.31)
0 0 -

na—1 nr—1

<

<

Gathering (6.28), (6.29) and (6.31), we obtain the desired result.
oeIfp <d(r—1)/r,let ¢ >r, s € (1,7) such that p < d(s — 1)/s, and let M = n'/42'/P, From (6.6),
(6.16) (6.17) we get the upper bound

1 oo [e.e] S
r—1 D r—1—s p—1 1/s
/:,3 P (121]3?”%% (tges o) > nx) dr < o7 /0 x (/0 tPTH(H()) 1t>Mdt> dx

- oo [e.e] q
+Ld/ a1 (/ tpl(H(t))l/qlKMdt) dr. (6.32)
nqp/ 0 0 -

Proceeding exactly as for (6.30)-(6.31), with the choice M = n!/4z/P we get

1 > r—1l—q > p—1 1/q / 1 > rp—1 HX‘££
e | x ; P (H (1) ycpi/agpdt | da <<W ; t"PTrH(t)dt < o (6.33)

In the same way, we get

X175

1 > r—1—s * p—1 1/s ° 1 * rp—1
W/O X (/(; t (H(t)) 1t>nl/d$1/pdt dQT << W 0 t H(t)dt << in’/d . (634)

Gathering (6.32), (6.33) and (6.34), we obtain the desired result.
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6.4 Proof of Theorem 3.3

Let r € (1,2). We start from the upper bounds (6.6), (6.12) and (6.11).

e If p > d(r —1)/r, let ¢ € (r,2] such that p > d(q — 1)/q and let M = n®/?. From (6.6), (6.13) and
(6.14) we get the upper bound

nl—a 00 1 nl—qa 00 . 1 q
1[»(1%?5 KW (i, )>n°‘m> <™ /0 PH (1 it ( /0 wL(H (1)) qltgna/pdt> .

Hence, it remains to prove that

0 0 0 00 q
Zno‘(r_l)_l/ P H (6)1yp/as,dt < 0o and Zno‘(r_‘n_l </ tp_l(H(t))l/qltp/agndt> < 00.
n=1 0 0

n=1
(6.35)
Interverting the sum and the integral, we easily get that
OO oo 00
Zna<r—1>—1/ P H ()10, dt <</ T H (t)dt < || X By < oo (6.36)
0 0
Arguing as in (6.30) with 8 < (¢ — 1)/q, we get
oo q o
( / r~Y(H (t))l/Q1tp/a§ndt> < nela-1=ad)/p / 1P H (£)1 0yt -
0 0
Hence, the second series in (6.35) will be summable provided
e 00
Zna(rq)+a(q1q5)/p1/ t1P= B H (1)1, /0 <, dt < 00 (6.37)
0 <

n=1
Taking (3 close enough to (¢ — 1)/q so that a(r — ¢) + a(q¢ — 1 — ¢B)/p < 0 and interverting the sum
and the integral, we get that

Y petrmarelaizad)/p=l /0 1P H (1)1 0 dt < /0 T H(fdt < || X B < 0o, (6.38)
n=1

The result follows from (6.35), (6.36), (6.37) and (6.38).

elfp<d(r—1)/r, let ¢ € (r,2], s € (1,7) such that p < d(s—1)/s, and let M = nP=d1=))/(P) From

(6.6), (6.16) and (6.17), we get the upper bound

P < max kW] (pug, p1) > n%ﬂ) < L </ tp_l(H(t))1/81t>n(p—d(1—a))/(dp)dt)
0

1<k<n nsp/dys
nd—ac © q
t T </0 P HH )Yy py-a1-a ) dt) . (6.39)
Proceeding as in (6.37) (taking the quantity 8 < (¢ —1)/q close enough to (¢ — 1)/q in such a way that
(p—d(l—a))((r—q)+ (g—1—-75q)/p) <0), we get that

nd—ae a

o0
Z" pro(imard=did— nap/d (/ tpI(H(t))l/qltgmpdua>>/<dp>dt> < || X5 < oo (6.40)
0
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In the same, we get

oo (l—erd— nsS—sa o s § .
> nlor-(-ai-ayal < | ) 1 a))/dp)dt> <X <00, (641)

The result follows from (6.39), (6.40) and (6.41).

oelf p<d(r—1)/r, let g € (2], s € (1,7) such that p < d(s — 1)/s, and let M = (logn)/?". From
(6.6), (6.16) and (6.17), we get the upper bound

1 > s
d—p)/d 1/r -1 1/s
P (fg?fn KW (pig, i) > n'PV4(log n)"/ ) < logn)/rzs </o P (H (L)Y 1t>(1ogn)1/prdt>

1 © q

+ 7(10g n)q/rxq (/0 tp 1(H(t))l/qltg(logn)l/Wdt> . (642)

Proceeding as in (6.37) (taking the quantity 8 < (¢ —1)/q close enough to (¢ — 1)/q in such a way that
(¢/r)+ (q—1—pq)/(pr) > 1), we get that

q

[oe) 1 e - i
> n(log n)i/r < /O 1 (H (t))l/qltg(lognp/mdt) < | X7 < oo (6.43)
n=1

In the same, we get

[e.9]

1 - . s ;
ZW (/0 L (H ()Y 1t>(logn)1/wdt> < X B < oo (6.44)
n=1

The result follows from (6.42), (6.43) and (6.44).

6.5 Proof of Theorem 3.4

Let r > 2. As in the proof of Theorem 2.2, we assume without loss of generality that ||X||,pw = 1;
hence, we can use directly some of the upper bounds given in the proof of Theorem 2.2.
From (6.18), we see that

p < pm — P .
g, KV o) < € 3 27 g [k (Br) = kis(Br)| + € i K- (649

Now, for any =z > 0

P <1r<nka<x kVE > x/(2C) ) Z]P’ kVE > x/(20)) <n max ]P’(kVp > z/(20)) .
k=1

By (6.19), it follows that, for any x > 0,

P <121]32<n kVE > x/(2C’)> < n max a(k,z/k) < na(n,z/n), (6.46)
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the last inequality being true because k — a(k,x/k) is increasing. Now, by definition of a(n,x), we

1 d—p
- —) 1
ae<max<2, ; )]

ar—2 P a
nz:ln P <1r§n]?§xn kEV, >n x/(2C)> < 00. (6.47)

infer that, for any

Hence, it remains to prove that
oo
nz:lnM2IP’ Z:Ome max. |k (Bm) — k(By)| > nx/(20) | < oo.
= m>

Arguing as in the proof of Theorem 2.2, and using a maximal version of Rosenthal’s inequality (see for

instance [16]), we get that, for any ¢ > r and M > 0,

n(lfc“)q
P> 27" max |kug(Bm) — ku(Bm)| > n®z/(20) | <

1<k<n xQnQ/2
m>0 -

([ o)

xd

nl—qa 00 q n1—2a 00 2
+ ( / tlel/q(t)ltSMdt> +— ( / tplx/H(t)ledt) . (6.48)
0 0

Clearly, since a € (1/2,1], taking g large enough, we get that

0 n(l—a)q 00 q
> nor? —7 (/0 tPI\/H(t)dt> <00, (6.49)
n=1

Let M = n®/?. Arguing as in (6.30) with 8 > 1/2, we get

00 2 &
< tpl\/mltp/a>ndt> < n*(1=28)/p / t2(p71+6)H(t)1tp/a>ndt'
0 0

Hence, the sum over n of the last term in (6.48) will be finite provided

o0

3 palr=2)+a1-28)/p-1 / £20- 1) ()1, df < 00 (6.50)

n=1 0

Taking (3 close enough to 1/2 so that a(r —2) + a(1 — 28)/p > 0 and interverting the sum and the
integral, we get that

> pelr=2yre(=28)/p=1 / 2P0 B (1)1, -, dt < / T H(fdt < | X|Br < oo, (6.51)
0

n=1 0

Arguing as in (6.30) with g < (¢ — 1)/q, we get

o q o0
</ t”ﬂH”Q(t)ltp/Kndt) < nolt-barp / 0D H (1)1l
0 B 0 )
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Hence, the sum over n of the second term in (6.48) will be finite provided

Z na(rfq)qLa(qflqu)/pfl / tQ(pflJrﬁ)H(t)]_tp/aSndt < 00. (652)

n=1 0

Taking /3 close enough to (¢ — 1)/q so that a(r — q) + a(¢ — 1 — Bq)/p < 0 and interverting the sum
and the integral, we get that

$ " palr-atale-1-50/p-1 / 018 (81 < / #Hd < X2 < 0. (6.53)
n=1 0 0

6.6 Proof of Theorem 4.2

Recall that ~
pn(Fm) — p(Fm)
pn(Bm)  p(Bm)

Dy(R, fims R 1) = ot ‘122 53

>1 FePy

where E,, = 2™F N B,,. Let a € (0,1) and

G

ng = le and mg = ngy1 — Nk -

Note that my ~ (1 — a)k™*ng, as k — oco. Setting

Hnyn

Z(SXa

n—mn
kl ni+1

we infer that, for ny +1 < n < ng,q,

Mn(ﬁm) _ ,U'(Fm)

_ nk(ﬂﬂk(ﬁm) - N(Fm)) + (n— nk)(/‘nk,n(ﬁm) — u( ~m)) n 1(Bm) = pn(Bm)

npin (Bm) N pin(Bm) tin (B (B

Taking into account that, for any positive measure v,

S 2 S u(F) < (2~ 1) (B,

>1 FePy

pw(Fp) .

simple algebras lead to the following inequality: for ng + 1 < n < ngyq,

ZQ—pZ Z nk‘unk(F Fm < 22 pl Z ,U'nk(ﬁm) . M(Fm)
>1 FePpy Tpin ( 2>1 FeP, Hony, (Bm) M(Bm)
+ 2 |pn,(Bm) — pn(Bm)| 4 L png (Bm) — (B
2r —1 Mn(Bm) 2r —1 ,U'n(Bm)
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Similarly, for ny +1 <n < ngq,

Zz—pf Z (n_nk)‘ﬂnk,n(Fm) _M(Fm)’ < (n _nnk‘) Zz—pé Z Mnk,n(Fm) . M(Fm)

)
2(n — ng) |pngn(Bim) — pin(Bim)| n (n —ng) |pnen(Bm) — 1(Bm)|
(2 —1)n pin(Bm) (2 —1)n pin(Bim) .

So overall, for ng +1 < n < ng4q,

n—n
DP(RB’”’U"’RBM'M) < ’DP(RBmﬂnkaRBmN) + %
|ttny (Bm) = ttn(Bm)| | 1 |pin, (Bm)
(

Dy (R, Hongns RB,, 1)

+ - M(Bm)‘ 1 ‘,U'n(Bm) B :U'(Bm)’
)

(n = 1) | n(Bm) = i (Bm)| | (0 = 1) | n(Bm) — #(Bm)|
- n tin(Bim) " 2n fin(Bm) (6:54)

o If p>d/2, let

log] 0
Un:\/w and V:/ =1\ /H(t)dt .
0

Starting from (6.2) and (6.54), it follows that

max M7M < § :2pm p(RBmMnk,RBmM)
np+1l<n<ngyq m>0 Unpqq

— D N,
+  max MZmeM(Bm) o (R B Py R 1Y)

np+1<n<ngqq >0 Ung41
n max <3+ (n—nk)) Z 2pm‘lu'n(Bm) _M(Bm)’
USRS A T n m>0 Unj41
+ max nk Z 2rm ngn(Bin) = 1(Brm )| .
np+1l<n<ngqq — Ung41

Using the Rosenthal inequality (with the constants given in (4.2) of Theorem 4.1 in [16]), as in the
proof of Theorem 2.2, we get that there exist positive universal constants c¢i, co and cg such that for
any ¢ > 2 ,any M > 0 and A > 0, and any € > 0,

max Z 2P 1 (By) — p(Bn)| = (A + )V, .,

nk<n<nk+1

q q e’} q
_a 4/2,,9/2 174 _ @ q / 2L g Y1 dt
< <>\V”kvnk+1> 4 nk+1 * <>\V’I’Lkvnk+1> Tk < 0 ( ( )) =M

C3Mk+1 *
+ 7+/ PV H ()15 ppdt
eVngon,., Jo
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Let x > 1 and choose ¢ = g = vloglogn; with v such that

Cl\/_

=1/k and ylogk > 1.
With this choice of ¢y, it follows that
ak
1 2 /2
S o ()t <
k>Ko kUngiq

On the other hand, by Hélder’s inequality, setting 8 = p — 2p/q,

o q o
( / tp_l(H(t))l/qlthdt> < p 9201 4 ga 1 pra-2 gl / 2~V H (t)dt .
0

0

Choose now

1/(2p)
M=M,=a _ "k
log log n
with a such that
4dcoaly 1)
=" T _1/k
eVp

Let K; be such that qx, > 4. It follows that

q o) q
2 q p—1 1/q
g - t H(t 1 dt
<5Vnkvnk+1> 1A </0 (H(®)) =M >

k> Ky

dcoaP log log ny, _
< Z < 7) nk+1T<< Z k% loglogn; < 0o.

E>Kq k>Ky

With similar arguments, one can prove that, for any € > 0,

n—ng

Z 2pm’ﬂnk,n(3m) - M(Bm)’ 2 &“Unk_H < 00.

m2>0

P max
nk+1§n§nk+1 n

By the direct part of the Borel-Cantelli lemma, it follows that, almost surely,

Dy (pin, 1 D
lim sup max M < AV 4+ lim sup Z 2P 1(Bp,) b

k—oo Mk+tl<n<ngyi Un k—o0 m>0 Unpqq

DP(RBmlunk,nJ RBmlu’)

+limsup  max (n=nw) Z 2P 11(B,)

k—oo Mktl<n<ngig >0 Unjgqs
Let now
kl—oz
S = .
’ [pln?}
Note that
> 27" u(Bi)Dp(Rpyfing, Reit) < > 2"
m>sg+2 m>sg+2

<C, [ T H(t)dt < Cp27P% / t?P= H (t)dt .

2%k 0

22
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It follows that
DP(RBm/’Lnk ) RBmlu’)

lim 2P (B =0 a.s. (6.57)
k—o0 S U"Ic-H
Next, let
2m—1 1
by = / =L/ H () dt 1> +/ P '/H(t)dtlp<y and B=Y by =V +/ =L\ /H (t)dt .
am=2 0 m=>0
Note that
Sk+1
(Z 2" Dp(R Bty RBy i) = Cank_H)
+
Z 2pm (RBmﬂnk7RB M) > Cbmvnk_H) .
m:

Proceeding as in the proof of Theorem 2 in [13] (case p > d/2), and noting that

2m71

p(Bn) < P(X] > 2"1) < (275 2

2
\/H(t)dt>

om—2

2m71

2
1
< | =—c PN /Ht)dt | = 2%272mPp2 | (6.58)
2(m—2)p 2m72

we derive that

Sk+1
(Z 2pm (RBmMnkaRBmM) > CB’Unk+1>
sp+1
< > exp (—aCbpnivy, /(27" 1(Br)))
m=0

2 kl—oz

S (Sk + 2) eXp ( lOg 10g nk> W < 00, (659)

for C' large enough. Starting from (6.65) and (6.57), it follows that

Dp(RBm/’Lnk ’ RBm/’[/)

lim sup Z 2P 1(Byy,) <CB a.s. (6.60)
k—o0 m>0 Unk_H
On another hand, using (6.56), we get that
(n —ny) Dyp(RB,tngns RBo 1)
lim su max — 2P™ (B PLPm Pl 7Pml — () a.s. 6.61
k*)OOp nk+1<n<nk+1 n Z Iu( m) Unk+1 ( )

m>sg+2
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In addition, for any € > 0,

Sk+1
n—n
P ( max (n =) Z 2P 1/( By ) Dp(R By, orge s R By 1) > ‘EBUMH)

ng+1<n<ngii n

m=0
Ng+1  skp+1
< ) >p < meu (Bu)Dy(Ra,, tiny s RB,, 1) > sbmvnHl)
n=ng+1m=0
Sk+1
< 2e(1 — a)k™ *ng Z (2e(1 — @)k~ 2" (B Dp(R By g s RB 1) = EbmUn,,, ) -
m=0

Proceeding as before and setting k = 27%a(C?/(2¢(1 — a))?, we get that, for any ¢ > 0,

Sk+1
n — nk pm
>
ZP (nkJrlrgg}S(nkH Z 2 (RBmunkvaBmﬂ) 5ank+1>
k>4
Sk-i-l
AL Z exp (—aCk* by ngvy,, /(27" u(Bn))

k>4
< Z ok R exp (—kk**loglogng) < oo, (6.62)
k>4
provided we choose « such that 1 — a < 2a.. This proves that, almost surely,

sp+1
— Dy(R R
lim max =~ E 2P 1(B,) p(R by R 1) =0. (6.63)

k—oconp+1<n<ngi; /Unk+1

Starting from (6.55) and taking into account (6.60), (6.61) and (6.63), it follows that there exists an

universal constant C, depending on p such that

D
lim sup 712(””’ )

n—oo Un

<G,V as. (6.64)

To conclude the case p > d/2, it suffices to use inequality (6.1).

e If p € [1,d/2), we proceed as for p > d/2, choosing now

<loglogn>p/d
vy = | ——— .

n

We start again from (6.54). All the terms can be handled similarly as in the previous case except for
the terms studied in (6.65) and (6.62). For instance, proceeding again as in the proof of Theorem 2 in
[13] (case p < d/2), we get

sp+1
P (Z P 1( By ) DR, iy s R, 1) > CanHl)
m=0
sk+1 b d/p
<> e (—aCd/”(loglognk)M(Bm) (WTB)> ) :
m=0 m
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The term studied in (6.62) can be handled similarly, and the result follows by taking into account that
((Bp)) P/ < (u(By,))'/? and inequality (6.58).

6.7 Proof of Theorem 5.1

Let ¢ € (1,2]. From (6.4) and (6.5), we get the upper bound

C(
S_
1 n

Using (6.9), (6.10) and (6.14), it follows that

+
1

max kWP (uk, pt)

kA
1<k<n max p.M (L, 1)

wax KBy (ks 1) 1<k<n

1<k<n

)

p
|12, F o )

<</ tPVH () 145 prdt

1 0
+ 3 27" ((By N Car)) V1Y 277 min <1 n~ (1= D/agld(a~ Wq) (6.65)
m>0 >0

Then we conclude as in Subsection 6.1 by considering the three cases p > d(¢ —1)/q, p = d(¢ — 1)/q
and p < d(q—1)/q.

6.8 Proof of Theorem 5.2

From (6.4), we have that
1

p
|50, P G 1)

< —

— || max kA (1, )
2

1<k<n

2
From (6.9) and (6.10) with M = oo, we get the upper bound
1

< 3" 27 (u(B,u)) Y 277 min <1,2“/2/\/ﬁ> .

m>0 >0

max k:Wp
1<k<n (b 1

Then we conclude as in Subsection 6.1 by considering the three cases p > d/2, p = d/2 and p < d/2.

6.9 Proof of Theorem 5.4

Let r > 2. Starting from (6.27), we infer that, for any positive constant vy,

1

T

14
(| max KW (e, 1)

< U; + 7n/ xrflp < glkax kW (,Ufk, ) > n:ﬂ) d:ﬂ, (666)

T

and we use the upper bound (6.6) to deal with the probability in (6.66). Let now y = z/2C. By
Markov’s inequality at order ¢ > r and 2,

ey <k<n KAp,ar (s 1)l g

P (1@,33 kAp v (pis 1) > ny> < iyt 1, (6.67)
|[max; <p<n KBy, a1 (tire, 12) I3

P (1211?}{ kByp ai (g, pt) > ny) < = _anyg 2, (6.68)
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To deal with (6.68), we proceed as to get (6.11), and we obtain

P <1I<III?X ]{?Bp M(:u'knu') > ny> Z zpm B N Cc 1/2 Z 2= pl min (1 2€d/2/\/—)
m>0 £>0

(6.69)
Let us now handle (6.67). We first note that

kA
Jax kAp, (e, )

q

< Z 2pm227pf max Z |kpe (2™ F N By, NCrr) — k(2™ F N By, N Cay)|

1<k<n
m>0 >0 Fe q

Now, clearly

ax Y |kpg(2"F 0 By N Chr) — k(2™ F 0 By N Cay)|

FePy

1<k:<n
q

max (kps(Bm N Cor) + kp( B, N Car))

<

< 2n (u(Bm N Car))? . (6.70)

On the other hand, by using a maximal version of Rosenthal’s inequality (see for instance [16]),

max. |kpg (2™ F N By NCar) — ku(2™F N By, NCuy)||| < vV (2™ F N By, OCM))1/2

1<k<

+ nl/q (Iu,(QmF N By N CM))I/q ’

so that, by using Holder’s inequality (twice) and the fact that [P, = 24,

>

< 2"4/2\/r (1(Bum N Car)) '/

max |kug(Bm NCar) — k(2™ F N By, NCar)

1<k<
Fep, ' — —
+ 2tdla=1/ap1/a (1 (B,, N CM))l/q )
So, overall,
max kAp v (px 1) q < n(h + D), (6.71)
where
I = Z 2pm Z 2P min ((,u(Bm NCu )Y, =122/ (1B, N CM))1/2>
m>0 >0

and

I, = Z 2rm Z 277! (1u( By, N Car)) Y4 min <1, n_(q_l)/qQM(q_l)/q) .

m>0 >0
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Combining (6.67), (6.70) and (6.71), we obtain that

I + I5)?

P ( max kAp ar(fuk, 1) > ny) < ( i

max (6.72)

From (6.72), we see that four cases arise:
e p>d(r—1)/r. In that case p > d/2, and
o0
< V23 9™ (u(By, N Cup))? < n1/2/ P~/ H () Ly prdt .
m>0 0

Consequently

[e%} [e'e) q
/ b L T T i </0 ﬂkh/H(t)dt) .

Choosing v, = n~1/? Jo ot/ H(t)dt, we get

/ "y < T ( / tplx/H(t)dt> . (6.73)
v 0

n

Let us now deal with the term involving I5. First, we choose g close enough to r in such a way that
p>d(q—1)/q. In that case

I, < n(@=D/a Z 2™ (14( B ﬂCM))l/q < n(ql)/q/ tp’l(H(t))l/qltSMdt.
m>0 0

Let M = (nz)Y/P. Arguing as in (6.30) with 8 < (¢ — 1)/q, we get

nla—1-Bq)/p

o o0 o
/ " dr € / D H () / R L .2
0 0

0
Taking /3 close enough to (¢ — 1)/q in such a way that r — ¢+ (¢ — 1 — Bq)/p < 0, we get that
o o
/ " de < 0”7 / tPLH (t)dt < n” U)X IR (6.74)
0 0

From (6.72), (6.73) and (6.74), we get that

/ P (1121135 kAp ar(pn, ) > nx/(2C)> de < n"/? < tplx/H(t)dt> +n D) x| o
Un SRS 0

(6.75)
In the same way, since p > d/2, we infer from (6.69) that

2

1
pm c \1/2
P (1211]?%(” kBp, v (phks pt) > ny) <3 §>0 2P (u(Bm N Cyy))
m>

1 o 2
< W( i tP 1\/H(t)1t>Mdt> .
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Proceeding again as in (6.30) with 8 > 1/2, we infer that

> r—1
/Un " P (fﬁn}ggnkBp,M(uk,u) > nx/(2C’)> dx

(1-28)/p oo o0
< ni/ tz(pHB)H(t)/ x”f?’x(l*%)/”lxdg)/n dx dt.
n 0 0
Taking /3 close enough to 1/2 in such a way that (r —2) + (1 — 28)/p > 0, we get that

/ 2" P (1@53 kB v (ps 1) > nm/(20)> de < n~ 0= / P H (t)dt < n” UV X||72 . (6.76)
Vn SRS 0

Finally, starting from (6.66) with v, = n~1/? JoS =1\ /H(t)dt, and gathering (6.6), (6.75) and
(6.76), the inequality is proved in the case where p > d(r — 1)/r.
e d/2 <p<d(r—1)/r. In that case we use the upper bound (6.73) without any changes. Let us now

deal with the term involving I. Starting from the definition of I, and considering the two cases where
2¢ < nt/d and 2¢ > n'/4, we infer that

o
L <™ P (B N Cyp)) Y < P/ / Y H ()Y 1< ppdt
m>0 0
Let M = (nz)Y/? /u, for some sequence of positive numbers (u,),>o. Arguing as in (6.74), we get

o0 (o]
/0 2"V dy < TP/ dyp(r=a) /0 P H (t)dt < 9Pl dgplr=a)| x| (6.77)

In the same way, arguing as to get (6.76),

> r—1
/Un P <1r§nl?§nkBp’M(Mk’M) > nx/(2C’)> dx

< n-rDyp(r-2) / P H()dt < 0”2 XL (6.78)
0

Now nq*“m/duﬁf‘q)p = n*“*l)uﬁ(r‘” iff ub = n=1/(@=2)p(1-p/d)a/(a=2)  With this choice of u, and

taking ¢ = r + €, we have

nq—r—pq/dug‘—q)p — n—rp/d(n(d—p)/d/ug)q—r — nrP/dy (2p—d)(q—7)/(d(q—2)) — ,,—7P/d)e(2p—d)/(d(r—2+¢))
Hence, with this choice of u,,, the upper bounds (6.73), (6.77) and (6.78) give the desired inequality for
d/2 <p<d(r-1)/r.
e p < d/2. Note first that, by homogeneity, the general inequality may be deduced from the case where
| X||rp =1 by considering the variables X;/|| X||,,. Hence, from now, we shall assume that ||X||,, = 1.

Let M = (nz)'/?/u, for some sequence of positive numbers (u,)n>0. We first note that, since
q > d/(d — p), the upper bound (6.77) holds. Taking u, = n'/?/n'/? we get

/ " dr < nP/e (6.79)
0
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Let us now deal with the term involving I7. Starting from the definition of I, and considering the

two cases where
20 < YU (B N Cap)) 20/ and  2¢ > nY4(u(B,, N Cyy)) 29/
we infer that

I, < n P Z 2P (1u( By N CM))(d+p(q—2))/(dq) < nP/d /oo L (H (t)) 4 Hrla=2))/da) gy (6.80)
m>0 0

We choose now ¢ > r such that d + p(q — 2))/(dgq) > 1/r (this is true whatever ¢ if p > d/r, otherwise
we need to choose r < ¢ < r(d —2p)/(d — rp)). Since || X||,p =1, H(t) < min(1,¢7"P), which together
(6.80) and the choice of ¢ implies that I} < n~P/4. Consequently, taking v, = n~?/4,

oo
/ "I g < TP T TP/ (6.81)
Un
From (6.72), (6.79) and (6.81), we get that

/ 2 P (11211?<x kAp v (e, po) > n:v/(20)> dx < n~"P/1, (6.82)

On another hand, since p < d/2, we infer from (6.69) that

1 m c
P ( max kBp vr(p, 1) > ny> < gz Z P (1u( By, N C5)) 2

1sksn m>0
1 0 2
< ([, 7 VEO i)
Proceeding again as in (6.78), we get
0o W22 00
/Un " Ip <11Sn]§1§<n kEBp v (poge, ) > nx/(2C)> dr < m/o P H () dt < 0P/ (6.83)

the last inequality being true because u, = n'/?/n!/? and || X||,, = 1.
Finally, starting from (6.66) with v,, = n~?/¢, and gathering (6.6), (6.82) and (6.83), the inequality
is proved in the case where p < d/2 and || X||,p = 1.

e p = d/2. Again, without loss of generality we can assume that || X||,q/2 = 1. We proceed as before
to handle the term f;: 2" P(maxy<g<p kAp ar (g, ) > nx)dz. We take ¢ > r and use the Rosenthal
inequality. We then have

I < n Y?logn ( / td/ﬂ—h/H(t)hSMdt) +n~1/2 < / 2= JH (t) log(l/H(t))ltSMdt> .
0 0

Therefore, if we choose
vy > n~ Y2 max <10gn / 421\ /H(t)dt, / 21\ /H(t) 10g(1/H(t))dt> = v,(1), (6.84)
0 0
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we get

1“y=kuwx<nﬂﬁa%ny(/“wﬂ4vﬁﬁwgr+n4ﬂ(A“ﬂﬂ%vﬁﬁﬁ%aﬂﬂamgr.

0
Since H(t) < min(1,t7"%2), it follows that

/ "1 de < 02 (logn)" < / td/Q—H/H(t)dt> +n2,

0

On another hand, we have

(o) o] [e%¢) q
/ "1 dy < nm 92 / a1 ( / td/21H1/q(t)1t§Mdt> dz .
Un Un 0

and choosing
M = (nz)¥?/u,, with u, =n'/?,

we get, by taking into account previous computations, that

o o0
/ 2" dr < nr/Q/ PYH () dt = 02
Un, 0

(6.85)

(6.86)

We handle now the quantity f:: 2" P(max<g<pn kBp ar(pk, ) > nz)dz. We shall apply this time

the Rosenthal inequality as we did to handle || max; <<y kBp (kg 1t)|lq, but with ¢ € (2,7). We obtain

1 Bp.v1 (tin, ) llg < J1 + Jo + T3,

with o0
J1 = n~1/? logn/ /21 Vv H(t) 1 pdt
0
b:nAM/ /21 JH (D) log(1/H (8) Lisard
0
and

Jy = n_l/z/ t2= VY () s ppdt
0

(6.87)

Note that since M = (TLCC)Z/ 4 /i, with u, = n'/? applying of Holder’s inequality as in previous com-

putations, we have

/ m”qjgdx«n’"/?/ 2V (8 dt
Un, 0

On another hand, using that H(t) < min(1,¢ "%?), we have (since r > 2 and M%¥? = z\/n),

[e%s} [e%s} [e%} q
/ xr_l_ququC < n_q/Q(log n)q/ i </ td/z_lt_rd/4dt> dx
Un VUn, M

(6.88)

< n"*(log n)q/ 2" U7 g« T A (log ) Wl v

Un
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Therefore if
vn > 02 (logn)?" = 0,(2) (6.89)

we get

/ "9 glde < n7 2 (logn)?. (6.90)

We handle now the term involving Jy. We have
00 00 00 q
/ 2y = 9 / . ( / 14121 /TR log(1 /H(t))1t>Mdt> da .
Un Un 0

Using that H(t) < min(1,t"%?), simple computations lead to

oo

/ e" 1 dy < 0T AT (=2 (log v,,)T
Un
Therefore, if (6.89) holds, we get
o
/ "9 de < 72 (logn)?. (6.91)
Un

So finally if we choose

vy, = max(vp (1), v,(2)) ,

the constraints (6.84) and (6.89) are satisfied. Starting from (6.66), and gathering the bounds (6.6),
(6.85), (6.86), (6.87), (6.88), (6.90), and (6.91), we get the desired inequality in the case || X||.q/2 = 1.
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