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Abstract

We establish some deviation inequalities, moment bounds and almost sure results for the Wasserstein
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R
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1 Introduction and notations

We begin with some notations, that will be used all along the paper. Let X1, . . . ,Xn be n independent

and identically distributed (i.i.d.) random variables with values in R
d, with common distribution µ.

Let µn be the empirical distribution of the Xi’s, that is

µn =
1

n

n
∑

k=1

δXk
.

Let X denote a random variable with distribution µ. For any x ∈ R
d, let |x| = max{|x1|, . . . , |xd|}.

Define then the tail of the distribution µ by

H(t) = P(|X| > t) = µ({x ∈ R
d such that |x| > t}) .
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As usual, for any q ≥ 1, the weak moment of order q of the random variable X is defined by

‖X‖qq,w := sup
t∈R

tqH(t) ,

and the strong moment of order q ≥ 1 is defined by

‖X‖qq = E (|X|q) = q

∫ ∞

0
tq−1H(t)dt .

For p ≥ 1, the Wasserstein distance between two probability measures ν1, ν2 on (Rd,B(Rd)) is

defined by

W p
p (ν1, ν2) = inf

π∈Π(ν1,ν2)

∫

Rd×Rd

|x− y|p2 π(dx, dy) ,

where | · |2 is the euclidean norm on R
d and Π(ν1, ν2) is the set of probability measures on the product

space (Rd × R
d,B(Rd)⊗ B(Rd)) with margins ν1 and ν2.

In this paper, we prove deviation inequalities, moment inequalities and almost sure results for

the quantity Wp(µn, µ), when X has a weak or strong moment of order rp for r > 1. As in [13],

the upper bounds will be different according as p > dmin{(r − 1)/r, 1/2} (small dimension case) or

p < dmin{(r − 1)/r, 1/2} (large dimension case). Most of the proofs are based on Lemma 6 in [13]

(see the inequality (6.4) in Section 6), which may be seen as an extension of Èbralidze’s inequality [12]

to the case d > 1. Hence we shall use the same approach as in [8], where we combined Èbralidze’s

inequality with truncation arguments to get moment bounds for Wp(µn, µ) when d = 1.

There are many ways to see that the upper bounds obtained in the present paper are optimal in

some sense, by considering the special cases d = 1, p = 1, p = 2, or by following the general discussion

in [13], and we shall make some comments about this question all along the paper. However, the

optimality for large d is only a kind of minimax optimality: one can see that the rates are exact for

compactly supported measures which are not singular with respect to the Lebesgue measure on R
d (by

using, for instance, Theorem 2 in [9]).

In fact, since the rates depend on the dimension d, it is easy to see that they cannot be optimal for

all measures: for instance the rates will be faster as announced if the measure µ is supported on a linear

subspace of Rd with dimension strictly less than d. This is of course not the end of the story, and the

problem can be formulated in the general context of metric spaces (X, δ). For instance, for compactly

supported measures, Boissard and Le Gouic [7] proved that the rates of convergence depend on the

behavior of the metric entropy of the support of µ (with an extension to non-compact support in their

Corollary 1.3). In the same context, Bach and Weed [2] obtain sharper results by generalizing some

ideas going back to Dudley ([11], case p = 1). They introduce the notion of Wasserstein dimension

d∗p(µ) of the measure µ, and prove that np/s
E(W p

p (µn, µ)) converges to 0 for any s > d∗p(µ) (with sharp

lower bounds in most cases).

Note that our context and that of Bach and Weed are clearly distincts: we consider measures on

R
d having only a finite moment of order rp for r > 1, while they consider measures on compact metric

spaces. However, the Wasserstein dimension is well defined for any probability measure (thanks to
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Prohorov’s theorem), and some arguments in [2] are common with [9] and [13]. A reasonable question

is then: in the case of a singular measures on R
d, are the results of the present paper still valid if we

replace the dimension d by any d′ ∈ (d∗p(µ), d]?

The paper is organized as follows: in Section 2 we state some deviations inequalities for Wp(µn, µ)

under weak moment assumptions. In Section 3 we bound up the probability of large and moderate

deviations. In Section 4 we present some almost sure results, and in Section 5 we give some upper

bounds for the moments of order r of Wp(µn, µ) (von Bahr-Esseen and Rosenthal type bounds) under

strong moment assumptions. The proofs are given in Section 6.

All along the paper, we shall use the notation f(n, µ, x) ≪ g(n, µ, x), which means that there exists

a positive constant C, not depending on n, µ, x such that f(n, µ, x) ≤ Cg(n, µ, x) for all positive integer

n and all positive real x.

2 Deviation inequalities under weak moments conditions

In this section, we give some upper bound for the quantity P(W p
p (µn, µ) > x) when the random variables

Xi have a weak moment of order rp for some r > 1. We first consider the case where r ∈ (1, 2).

Theorem 2.1. If ‖X‖rp,w < ∞ for some r ∈ (1, 2), then for any x > 0,

P(W p
p (µn, µ) > x) ≪



































‖X‖rprp,w
xrnr−1

if p > d(r − 1)/r

‖X‖rprp,w(log n)r
xrnr−1

(

1 + log+

(

x1/pnr/(dr−d))

‖X‖rp,w

))r

if p = d(r − 1)/r

‖X‖rprp,w
xrnrp/d

if p ∈ [1, d(r − 1)/r)

where log+(x) = max{0, log x}.

Remark 2.1. As will be clear from the proof, the upper bounds of Theorem 2.1 still hold if the quantity

P(W p
p (µn, µ) > x) is replaced by its maximal version

P

(

max
1≤k≤n

kW p
p (µk, µ) > nx

)

.

Since ‖W p
p (µn, µ)‖1 ≤ (r/(r − 1)) ‖W p

p (µn, µ)‖r,w, according to the discussion after Theorem 1 in [13],

if p 6= d(r − 1)/r, one can always find some measure µ for which the rates of Theorem 2.1 are reached

(see example (e) in [13] for p > d(r − 1)/r and example (c) in [13] for p < d(r − 1)/r).

We now consider the case where r > 2. We follow the approach of Fournier and Guillin [13], but we

use a different upper bound for the quantity controlled in their Lemma 13 (see the proof of Theorem

2.2 for more details).
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Theorem 2.2. If ‖X‖rp,w < ∞ for some r ∈ (2,∞), then, for any x > 0 and any q > r,

P(W p
p (µn, µ) > x) ≪ a

(

n,
x

‖X‖prp,w

)

+
‖X‖rprp,w
xrnr−1

+
1

xqnq/2

(∫ ∞

0
tp−1

√

H(t)dt

)q

,

where

a(n, x) = C















exp(−cnx2)1x≤A if p > d/2

exp(−cn(x/ log(2 + x−1))2)1x≤A if p = d/2

exp(−cnxd/p)1x≤A if p ∈ [1, d/2)

for some positive constants C, c depending only on p, d, and a positive constant A depending only on

p, d, r.

Remark 2.2. Let us compare our inequality with that of Theorem 2 of Fournier and Guillin [13] (under

the moment condition (3) in [13]). We first note that the inequality in [13] is stated under a strong

moment of order rp for r > 2, but their proof works also under a weak moment of order rp. Hence,

under the assumptions of our Theorem 2.2, Fournier and Guillin obtained the bound (we assume here

that ‖X‖rp,w = 1 for the sake of simplicity):

P(W p
p (µn, µ) > x) ≪ a (n, x) +

n

(nx)(rp−ε)/p
, (2.1)

for any ε > 0 (the constant implicitly involved in the inequality depending on ε). In particular, one

cannot infer from (2.1) that

lim sup
n→∞

nr−1
P
(

W p
p (µn, µ) > x

)

≪ ‖X‖rprp,w
xr

,

which follows from our Theorem 2.2.

3 Large and moderate deviations

We consider here the probability of moderate deviations, that is

P

(

W p
p (µn, µ) >

x

n1−α

)

,

for α ≤ 1 in a certain range. As usual, the case α = 1 is the probability of large deviations.

As for partial sums, we shall establish two type of results, under weak moment conditions or under

strong moment conditions. If the random variables have a weak moment of order rp for some r > 1,

the results of Subsection 3.1 are immediate corollaries of the theorems of the preceding section. On the

contrary, the Baum-Katz type results of Subsection 3.2 cannot be derived from the results of Section 2

and will be proved in Subsection 6.4.
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3.1 Weak moments

As a consequence of Theorem 2.1, we obtain the following corollary.

Corollary 3.1. If ‖X‖rp,w < ∞ for some r ∈ (1, 2), then for any x > 0,

• If p > d(r − 1)/r and 1/r ≤ α ≤ 1,

lim sup
n→∞

nαr−1
P

(

W p
p (µn, µ) >

x

n1−α

)

≪ ‖X‖rprp,w
xr

.

• If p = d(r − 1)/r and 1/r < α ≤ 1,

lim sup
n→∞

nαr−1

(log n)2r
P

(

W p
p (µn, µ) >

x

n1−α

)

≪ ‖X‖rprp,w
xr

.

• If p ∈ [1, d(r − 1)/r) and (d− p)/d ≤ α ≤ 1,

lim sup
n→∞

n(pr−(1−α)rd)/d
P

(

W p
p (µn, µ) >

x

n1−α

)

≪ ‖X‖rprp,w
xr

.

Remark 3.1. Let us comment on the case p = 1, d = 1. In that case, del Barrio et al. [4] proved

that, for β ∈ (1, 2), n(β−1)/βW1(µn, µ) is stochastically bounded if and only if ‖X‖β,w < ∞ (see their

Theorem 2.2). This is consistent with the first inequality of Corollary 3.1 applied with r = β and

α = 1/r.

Remark 3.2. Let us now comment on the case p = 2, d = 1. In that case del Barrio et al. [5] proved

that, if the distribution function F of X is twice differentiable and if F ′ ◦ F−1 is a regularly varying

function in the neighborhood of 0 and 1, then there exists a sequence of positive numbers vn tending

to ∞ as n → ∞, such that vnW
2
2 (µn, µ) converges in distribution to a non degenerate distribution.

For instance, it follow from their Theorem 4.7 that, if X is a positive random variable, F is twice

differentiable and F (t) = (1 − t−β) for any t > t0 and some β > 2, then n(β−2)/βW 2
2 (µn, µ) converges

in distribution to a non degenerate distribution. In that case, there is a weak moment of order β, and,

for β ∈ (2, 4), the first inequality of Corollary 3.1 applied with r = β/2 and α = 1/r gives

lim sup
n→∞

P

(

n(β−2)/βW 2
2 (µn, µ) > x

)

≪
‖X‖ββ,w
xβ/2

.

Hence, in the case where β ∈ (2, 4), our result is consistent with that given in [5], and holds without

assuming any regularity on F .

As a consequence of Theorem 2.2, we obtain the following corollary.

Corollary 3.2. If ‖X‖rp,w < ∞ for some r ∈ (2,∞), then, for any x > 0 and any

α ∈
(

max

(

1

2
,
d− p

d

)

, 1

]

,

lim sup
n→∞

nαr−1
P

(

W p
p (µn, µ) >

x

n1−α

)

≪ ‖X‖rprp,w
xr

.
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3.2 Baum-Katz type results

We first consider the case where the variables have a strong moment of order rp for r ∈ (1, 2).

Theorem 3.3. If ‖X‖rp < ∞ for some r ∈ (1, 2), then for any x > 0,

• If p > d(r − 1)/r and 1/r ≤ α ≤ 1,

∞
∑

n=1

nαr−2
P

(

max
1≤k≤n

kW p
p (µk, µ) > nαx

)

< ∞ .

• If p ∈ [1, d(r − 1)/r) and α ∈ ((d− p)/d, 1] ,

∞
∑

n=1

n(pr−(1−α)rd−d)/d
P

(

max
1≤k≤n

kW p
p (µk, µ) > nαx

)

< ∞ .

• If p ∈ [1, d(r − 1)/r),

∞
∑

n=1

1

n
P

(

max
1≤k≤n

kW p
p (µk, µ) > n(d−p)/d(log n)1/rx

)

< ∞ .

Remark 3.3. Our proof does not allow to deal with the case where p = d(r − 1)/r. As an interesting

consequence of Theorem 3.3, we shall obtain almost sure convergence rates for the sequence W p
p (µn, µ)

(see Corollary 4.1 of the next section).

We now consider the case where the variables have a strong moment of order rp for r > 2.

Theorem 3.4. If ‖X‖rp < ∞ for some r ∈ (2,∞), then, for any

α ∈
(

max

(

1

2
,
d− p

d

)

, 1

]

,

∞
∑

n=1

nαr−2
P

(

max
1≤k≤n

kW p
p (µk, µ) > nαx

)

< ∞ .

4 Almost sure results

Using well known arguments, we derive from Theorem 3.3 the following almost sure rates of convergence

for the sequence W p
p (µn, µ) (taking α = 1/r in the case where p > d(r − 1)/r, and applying the third

item in the case where p > d(r − 1)/r).

Corollary 4.1. If ‖X‖rp < ∞ for some r ∈ (1, 2), then

• If p > d(r − 1)/r,

lim
n→∞

n(r−1)/rW p
p (µn, µ) = 0 a.s.
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• If p ∈ [1, d(r − 1)/r),

lim
n→∞

np/d

(log n)1/r
W p

p (µn, µ) = 0 a.s.

Remark 4.1. Let us comment on these almost sure results in the case where p = 1 and d < r/(r− 1).

Starting from the dual definition of W1(µn, µ), we get that

W1(µn, µ) ≥
1

n

∣

∣

∣

∣

∣

n
∑

k=1

( |Xk|2 − E(|Xk|2) )
∣

∣

∣

∣

∣

. (4.1)

Now, by the classical Marcinkiewicz-Zygmund theorem (see [15]) for i.i.d. random variables, we know

that

lim
n→∞

n(r−1)/r

n

∣

∣

∣

∣

∣

n
∑

k=1

( |Xk|2 − E(|Xk|2) )
∣

∣

∣

∣

∣

= 0 a.s.

if and only if ‖X‖r < ∞. It follows that, for p = 1, the rates of Corollary 4.1 are optimal is the case

where d < r/(r − 1).

We now give some almost sure rates of convergence in the case where
∫∞

0 tp−1
√

H(t)dt < ∞. Note

that this condition is a bit more restrictive than ‖X‖2p < ∞ (but is satisfied, for instance, if ‖X‖rp < ∞
for some r > 2).

Theorem 4.2. Assume that
∫∞

0 tp−1
√

H(t)dt < ∞.

• If p > d/2, there exists an universal positive constant C depending only on (p, d) such that

lim sup
n→∞

√

n

log log n
W p

p (µn, µ) ≤ C

∫ ∞

0
tp−1

√

H(t)dt a.s.

• If p ∈ [1, d/2), there exists an universal positive constant C depending only on (p, d) such that

lim sup
n→∞

(

n

log log n

)p/d

W p
p (µn, µ) ≤ C

∫ ∞

0
tp−1

√

H(t)dt a.s.

Remark 4.2. In the case p = 1, d = 1, it follows from the central limit theorem for W1(µn, µ) (see

[4]) and from Theorem 10.12 in [14] that the sequence (
√

n/ log log n W1(µn, µ))n≥0 is almost surely

relatively compact if
∫∞

0

√

H(t)dt < ∞, which is consistent with the first item of Theorem 4.2.

Remark 4.3. For p = 1, concerning the rate of Corollary 4.1 when d > r/(r− 1) or the rate Theorem

4.2 when d > 2, the situation is not as clear as in the small dimension case. According to Talagrand

[17], if d > 2 and µ is the uniform measure on [0, 1]d, W1(µn, µ) is exactly of order n−1/d almost surely.

More generally, let us recall a famous result by Dobrić and Yukich [10]: if d > 2 and µ is compactly

supported, then

lim
n→∞

n1/dW1(µn, µ) = c(d)

∫

(fµ(x))
(d−1)/d a.s. (4.2)
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where c(d) depends only on d, and fµ is the density of the absolutely continuous part of µ (hence the

limit is zero if µ is singular with respect to the Lebesgue measure on R
d). Corollary 4.1 or Theorem

4.2 are difficult to compare with (4.2), because the results do not hold under the same assumptions

on d and r. Some reasonable questions are : can we prove (4.2) if ‖X‖r < ∞ for some r ∈ (1, 2) and

d > r/(r − 1)? can we prove (4.2) if
∫∞

0

√

H(t)dt < ∞ and d > 2?

5 Moment inequalities

In this section, we give some upper bounds for the moments ‖W p
p (µn, µ)‖rr when the variables have a

strong moment of order rp.

As will be clear from the proofs, the maximal versions of these inequalities hold, meaning that the

quantity ‖W p
p (µn, µ)‖r can be replaced by

1

nr

∥

∥

∥

∥

max
1≤k≤n

kW p
p (µk, µ)

∥

∥

∥

∥

r

r

in all the statements of this section.

5.1 Moment of order 1 and 2

Theorem 5.1. Let q ∈ (1, 2]. If ‖X‖p < ∞, then, for any M > 0,

∥

∥W p
p (µn, µ)

∥

∥

1
≪































∫ ∞

0
tp−1H(t)1t>M dt+

1

n(q−1)/q

∫ ∞

0
tp−1(H(t))1/q1t≤M dt if p > d(q − 1)/q

∫ ∞

0
tp−1H(t)1t>M dt+

log n

np/d

∫ ∞

0
tp−1(H(t))(d−p)/d1t≤M dt if p = d(q − 1)/q

∫ ∞

0
tp−1H(t)1t>M dt+

1

np/d

∫ ∞

0
tp−1(H(t))(d−p)/d1t≤M dt if p ∈ [1, d(q − 1)/q)

where the constant implicitly involved does not depend on M .

Remark 5.1. In particular, if H(t) ≤ Ct−p(log(1 + t))−a for some C > 0, a > 1, then

∥

∥W p
p (µn, µ)

∥

∥

1
= O

(

1

(log n)a−1

)

.

Remark 5.2. If ‖X‖rp,w < ∞ for r ∈ (1, 2) and p 6= d(r− 1)/r, we easily infer from Theorem 5.1 that

∥

∥W p
p (µn, µ)

∥

∥

1
≪















‖X‖prp,w
n(r−1)/r

if p > d(r − 1)/r

‖X‖prp,w
np/d

if p ∈ [1, d(r − 1)/r)

which can also be deduced from Theorem 2.1. If p = d(r − 1)/r, we get

∥

∥W p
p (µn, µ)

∥

∥

1
≪ ‖X‖prp,w(log n)2

np/d
.
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Now, if ‖X‖2p,w < ∞, we get from Theorem 5.1 that

∥

∥W p
p (µn, µ)

∥

∥

1
≪



































‖X‖p2p,w log n
√
n

if p > d/2

‖X‖p2p,w(log n)2√
n

if p = d/2

‖X‖p2p,w
np/d

if p ∈ [1, d/2)

Finally, if
∫∞

0 tp−1
√

H(t) dt < ∞, the rates in the cases p > d/2 and p = d/2 can be slightly improved

(taking q = 2 and M = ∞ in Theorem 5.1); this can be directly deduced from Theorem 5.2 below.

Note that all those bounds are consistent with that given in Theorem 1 of [13], and slightly more

precise in terms of the moment conditions. Hence, the discussion on the optimality of the rates in

[13] is also valid for our Theorem 5.1 (see Remark 5.3 below). For p > d/2 and ‖X‖q < ∞ for

some q > dp/(d − p), it follows from Theorem 2(ii) in [9] that lim infn→∞ np/d ‖W p
p (µn, µ)‖1 > 0 if

µ has a non degenerate absolutely continuous part with respect to the Lebesgue measure, and that

lim supn→∞ np/d ‖W p
p (µn, µ)‖1 = 0 if µ is singular. Still for p < d/2, we refer to the paper [2], which

shows that, for compactly supported singular measures, the rates of convergence of ‖W p
p (µn, µ)‖1 can

be much faster than n−p/d.

Theorem 5.2. If
∫∞

0 tp−1
√

H(t) dt < ∞, then

∥

∥W p
p (µn, µ)

∥

∥

2

2
≪







































1

n

(∫ ∞

0
tp−1

√

H(t) dt

)2

if p > d/2

(log(n))2

n

(∫ ∞

0
tp−1

√

H(t) dt

)2

if p = d/2

1

n2p/d

(
∫ ∞

0
tp−1

√

H(t) dt

)2

if p ∈ [1, d/2)

Remark 5.3. According to the discussion after Theorem 1 in [13], if p 6= d/2, one can always find some

measure µ for which the rate of Theorem 5.2 is reached (see example (a) and (b) in [13] for p > d/2

and example (c) in [13] for p < d/2). Note also, that, in the case d = 1, p = 1, del Barrio et al. [4]

proved that
√
nW1(µn, µ) is stochastically bounded if and only if

∫∞

0

√

H(t) dt < ∞ (see their Theorem

2.1(b)), which is consistent with the first inequality of Theorem 5.2. For d = 1, p > 1, we refer to the

paper by Bobkov and Ledoux [6] for some conditions on µ ensuring faster rates of convergence. Finally,

when p = 1, d = 2 and µ is the uniform measure over [0, 1]2, Ajtai et al. [1] proved that E(W1(µn, µ))

is exactly of order (log n/n)1/2, while we get a rate of order log n/
√
n, which is therefore suboptimal in

that particular case.

5.2 von Bahr-Esseen type inequalities

We now consider the case where r ∈ (1, 2).

9



Theorem 5.3. If ‖X‖rp < ∞ for some r ∈ (1, 2), then

∥

∥W p
p (µn, µ)

∥

∥

r

r
≪















‖X‖rprp
nr−1

if p > d(r − 1)/r

‖X‖rprp
nrp/d

if p ∈ [1, d(r − 1)/r)

Remark 5.4. For d = 1, the first inequality of Theorem 5.3 has been proved in [8]. Our proof does

not allow to deal with the case where p = d(r − 1)/r. However, in that case, it is easy to see that

∥

∥W p
p (µn, µ)

∥

∥

r

r
≤ (log n)r

nr−1

(∫ ∞

0
tp−1(H(t))1/r dt

)r

(same proof as the second inequality of Theorem 5.2). For p = 1 and d < r/(r − 1), using the dual

definition of W1(µn, µ), we get the upper bound
∥

∥

∥

∥

∥

sup
f∈Λ1

∣

∣

∣

∣

∣

1

n

n
∑

k=1

(f(Xk)− µ(f))

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

r

r

≪ ‖X‖rr
nr−1

, (5.1)

where Λ1 is the the set of functions f such that |f(x) − f(y)| ≤ |x − y|. Note that (5.1) may be seen

as a uniform version of the von Bahr-Esseen inequality (see [3]) over the class Λ1.

5.3 Rosenthal type inequalities

We consider now the case where r > 2.

Theorem 5.4. If ‖X‖rp < ∞ for some r > 2, then

‖W p
p (µn, µ)‖rr ≪



















































1

nr/2

(
∫ ∞

0
tp−1

√

H(t) dt

)r

+
‖X‖rprp
nr−1

if p > d(r − 1)/r

1

nr/2

(
∫ ∞

0
tp−1

√

H(t) dt

)r

+
nγ

npr/d
‖X‖rprp if d/2 < p ≤ d(r − 1)/r

(log n)r

nr/2

(∫ ∞

0
td/2−1

√

H(t)dt

)r

+
(log n)2

nr/2
‖X‖rprp if p = d/2

‖X‖rprp
nrp/d

if p ∈ [1, d/2)

where, for the second inequality, γ can be taken as γ = ε(2p−d)
d(r−2+ε) for any ε > 0 (and the constants

implicitely involved in the inequality depend on ε).

Remark 5.5. For d = 1, the first inequality of Theorem 5.4 has been proved in [8]. As a consequence

of the two first inequalities of Theorem 5.4, we obtain that, if p > d/2,

lim sup
n→∞

√
n‖W p

p (µn, µ)‖r ≪
∫ ∞

0
tp−1

√

H(t) dt .

As a consequence of the third inequality of Theorem 5.4, we obtain that, if p = d/2,

lim sup
n→∞

√
n

log n
‖W p

p (µn, µ)‖r ≪
∫ ∞

0
tp−1

√

H(t) dt .

10



6 Proofs

The starting point of the proofs is Lemmas 5 and 6 in [13], which we recall below.

For ℓ ≥ 0, let Pℓ be the natural partition of (−1, 1]d into 2dℓ translations of (−2−ℓ, 2ℓ]d. Let also

B0 = (−1, 1]d and for any integer m ≥ 1, Bm = (−2m, 2m]d \ (−2m−1, 2m−1]d. For a set F ⊂ R
d and

a > 0, we use the standard notation aF = {ax : x ∈ F}. For a probability measure ν on R
d and

m ≥ 0, let RBmν be the probability measure on (−1, 1]d defined as the image of ν|Bm/ν(Bm) by the

map x 7→ x/2m. For two probability measures µ and ν on R
d, by Lemma 5 in [13], there exists a

positive constant κp,d depending only on p and d such that

W p
p (µ, ν) ≤ κp,dDp(µ, ν) , (6.1)

where

Dp(µ, ν) :=
∑

m≥0

2pm|µ(Bm)− ν(Bm)|+
∑

m≥0

2pm(µ(Bm) ∧ ν(Bm))Dp(RBmµ,RBmν) , (6.2)

with

Dp(RBmµ,RBmν) =
2p − 1

2

∑

ℓ≥1

2−pℓ
∑

F∈Pℓ

∣

∣

∣

∣

µ(2mF ∩Bm)

µ(Bm)
− ν(2mF ∩Bm)

ν(Bm)

∣

∣

∣

∣

. (6.3)

In addition, by Lemma 5 in [13],

Dp(µ, ν) ≤
(

3

2
∨ 2p − 1

2

)

∆p(µk, µ)

where

∆p(µ, ν) =
∑

m≥0

2pm
∑

ℓ≥0

2−pℓ
∑

F∈Pℓ

|µ(2mF ∩Bm)− ν(2mF ∩Bm)| .

From the considerations above, there exists a constant C depending only on p and d such that

W p
p (µk, µ) ≤ C∆p(µk, µ) , (6.4)

where µk = 1
k

∑k
i=1 δXi . This inequality may be seen as an extension to the case d > 1 of Èbralidze’s

inequality [12], which we used in [8] to obtain moment bounds for W p
p (µn, µ) when d = 1.

As in [8] we shall use truncation arguments. For a positive real M , let CM = [−M,M ]d,

Ap,M (µk, µ) =
∑

m≥0

2pm
∑

ℓ≥0

2−pℓ
∑

F∈Pℓ

|µk(2
mF ∩Bm ∩ CM )− µ(2mF ∩Bm ∩ CM )|

and

Bp,M(µk, µ) =
∑

m≥0

2pm
∑

ℓ≥0

2−pℓ
∑

F∈Pℓ

|µk(2
mF ∩Bm ∩ Cc

M )− µ(2mF ∩Bm ∩ Cc
M )| .

With these notations, it follows from (6.4) that

∆p(µk, µ) ≤ Ap,M(µk, µ) +Bp,M(µk, µ) . (6.5)

For the proofs, we shall follow the order of the theorems, except for Theorem 5.3 whose proof comes

naturally after that of Theorems 2.1 and 2.2.
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6.1 Proof of Theorem 2.1

Starting from (6.5), we get that

P

(

max
1≤k≤n

kW p
p (µk, µ) > nx

)

≤ P

(

max
1≤k≤n

kAp,M(µk, µ) > (nx/2C)

)

+ P

(

max
1≤k≤n

kBp,M(µk, µ) > (nx/2C)

)

. (6.6)

Let y = x/2C. By Markov’s inequality at order q ∈ (r, 2) and s ∈ [1, r),

P

(

max
1≤k≤n

kAp,M(µk, µ) > ny

)

≤
‖max1≤k≤n kAp,M (µk, µ)‖qq

nqyq
, (6.7)

P

(

max
1≤k≤n

kBp,M(µk, µ) > ny

)

≤ ‖max1≤k≤n kBp,M (µk, µ)‖s
nsys

. (6.8)

To deal with (6.7), we first note that

∥

∥

∥

∥

max
1≤k≤n

kAp,M (µk, µ)

∥

∥

∥

∥

q

≪
∑

m≥0

2pm
∑

ℓ≥0

2−pℓ

∥

∥

∥

∥

∥

∥

max
1≤k≤n

∑

F∈Pℓ

|kµk(2
mF ∩Bm ∩ CM )− kµ(2mF ∩Bm ∩ CM )|

∥

∥

∥

∥

∥

∥

q

.

Now, clearly

∥

∥

∥

∥

∥

∥

max
1≤k≤n

∑

F∈Pℓ

|kµk(2
mF ∩Bm ∩ CM )− kµ(2mF ∩Bm ∩ CM )|

∥

∥

∥

∥

∥

∥

q

≤
∥

∥

∥

∥

max
1≤k≤n

(kµk(Bm ∩ CM) + kµ(Bm ∩ CM ))

∥

∥

∥

∥

q

≤ 2n (µ(Bm ∩ CM ))1/q . (6.9)

On the other hand, by the (maximal version of) von Bahr-Essen inequality (see [3]),
∥

∥

∥

∥

max
1≤k≤n

|kµk(2
mF ∩Bm ∩ CM )− kµ(2mF ∩Bm ∩ CM )|

∥

∥

∥

∥

q

q

≪ nµ(2mF ∩Bm ∩ CM ) ,

so that, by using Hölder’s inequality and the fact that |Pℓ| = 2ℓd,

∑

F∈Pℓ

∥

∥

∥

∥

max
1≤k≤n

|kµk(2
mF ∩Bm ∩ CM)− kµ(2mF ∩Bm ∩ CM )|

∥

∥

∥

∥

q

≪ 2ℓd(q−1)/qn1/q (µ(Bm ∩ CM ))1/q .

(6.10)

Combining (6.7), (6.9) and (6.10), we obtain that

P

(

max
1≤k≤n

kAp,M (µk, µ) > ny

)

≪ 1

yq





∑

m≥0

2pm (µ(Bm ∩ CM ))1/q
∑

ℓ≥0

1

2pℓ
min

(

1, n−(q−1)/q2ℓd(q−1)/q
)





q

.

(6.11)
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In the same way, for the term (6.8), we obtain the upper bound

P

(

max
1≤k≤n

kBp,M(µk, µ) > ny

)

≪ 1

ys





∑

m≥0

2pm (µ(Bm ∩ Cc
M ))1/s

∑

ℓ≥0

1

2pℓ
min

(

1, n−(s−1)/s2ℓd(s−1)/s
)





s

.

(6.12)

From (6.11) and (6.12), we see that three cases arise:

• If p > d(r − 1)/r, then, taking q > r such that p > d(q − 1)/q and s = 1, we get the upper bounds

P

(

max
1≤k≤n

kAp,M (µk, µ) > ny

)

≪ 1

nq−1yq





∑

m≥0

2pm (µ(Bm ∩ CM ))1/q





q

≪ 1

nq−1yq

(
∫ ∞

0
tp−1(H(t))1/q1t≤Mdt

)q

, (6.13)

and

P

(

max
1≤k≤n

kBp,M(µk, µ) > ny

)

≪ 1

y

∫ ∞

0
tp−1H(t)1t>Mdt . (6.14)

Using that H(t) ≤ ‖X‖rprp,wt−rp for r ∈ (1, 2), we infer from (6.6), (6.13) and (6.14) that

P

(

max
1≤k≤n

kW p
p (µk, µ) > nx

)

≪ ‖X‖rprp,w

(

1

xMp(r−1)
+

Mp(q−r)

nq−1xq

)

.

Taking M = (nx)1/p, we obtain the desired result when p > d(r − 1)/r.

• If p = d(r − 1)/r, then, taking q = r, we get the upper bound

P

(

max
1≤k≤n

kAp,M (µk, µ) > ny

)

≪ (log(n))r

nr−1yr





∑

m≥0

2pm (µ(Bm ∩ CM ))1/r





r

≪ (log n)r

nr−1yr

(∫ ∞

0
tp−1(H(t))1/r1t≤Mdt

)r

. (6.15)

Using that H(t) ≤ ‖X‖rprp,wt−rp for r ∈ (1, 2), we infer from (6.6), (6.14) and (6.15) that

P

(

max
1≤k≤n

kW p
p (µk, µ) > nx

)

≪ ‖X‖rprp,w
(

1

xMp(r−1)
+

(log n)r

nr−1xr

(

1 + log+

(

M

‖X‖rp,w

))r)

.

Taking M = (nx)1/p, we obtain the desired result when p = d(r − 1)/r.

• If p < d(r− 1)/r, then, taking q > r and s ∈ (1, r) such that p < d(s− 1)/s, we get the upper bounds

P

(

max
1≤k≤n

kAp,M (µk, µ) > ny

)

≪ 1

nqp/dyq





∑

m≥0

2pm (µ(Bm ∩ CM ))1/q





q

≪ 1

nqp/dyq

(∫ ∞

0
tp−1(H(t))1/q1t≤Mdt

)r

, (6.16)
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and

P

(

max
1≤k≤n

kBp,M(µk, µ) > ny

)

≪ 1

nsp/dys





∑

m≥0

2pm (µ(Bm ∩ Cc
M ))1/s





s

≪ 1

nsp/dys

(∫ ∞

0
tp−1(H(t))1/s1t>Mdt

)s

, (6.17)

Using that H(t) ≤ ‖X‖rprp,wt−rp for r ∈ (1, 2), we infer from (6.6), (6.16) and (6.17) that

P

(

max
1≤k≤n

kW p
p (µk, µ) > nx

)

≪ ‖X‖rprp,w

(

1

nsp/dxsMp(r−s)
+

Mp(q−r)

nqp/dxq

)

.

Taking M = n1/dx1/p, we obtain the desired result when p < d(r − 1)/r.

6.2 Proof of Theorem 2.2

Let r > 2. Note first that, by homogeneity, the general inequality may be deduced from the case

where ‖X‖rp,w = 1 by considering the variables Xi/‖X‖rp,w. Hence, from now, we shall assume that

‖X‖rp,w = 1.

According to the beginning of the proof of Theorem 2 in [13], we get that

W p
p (µn, µ) ≤ C

∑

m≥0

2pm |µn(Bm)− µ(Bm)|+ CV p
n , (6.18)

for some positive constant C = Cp,d, where the random variable V p
n is such that

P(V p
n ≥ x/(2C)) ≤ a(n, x) . (6.19)

Consequently, it remains to bound up the quantity

P





∑

m≥0

2pm |µn(Bm)− µ(Bm)| ≥ x/(2C)



 .

For a positive real M , let CM = [−M,M ]d,

A∗
p,M (µk, µ) =

∑

m≥0

2pm|µk(Bm ∩ CM )− µ(Bm ∩ CM )|

and

B∗
p,M(µk, µ) =

∑

m≥0

2pm|µk(Bm ∩ Cc
M )− µ(Bm ∩ Cc

M )| .

With these notations,

P





∑

m≥0

2pm |µn(Bm)− µ(Bm)| ≥ x/(2C)



 ≤ P
(

A∗
p,M(µn, µ) > x/(4C)

)

+ P
(

B∗
p,M(µn, µ) > x/(4C)

)

. (6.20)
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Let y = x/4C. By Markov’s inequality at order q > 2 and 1,

P
(

A∗
p,M (µn, µ) > y

)

≤

∥

∥

∥
A∗

p,M(µn, µ)
∥

∥

∥

q

q

yq
, (6.21)

P
(

B∗
p,M(µn, µ) > y

)

≤

∥

∥

∥B∗
p,M(µn, µ)

∥

∥

∥

1

y
. (6.22)

Applying Rosenthal’s inequality, we get

‖A∗
p,M (µn, µ)‖q ≪

1√
n

∑

m≥0

2pmµ1/2(Bm ∩ CM) +
1

n(q−1)/q

∑

m≥0

2pmµ1/q(Bm ∩ CM )

≪ 1√
n

∫ ∞

0
tp−1

√

H(t)1t≤Mdt+
1

n(q−1)/q

∫ ∞

0
tp−1H1/q(t)1t≤Mdt .

Choosing q > r, it follows that

‖A∗
p,M (µn, µ)‖q ≪

1√
n

∫ ∞

0
tp−1

√

H(t)dt+
Mp(q−r)/q

n(q−1)/q

(

sup
t>0

trpH(t)

)1/q

≪ 1√
n

∫ ∞

0
tp−1

√

H(t)dt+
Mp(q−r)/q

n(q−1)/q
. (6.23)

the last inequality being true since we assumed that supt>0 t
rpH(t) = 1.

On another hand,

‖B∗
p,M (µn, µ)‖1 ≪

∑

n≥0

2pnµ(Bn ∩ Cc
M )

≪
∫ ∞

0
tp−1H(t)1t>Mdt ≪ Mp(1−r) sup

t>0
trpH(t) ≪ Mp(1−r) . (6.24)

Gathering (6.20) - (6.24), we get that for any q > r,

P





∑

m≥0

2pm |µn(Bm)− µ(Bm)| > x/(2C)



≪ 1

xqnq/2

(∫ ∞

0
tp−1

√

H(t)dt

)q

+
Mp(q−r)

xqnq−1
+

Mp(1−r)

x
,

(6.25)

Hence choosing M = n1/px1/p, we infer from (6.18), (6.19) and (6.25) that for any q > r,

P
(

W p
p (µn, µ) > x

)

≪ a(n, x) +
1

xrnr−1
+

1

xqnq/2

(∫ ∞

0
tp−1

√

H(t)dt

)q

, (6.26)

which is the desired inequality when supt>0 t
rpH(t) = ‖X‖rprp,w = 1.

6.3 Proof of Theorem 5.3

We start from the elementary equality

1

nr

∥

∥

∥

∥

max
1≤k≤n

kW p
p (µk, µ)

∥

∥

∥

∥

r

r

= r

∫ ∞

0
xr−1

P

(

max
1≤k≤n

kW p
p (µk, µ) > nx

)

dx . (6.27)
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Then, we use the upper bounds (6.6), (6.11) and (6.12). We consider two cases:

• If p > d(r − 1)/r, let q > r such that p > d(q − 1)/q, and let M = (nx)1/p. From (6.6), (6.13) and

(6.14) we get the upper bound

∫

xr−1
P

(

max
1≤k≤n

kW p
p (µk, µ) > nx

)

dx

≪
∫ ∞

0
xr−2

(
∫ ∞

0
tp−1H(t)1t>Mdt

)

dx+
1

nq−1

∫ ∞

0
xr−1−q

(
∫ ∞

0
tp−1(H(t))1/q1t≤Mdt

)q

dx . (6.28)

Note that
∫ ∞

0
xr−2

(
∫ ∞

0
tp−1H(t)1t>(nx)1/pdt

)

dx ≪ 1

nr−1

∫ ∞

0
trp−1H(t)dt ≪ ‖X‖rprp

nr−1
. (6.29)

Let β < (q − 1)/q. Applying Hölder’s inequality, we obtain

1

nq−1

∫ ∞

0
xr−1−q

(∫ ∞

0
tp−1(H(t))1/q1t≤(nx)1/pdt

)q

dx

≪ 1

nq−1

∫ ∞

0
xr−1−q(nx)(q−1−qβ)/p

(
∫ ∞

0
tq(p−1+β)H(t)1t≤(nx)1/pdt

)

dx

≪ n(q−1−qβ)/p

nq−1

∫ ∞

0
tq(p−1+β)H(t)

(∫ ∞

0
xr−1−q+(q−1−qβ)/p1x≥tp/ndx

)

dt . (6.30)

Taking β close enough to (q − 1)/q in such a way that q + 1− r − (q − 1− qβ)/p > 1, we get

1

nq−1

∫ ∞

0
xr−1−q

(∫ ∞

0
tp−1(H(t))1/q1t≤(nx)1/pdt

)q

dx ≪ ‖X‖rprp
nr−1

. (6.31)

Gathering (6.28), (6.29) and (6.31), we obtain the desired result.

• If p < d(r − 1)/r, let q > r, s ∈ (1, r) such that p < d(s − 1)/s, and let M = n1/dx1/p. From (6.6),

(6.16) (6.17) we get the upper bound

∫

xr−1
P

(

max
1≤k≤n

kW p
p (µk, µ) > nx

)

dx ≪ 1

nsp/d

∫ ∞

0
xr−1−s

(
∫ ∞

0
tp−1(H(t))1/s1t>Mdt

)s

dx

+
1

nqp/d

∫ ∞

0
xr−1−q

(
∫ ∞

0
tp−1(H(t))1/q1t≤Mdt

)q

dx . (6.32)

Proceeding exactly as for (6.30)-(6.31), with the choice M = n1/dx1/p, we get

1

npq/d

∫ ∞

0
xr−1−q

(∫ ∞

0
tp−1(H(t))1/q1t≤n1/dx1/pdt

)q

dx ≪ 1

npr/d

∫ ∞

0
trp−1H(t)dt ≪ ‖X‖rprp

npr/d
. (6.33)

In the same way, we get

1

nps/d

∫ ∞

0
xr−1−s

(
∫ ∞

0
tp−1(H(t))1/s1t>n1/dx1/pdt

)s

dx ≪ 1

npr/d

∫ ∞

0
trp−1H(t)dt ≪ ‖X‖rprp

npr/d
. (6.34)

Gathering (6.32), (6.33) and (6.34), we obtain the desired result.
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6.4 Proof of Theorem 3.3

Let r ∈ (1, 2). We start from the upper bounds (6.6), (6.12) and (6.11).

• If p > d(r − 1)/r, let q ∈ (r, 2] such that p > d(q − 1)/q and let M = nα/p. From (6.6), (6.13) and

(6.14) we get the upper bound

P

(

max
1≤k≤n

kW p
p (µk, µ) > nαx

)

≪ n1−α

x

∫ ∞

0
tp−1H(t)1t>nα/pdt+

n1−qα

xq

(
∫ ∞

0
tp−1(H(t))1/q1t≤nα/pdt

)q

.

Hence, it remains to prove that

∞
∑

n=1

nα(r−1)−1

∫ ∞

0
tp−1H(t)1tp/α>ndt < ∞ and

∞
∑

n=1

nα(r−q)−1

(
∫ ∞

0
tp−1(H(t))1/q1tp/α≤ndt

)q

< ∞ .

(6.35)

Interverting the sum and the integral, we easily get that

∞
∑

n=1

nα(r−1)−1

∫ ∞

0
tp−1H(t)1tp/α>ndt ≪

∫ ∞

0
tpr−1H(t)dt ≪ ‖X‖prpr < ∞ . (6.36)

Arguing as in (6.30) with β < (q − 1)/q, we get
(∫ ∞

0
tp−1(H(t))1/q1tp/α≤ndt

)q

≪ nα(q−1−qβ)/p

∫ ∞

0
tq(p−1+β)H(t)1tp/α≤ndt .

Hence, the second series in (6.35) will be summable provided

∞
∑

n=1

nα(r−q)+α(q−1−qβ)/p−1

∫ ∞

0
tq(p−1+β)H(t)1tp/α≤ndt < ∞ (6.37)

Taking β close enough to (q − 1)/q so that α(r − q) + α(q − 1 − qβ)/p < 0 and interverting the sum

and the integral, we get that

∞
∑

n=1

nα(r−q)+α(q−1−qβ)/p−1

∫ ∞

0
tq(p−1+β)H(t)1tp/α≤ndt ≪

∫ ∞

0
tpr−1H(t)dt ≪ ‖X‖prpr < ∞ . (6.38)

The result follows from (6.35), (6.36), (6.37) and (6.38).

• If p < d(r−1)/r, let q ∈ (r, 2], s ∈ (1, r) such that p < d(s−1)/s, and let M = n(p−d(1−α))/(dp). From

(6.6), (6.16) and (6.17), we get the upper bound

P

(

max
1≤k≤n

kW p
p (µk, µ) > nαx

)

≪ ns−sα

nsp/dxs

(∫ ∞

0
tp−1(H(t))1/s1t>n(p−d(1−α))/(dp)dt

)s

+
nq−qα

nqp/dxq

(∫ ∞

0
tp−1(H(t))1/q1t≤n(p−d(1−α))/(dp)dt

)q

. (6.39)

Proceeding as in (6.37) (taking the quantity β < (q− 1)/q close enough to (q− 1)/q in such a way that

(p− d(1− α))((r − q) + (q − 1− βq)/p) < 0), we get that

∞
∑

n=1

n(pr−(1−α)rd−d)/dn
q−qα

nqp/d

(
∫ ∞

0
tp−1(H(t))1/q1t≤n(p−d(1−α))/(dp)dt

)q

≪ ‖X‖prpr < ∞ . (6.40)
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In the same, we get

∞
∑

n=1

n(pr−(1−α)rd−d)/dn
s−sα

nsp/d

(∫ ∞

0
tp−1(H(t))1/s1t>n(p−d(1−α))/(dp)dt

)s

≪ ‖X‖prpr < ∞ . (6.41)

The result follows from (6.39), (6.40) and (6.41).

• If p < d(r − 1)/r, let q ∈ (r, 2], s ∈ (1, r) such that p < d(s − 1)/s, and let M = (log n)1/pr. From

(6.6), (6.16) and (6.17), we get the upper bound

P

(

max
1≤k≤n

kW p
p (µk, µ) > n(d−p)/d(log n)1/rx

)

≪ 1

(log n)s/rxs

(∫ ∞

0
tp−1(H(t))1/s1t>(log n)1/prdt

)s

+
1

(log n)q/rxq

(
∫ ∞

0
tp−1(H(t))1/q1t≤(log n)1/prdt

)q

. (6.42)

Proceeding as in (6.37) (taking the quantity β < (q− 1)/q close enough to (q− 1)/q in such a way that

(q/r) + (q − 1− βq)/(pr) > 1), we get that

∞
∑

n=1

1

n(log n)q/r

(
∫ ∞

0
tp−1(H(t))1/q1t≤(log n)1/prdt

)q

≪ ‖X‖prpr < ∞ . (6.43)

In the same, we get

∞
∑

n=1

1

n(log n)s/r

(∫ ∞

0
tp−1(H(t))1/s1t>(log n)1/prdt

)s

≪ ‖X‖prpr < ∞ . (6.44)

The result follows from (6.42), (6.43) and (6.44).

6.5 Proof of Theorem 3.4

Let r > 2. As in the proof of Theorem 2.2, we assume without loss of generality that ‖X‖rp,w = 1;

hence, we can use directly some of the upper bounds given in the proof of Theorem 2.2.

From (6.18), we see that

max
1≤k≤n

kW p
p (µk, µ) ≤ C

∑

m≥0

2pm max
1≤k≤n

|kµk(Bm)− kµ(Bm)|+ C max
1≤k≤n

kV p
k . (6.45)

Now, for any x > 0

P

(

max
1≤k≤n

kV p
k > x/(2C)

)

≤
n
∑

k=1

P
(

kV p
k > x/(2C)

)

≤ n max
1≤k≤n

P
(

kV p
k > x/(2C)

)

.

By (6.19), it follows that, for any x > 0,

P

(

max
1≤k≤n

kV p
k > x/(2C)

)

≤ n max
1≤k≤n

a(k, x/k) ≤ na(n, x/n) , (6.46)
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the last inequality being true because k → a(k, x/k) is increasing. Now, by definition of a(n, x), we

infer that, for any

α ∈
(

max

(

1

2
,
d− p

d

)

, 1

]

,

∞
∑

n=1

nαr−2
P

(

max
1≤k≤n

kV p
k > nαx/(2C)

)

< ∞ . (6.47)

Hence, it remains to prove that

∞
∑

n=1

nαr−2
P





∑

m≥0

2pm max
1≤k≤n

|kµk(Bm)− kµ(Bm)| ≥ nαx/(2C)



 < ∞ .

Arguing as in the proof of Theorem 2.2, and using a maximal version of Rosenthal’s inequality (see for

instance [16]), we get that, for any q > r and M > 0,

P





∑

m≥0

2pm max
1≤k≤n

|kµk(Bm)− kµ(Bm)| ≥ nαx/(2C)



≪ n(1−α)q

xqnq/2

(
∫ ∞

0
tp−1

√

H(t)dt

)q

+
n1−qα

xq

(∫ ∞

0
tp−1H1/q(t)1t≤Mdt

)q

+
n1−2α

x2

(∫ ∞

0
tp−1

√

H(t)1t>Mdt

)2

. (6.48)

Clearly, since α ∈ (1/2, 1], taking q large enough, we get that

∞
∑

n=1

nαr−2n
(1−α)q

nq/2

(∫ ∞

0
tp−1

√

H(t)dt

)q

< ∞ . (6.49)

Let M = nα/p. Arguing as in (6.30) with β > 1/2, we get

(∫ ∞

0
tp−1

√

H(t)1tp/α>ndt

)2

≪ nα(1−2β)/p

∫ ∞

0
t2(p−1+β)H(t)1tp/α>ndt .

Hence, the sum over n of the last term in (6.48) will be finite provided

∞
∑

n=1

nα(r−2)+α(1−2β)/p−1

∫ ∞

0
t2(p−1+β)H(t)1tp/α>ndt < ∞ . (6.50)

Taking β close enough to 1/2 so that α(r − 2) + α(1 − 2β)/p > 0 and interverting the sum and the

integral, we get that

∞
∑

n=1

nα(r−2)+α(1−2β)/p−1

∫ ∞

0
t2(p−1+β)H(t)1tp/α>ndt ≪

∫ ∞

0
tpr−1H(t)dt ≪ ‖X‖prpr < ∞ . (6.51)

Arguing as in (6.30) with β < (q − 1)/q, we get

(∫ ∞

0
tp−1H1/q(t)1tp/α≤ndt

)q

≪ nα(q−1−βq)/p

∫ ∞

0
tq(p−1+β)H(t)1tp/α≤ndt .
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Hence, the sum over n of the second term in (6.48) will be finite provided

∞
∑

n=1

nα(r−q)+α(q−1−βq)/p−1

∫ ∞

0
tq(p−1+β)H(t)1tp/α≤ndt < ∞ . (6.52)

Taking β close enough to (q − 1)/q so that α(r − q) + α(q − 1 − βq)/p < 0 and interverting the sum

and the integral, we get that

∞
∑

n=1

nα(r−q)+α(q−1−βq)/p−1

∫ ∞

0
tq(p−1+β)H(t)1tp/α≤ndt ≪

∫ ∞

0
tpr−1H(t)dt ≪ ‖X‖prpr < ∞ . (6.53)

6.6 Proof of Theorem 4.2

Recall that

Dp(RBmµn,RBmµ) =
2p − 1

2

∑

ℓ≥1

2−pℓ
∑

F∈Pℓ

∣

∣

∣

∣

∣

µn(F̃m)

µn(Bm)
− µ(F̃m)

µ(Bm)

∣

∣

∣

∣

∣

,

where F̃m = 2mF ∩Bm. Let α ∈ (0, 1) and

nk = [ek
1−α

] and mk = nk+1 − nk .

Note that mk ∼ (1− α)k−αnk, as k → ∞. Setting

µnk,n =
1

n− nk

n
∑

i=nk+1

δXi ,

we infer that, for nk + 1 ≤ n < nk+1,

µn(F̃m)

µn(Bm)
− µ(F̃m)

µ(Bm)

=
nk(µnk

(F̃m)− µ(F̃m))

nµn(Bm)
+

(n− nk)(µnk ,n(F̃m)− µ(F̃m))

nµn(Bm)
+

µ(Bm)− µn(Bm)

µn(Bm)µ(Bm)
µ(F̃m) .

Taking into account that, for any positive measure ν,

∑

ℓ≥1

2−pℓ
∑

F∈Pℓ

ν(F̃m) ≤ (2p − 1)−1ν(Bm) ,

simple algebras lead to the following inequality: for nk + 1 ≤ n < nk+1,

∑

ℓ≥1

2−pℓ
∑

F∈Pℓ

nk|µnk
(F̃m)− µ(F̃m)|
nµn(Bm)

≤
∑

ℓ≥1

2−pℓ
∑

F∈Pℓ

∣

∣

∣

∣

∣

µnk
(F̃m)

µnk
(Bm)

− µ(F̃m)

µ(Bm)

∣

∣

∣

∣

∣

+
2

2p − 1

|µnk
(Bm)− µn(Bm)|
µn(Bm)

+
1

2p − 1

|µnk
(Bm)− µ(Bm)|
µn(Bm)

.
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Similarly, for nk + 1 ≤ n < nk+1,

∑

ℓ≥1

2−pℓ
∑

F∈Pℓ

(n − nk)|µnk,n(F̃m)− µ(F̃m)|
nµn(Bm)

≤ (n − nk)

n

∑

ℓ≥1

2−pℓ
∑

F∈Pℓ

∣

∣

∣

∣

∣

µnk,n(F̃m)

µnk,n(Bm)
− µ(F̃m)

µ(Bm)

∣

∣

∣

∣

∣

+
2(n − nk)

(2p − 1)n

|µnk,n(Bm)− µn(Bm)|
µn(Bm)

+
(n− nk)

(2p − 1)n

|µnk,n(Bm)− µ(Bm)|
µn(Bm)

.

So overall, for nk + 1 ≤ n < nk+1,

Dp(RBmµn,RBmµ) ≤ Dp(RBmµnk
,RBmµ) +

(n − nk)

n
Dp(RBmµnk,n,RBmµ)

+
|µnk

(Bm)− µn(Bm)|
µn(Bm)

+
1

2

|µnk
(Bm)− µ(Bm)|
µn(Bm)

+
1

2

|µn(Bm)− µ(Bm)|
µn(Bm)

+
(n− nk)

n

|µnk,n(Bm)− µn(Bm)|
µn(Bm)

+
(n − nk)

2n

|µnk,n(Bm)− µ(Bm)|
µn(Bm)

. (6.54)

• If p > d/2, let

vn =

√

log log n

n
and V =

∫ ∞

0
tp−1

√

H(t)dt .

Starting from (6.2) and (6.54), it follows that

max
nk+1≤n≤nk+1

Dp(µn, µ)

vn
≤
∑

m≥0

2pmµ(Bm)
Dp(RBmµnk

,RBmµ)

vnk+1

+ max
nk+1≤n≤nk+1

(n− nk)

n

∑

m≥0

2pmµ(Bm)
Dp(RBmµnk,n,RBmµ)

vnk+1

+ max
nk≤n≤nk+1

(

3 +
(n− nk)

n

)

∑

m≥0

2pm
|µn(Bm)− µ(Bm)|

vnk+1

+ max
nk+1≤n≤nk+1

3(n− nk)

2n

∑

m≥0

2pm
|µnk,n(Bm)− µ(Bm)|

vnk+1

.

Using the Rosenthal inequality (with the constants given in (4.2) of Theorem 4.1 in [16]), as in the

proof of Theorem 2.2, we get that there exist positive universal constants c1, c2 and c3 such that for

any q > 2 , any M > 0 and λ > 0, and any ε > 0,

P



 max
nk≤n≤nk+1

∑

m≥0

2pm|µn(Bm)− µ(Bm)| ≥ (λ+ ε)V vnk+1





≪
(

c1
λV nkvnk+1

)q

qq/2n
q/2
k+1V

q +

(

c2
λV nkvnk+1

)q

qqnk+1

(
∫ ∞

0
tp−1(H(t))1/q1t≤Mdt

)q

+
c3nk+1

εV nkvnk+1

∫ ∞

0
tp−1H(t)1t>Mdt .
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Let κ > 1 and choose q = qk = γ log log nk with γ such that

c1
√
γ

λ
= 1/κ and γ log κ > 1 .

With this choice of qk, it follows that

∑

k≥K0

qk

(

c1
λnkvnk+1

)qk

q
qk/2
k n

qk/2
k+1 < ∞ .

On the other hand, by Hölder’s inequality, setting β = p− 2p/q,
(
∫ ∞

0
tp−1(H(t))1/q1t≤Mdt

)q

≤ p−q2q−1 + 2q−1Mpq−2pβ1−q

∫ ∞

0
t2p−1H(t)dt .

Choose now

M = Mk = a

(

nk

log log nk

)1/(2p)

with a such that
4c2a

pγ

εV p
= 1/κ .

Let K1 be such that qK1 ≥ 4. It follows that

∑

k≥K1

(

c2
εV nkvnk+1

)q

qqnk+1

(∫ ∞

0
tp−1(H(t))1/q1t≤Mdt

)q

≪
∑

k≥K1

(

4c2a
pγ

εV p

)qk

nk+1
log log nk

nk
≪

∑

k≥K1

κ−qk log log nk < ∞ .

With similar arguments, one can prove that, for any ε > 0,

P



 max
nk+1≤n≤nk+1

n− nk

n

∑

m≥0

2pm|µnk,n(Bm)− µ(Bm)| ≥ εvnk+1



 < ∞ .

By the direct part of the Borel-Cantelli lemma, it follows that, almost surely,

lim sup
k→∞

max
nk+1≤n≤nk+1

Dp(µn, µ)

vn
≤ λV + lim sup

k→∞

∑

m≥0

2pmµ(Bm)
Dp(RBmµnk

,RBmµ)

vnk+1

+ lim sup
k→∞

max
nk+1≤n≤nk+1

(n− nk)

n

∑

m≥0

2pmµ(Bm)
Dp(RBmµnk,n,RBmµ)

vnk+1

. (6.55)

Let now

sk =

[

k1−α

p ln 2

]

.

Note that

∑

m≥sk+2

2pmµ(Bm)Dp(RBmµnk
,RBmµ) ≤

∑

m≥sk+2

2pmµ(Bm)

≤ C̃p

∫ ∞

2sk
tp−1H(t)dt ≤ C̃p2

−psk

∫ ∞

0
t2p−1H(t)dt . (6.56)
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It follows that

lim
k→∞

∑

m≥sk+1

2pmµ(Bm)
Dp(RBmµnk

,RBmµ)

vnk+1

= 0 a.s. (6.57)

Next, let

bm =

∫ 2m−1

2m−2

tp−1
√

H(t)dt1m≥2 +

∫ 1

0
tp−1

√

H(t)dt1m≤2 and B =
∑

m≥0

bm = V +

∫ 1

0
tp−1

√

H(t)dt .

Note that

P

(

sk+1
∑

m=0

2pmµ(Bm)Dp(RBmµnk
,RBmµ) ≥ CBvnk+1

)

≤
sk+1
∑

m=0

P
(

2pmµ(Bm)Dp(RBmµnk
,RBmµ) ≥ Cbmvnk+1

)

.

Proceeding as in the proof of Theorem 2 in [13] (case p > d/2), and noting that

µ(Bm) ≤ P(|X| > 2m−1) ≤
(

1

2m−2

∫ 2m−1

2m−2

√

H(t)dt

)2

≤
(

1

2(m−2)p

∫ 2m−1

2m−2

tp−1
√

H(t)dt

)2

= 24p2−2mpb2m , (6.58)

we derive that

P

(

sk+1
∑

m=0

2pmµ(Bm)Dp(RBmµnk
,RBmµ) ≥ CBvnk+1

)

≤
sk+1
∑

m=0

exp
(

−aC2b2mnkv
2
nk
/(22pmµ(Bm))

)

≤ (sk + 2) exp

(

−aC2

24p
log log nk

)

≪ k1−α

k(1−α)aC2/24p
< ∞ , (6.59)

for C large enough. Starting from (6.65) and (6.57), it follows that

lim sup
k→∞

∑

m≥0

2pmµ(Bm)
Dp(RBmµnk

,RBmµ)

vnk+1

≤ CB a.s. (6.60)

On another hand, using (6.56), we get that

lim sup
k→∞

max
nk+1≤n≤nk+1

(n− nk)

n

∑

m≥sk+2

2pmµ(Bm)
Dp(RBmµnk,n,RBmµ)

vnk+1

= 0 a.s. (6.61)
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In addition, for any ε > 0,

P

(

max
nk+1≤n≤nk+1

(n− nk)

n

sk+1
∑

m=0

2pmµ(Bm)Dp(RBmµnk,n,RBmµ) ≥ εBvnk+1

)

≤
nk+1
∑

n=nk+1

sk+1
∑

m=0

P

(

(n− nk)

n
2pmµ(Bm)Dp(RBmµnk

,RBmµ) ≥ εbmvnk+1

)

≤ 2e(1 − α)k−αnk

sk+1
∑

m=0

P
(

2e(1 − α)k−α2pmµ(Bm)Dp(RBmµnk
,RBmµ) ≥ εbmvnk+1

)

.

Proceeding as before and setting κ = 2−4paC2/(2e(1 − α))2, we get that, for any ε > 0,

∑

k≥4

P

(

max
nk+1≤n≤nk+1

(n− nk)

n

sk+1
∑

m=0

2pmµ(Bm)Dp(RBmµnk,n,RBmµ) ≥ εBvnk+1

)

≪
∑

k≥4

k−αnk

sk+1
∑

m=0

exp
(

−aC2k2αb2mnkv
2
nk
/(22pmµ(Bm))

)

≪
∑

k≥4

k−αk1−αek
1−α

exp
(

−κk2α log log nk

)

< ∞ , (6.62)

provided we choose α such that 1− α ≤ 2α. This proves that, almost surely,

lim
k→∞

max
nk+1≤n≤nk+1

n− nk

n

sk+1
∑

m=0

2pmµ(Bm)
Dp(RBmµnk,n,RBmµ)

vnk+1

= 0 . (6.63)

Starting from (6.55) and taking into account (6.60), (6.61) and (6.63), it follows that there exists an

universal constant Cp depending on p such that

lim sup
n→∞

Dp(µn, µ)

vn
≤ CpV a.s. (6.64)

To conclude the case p > d/2, it suffices to use inequality (6.1).

• If p ∈ [1, d/2), we proceed as for p > d/2, choosing now

vn =

(

log log n

n

)p/d

.

We start again from (6.54). All the terms can be handled similarly as in the previous case except for

the terms studied in (6.65) and (6.62). For instance, proceeding again as in the proof of Theorem 2 in

[13] (case p < d/2), we get

P

(

sk+1
∑

m=0

2pmµ(Bm)Dp(RBmµnk
,RBmµ) ≥ CBvnk+1

)

≤
sk+1
∑

m=0

exp

(

−aCd/p(log log nk)µ(Bm)

(

bm
2pmµ(Bm)

)d/p
)

.
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The term studied in (6.62) can be handled similarly, and the result follows by taking into account that

(µ(Bm))1−p/d ≤ (µ(Bm))1/2 and inequality (6.58).

6.7 Proof of Theorem 5.1

Let q ∈ (1, 2]. From (6.4) and (6.5), we get the upper bound

1

n

∥

∥

∥

∥

max
1≤k≤n

kW p
p (µk, µ)

∥

∥

∥

∥

1

≤ C

n

(

∥

∥

∥

∥

max
1≤k≤n

kBp,M(µk, µ)

∥

∥

∥

∥

1

+

∥

∥

∥

∥

max
1≤k≤n

kAp,M(µk, µ)

∥

∥

∥

∥

q

)

.

Using (6.9), (6.10) and (6.14), it follows that

1

n

∥

∥

∥

∥

max
1≤k≤n

kW p
p (µk, µ)

∥

∥

∥

∥

1

≪
∫ ∞

0
tp−1H(t)1t>Mdt

+
∑

m≥0

2pm (µ(Bm ∩ CM))1/q
∑

ℓ≥0

2−pℓmin
(

1, n−(q−1)/q2ℓd(q−1)/q
)

. (6.65)

Then we conclude as in Subsection 6.1 by considering the three cases p > d(q − 1)/q, p = d(q − 1)/q

and p < d(q − 1)/q.

6.8 Proof of Theorem 5.2

From (6.4), we have that

1

n

∥

∥

∥

∥

max
1≤k≤n

kW p
p (µk, µ)

∥

∥

∥

∥

2

≤ C

n

∥

∥

∥

∥

max
1≤k≤n

k∆p(µk, µ)

∥

∥

∥

∥

2

From (6.9) and (6.10) with M = ∞, we get the upper bound

1

n

∥

∥

∥

∥

max
1≤k≤n

kW p
p (µk, µ)

∥

∥

∥

∥

2

≪
∑

m≥0

2pm (µ(Bm))1/2
∑

ℓ≥0

2−pℓmin
(

1, 2ℓd/2/
√
n
)

.

Then we conclude as in Subsection 6.1 by considering the three cases p > d/2, p = d/2 and p < d/2.

6.9 Proof of Theorem 5.4

Let r > 2. Starting from (6.27), we infer that, for any positive constant vn,

1

nr

∥

∥

∥

∥

max
1≤k≤n

kW p
p (µk, µ)

∥

∥

∥

∥

r

r

≤ vrn + r

∫ ∞

vn

xr−1
P

(

max
1≤k≤n

kW p
p (µk, µ) > nx

)

dx , (6.66)

and we use the upper bound (6.6) to deal with the probability in (6.66). Let now y = x/2C. By

Markov’s inequality at order q > r and 2,

P

(

max
1≤k≤n

kAp,M (µk, µ) > ny

)

≤
‖max1≤k≤n kAp,M (µk, µ)‖qq

nqyq
, (6.67)

P

(

max
1≤k≤n

kBp,M(µk, µ) > ny

)

≤ ‖max1≤k≤n kBp,M (µk, µ)‖22
n2y2

. (6.68)
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To deal with (6.68), we proceed as to get (6.11), and we obtain

P

(

max
1≤k≤n

kBp,M(µk, µ) > ny

)

≪ 1

y2





∑

m≥0

2pm (µ(Bm ∩ Cc
M ))1/2

∑

ℓ≥0

2−pℓmin
(

1, 2ℓd/2/
√
n
)





2

.

(6.69)

Let us now handle (6.67). We first note that

∥

∥

∥

∥

max
1≤k≤n

kAp,M (µk, µ)

∥

∥

∥

∥

q

≪
∑

m≥0

2pm
∑

ℓ≥0

2−pℓ

∥

∥

∥

∥

∥

∥

max
1≤k≤n

∑

F∈Pℓ

|kµk(2
mF ∩Bm ∩ CM )− kµ(2mF ∩Bm ∩ CM )|

∥

∥

∥

∥

∥

∥

q

.

Now, clearly

∥

∥

∥

∥

∥

∥

max
1≤k≤n

∑

F∈Pℓ

|kµk(2
mF ∩Bm ∩ CM )− kµ(2mF ∩Bm ∩ CM )|

∥

∥

∥

∥

∥

∥

q

≤
∥

∥

∥

∥

max
1≤k≤n

(kµk(Bm ∩ CM ) + kµ(Bm ∩ CM ))

∥

∥

∥

∥

q

≤ 2n (µ(Bm ∩ CM ))1/q . (6.70)

On the other hand, by using a maximal version of Rosenthal’s inequality (see for instance [16]),

∥

∥

∥

∥

max
1≤k≤n

|kµk(2
mF ∩Bm ∩ CM )− kµ(2mF ∩Bm ∩ CM )|

∥

∥

∥

∥

q

≪
√
n (µ(2mF ∩Bm ∩ CM ))1/2

+ n1/q (µ(2mF ∩Bm ∩ CM ))1/q ,

so that, by using Hölder’s inequality (twice) and the fact that |Pℓ| = 2ℓd,

∑

F∈Pℓ

∥

∥

∥

∥

max
1≤k≤n

|kµk(Bm ∩ CM )− kµ(2mF ∩Bm ∩ CM )|
∥

∥

∥

∥

q

≤ 2ℓd/2
√
n (µ(Bm ∩ CM ))1/2

+ 2ℓd(q−1)/qn1/q (µ(Bm ∩ CM ))1/q .

So, overall,
∥

∥

∥

∥

max
1≤k≤n

kAp,M(µk, µ)

∥

∥

∥

∥

q

≪ n(I1 + I2) , (6.71)

where

I1 =
∑

m≥0

2pm
∑

ℓ≥0

2−pℓmin
(

(µ(Bm ∩ CM ))1/q , n−1/22ℓd/2 (µ(Bm ∩ CM))1/2
)

and

I2 =
∑

m≥0

2pm
∑

ℓ≥0

2−pℓ (µ(Bm ∩ CM ))1/q min
(

1, n−(q−1)/q2ℓd(q−1)/q
)

.
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Combining (6.67), (6.70) and (6.71), we obtain that

P

(

max
1≤k≤n

kAp,M(µk, µ) > ny

)

≪ (I1 + I2)
q

yq
. (6.72)

From (6.72), we see that four cases arise:

• p > d(r − 1)/r. In that case p > d/2, and

I1 ≤ n−1/2
∑

m≥0

2pm (µ(Bm ∩ CM ))1/2 ≪ n−1/2

∫ ∞

0
tp−1

√

H(t)1t≤Mdt .

Consequently
∫ ∞

vn

xr−1−qIq1dx ≪ n−q/2vr−q
n

(
∫ ∞

0
tp−1

√

H(t)dt

)q

.

Choosing vn = n−1/2
∫∞

0 tp−1
√

H(t)dt, we get

∫ ∞

vn

xr−1−qIq1dx ≪ n−r/2

(∫ ∞

0
tp−1

√

H(t)dt

)r

. (6.73)

Let us now deal with the term involving I2. First, we choose q close enough to r in such a way that

p > d(q − 1)/q. In that case

I2 ≤ n−(q−1)/q
∑

m≥0

2pm (µ(Bm ∩ CM ))1/q ≪ n−(q−1)/q

∫ ∞

0
tp−1(H(t))1/q1t≤Mdt .

Let M = (nx)1/p. Arguing as in (6.30) with β < (q − 1)/q, we get

∫ ∞

0
xr−1−qIq2dx ≪ n(q−1−βq)/p

nq−1

∫ ∞

0
tq(p−1+β)H(t)

∫ ∞

0
xr−1−qx(q−1−βq)/p1x≥tp/n dx dt .

Taking β close enough to (q − 1)/q in such a way that r − q + (q − 1− βq)/p < 0, we get that

∫ ∞

0
xr−1−qIq2dx ≪ n−(r−1)

∫ ∞

0
trp−1H(t)dt ≪ n−(r−1)‖X‖rprp . (6.74)

From (6.72), (6.73) and (6.74), we get that

∫ ∞

vn

xr−1
P

(

max
1≤k≤n

kAp,M (µk, µ) > nx/(2C)

)

dx ≪ n−r/2

(∫ ∞

0
tp−1

√

H(t)dt

)r

+ n−(r−1)‖X‖rprp .
(6.75)

In the same way, since p > d/2, we infer from (6.69) that

P

(

max
1≤k≤n

kBp,M(µk, µ) > ny

)

≪ 1

nx2





∑

m≥0

2pm (µ(Bm ∩ Cc
M ))1/2





2

≪ 1

nx2

(
∫ ∞

0
tp−1

√

H(t)1t>Mdt

)2

.
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Proceeding again as in (6.30) with β > 1/2, we infer that

∫ ∞

vn

xr−1
P

(

max
1≤k≤n

kBp,M(µk, µ) > nx/(2C)

)

dx

≪ n(1−2β)/p

n

∫ ∞

0
t2(p−1+β)H(t)

∫ ∞

0
xr−3x(1−2β)/p1x<tp/n dx dt .

Taking β close enough to 1/2 in such a way that (r − 2) + (1− 2β)/p > 0, we get that
∫ ∞

vn

xr−1
P

(

max
1≤k≤n

kBp,M(µk, µ) > nx/(2C)

)

dx ≪ n−(r−1)

∫ ∞

0
trp−1H(t)dt ≪ n−(r−1)‖X‖rprp . (6.76)

Finally, starting from (6.66) with vn = n−1/2
∫∞

0 tp−1
√

H(t)dt, and gathering (6.6), (6.75) and

(6.76), the inequality is proved in the case where p > d(r − 1)/r.

• d/2 < p ≤ d(r − 1)/r. In that case we use the upper bound (6.73) without any changes. Let us now

deal with the term involving I2. Starting from the definition of I2, and considering the two cases where

2ℓ < n1/d and 2ℓ ≥ n1/d, we infer that

I2 ≪ n−p/d
∑

m≥0

2pm (µ(Bm ∩ CM ))1/q ≪ n−p/d

∫ ∞

0
tp−1(H(t))1/q1t≤Mdt .

Let M = (nx)1/p/un for some sequence of positive numbers (un)n>0. Arguing as in (6.74), we get
∫ ∞

0
xr−1−qIq2dx ≪ nq−r−pq/dup(r−q)

n

∫ ∞

0
trp−1H(t)dt ≪ nq−r−pq/dup(r−q)

n ‖X‖rprp . (6.77)

In the same way, arguing as to get (6.76),

∫ ∞

vn

xr−1
P

(

max
1≤k≤n

kBp,M(µk, µ) > nx/(2C)

)

dx

≪ n−(r−1)up(r−2)
n

∫ ∞

0
trp−1H(t)dt ≪ n−(r−1)up(r−2)

n ‖X‖rprp . (6.78)

Now nq−r−pq/du
(r−q)p
n = n−(r−1)u

p(r−2)
n iff upn = n−1/(q−2)n(1−p/d)q/(q−2). With this choice of un and

taking q = r + ε, we have

nq−r−pq/du(r−q)p
n = n−rp/d(n(d−p)/d/upn)

q−r = n−rp/dn(2p−d)(q−r)/(d(q−2)) = n−rp/dnε(2p−d)/(d(r−2+ε)) .

Hence, with this choice of un, the upper bounds (6.73), (6.77) and (6.78) give the desired inequality for

d/2 < p ≤ d(r − 1)/r.

• p < d/2. Note first that, by homogeneity, the general inequality may be deduced from the case where

‖X‖rp = 1 by considering the variables Xi/‖X‖rp. Hence, from now, we shall assume that ‖X‖rp = 1.

Let M = (nx)1/p/un for some sequence of positive numbers (un)n>0. We first note that, since

q > d/(d − p), the upper bound (6.77) holds. Taking un = n1/p/n1/d, we get
∫ ∞

0
xr−1−qIq2dx ≪ n−rp/d . (6.79)
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Let us now deal with the term involving I1. Starting from the definition of I1, and considering the

two cases where

2ℓ < n1/d(µ(Bm ∩ CM ))(2−q)/(dq) and 2ℓ ≥ n1/d(µ(Bm ∩ CM))(2−q)/(dq) ,

we infer that

I1 ≪ n−p/d
∑

m≥0

2pm (µ(Bm ∩ CM ))(d+p(q−2))/(dq) ≪ n−p/d

∫ ∞

0
tp−1(H(t))(d+p(q−2))/(dq)dt . (6.80)

We choose now q > r such that d+ p(q − 2))/(dq) > 1/r (this is true whatever q if p ≥ d/r, otherwise

we need to choose r < q < r(d− 2p)/(d − rp)). Since ‖X‖rp = 1, H(t) ≤ min(1, t−rp), which together

(6.80) and the choice of q implies that I1 ≪ n−p/d. Consequently, taking vn = n−p/d,
∫ ∞

vn

xr−1−qIq1 dx ≪ n−qp/dvr−q
n ≪ n−rp/d . (6.81)

From (6.72), (6.79) and (6.81), we get that
∫ ∞

vn

xr−1
P

(

max
1≤k≤n

kAp,M (µk, µ) > nx/(2C)

)

dx ≪ n−rp/d . (6.82)

On another hand, since p < d/2, we infer from (6.69) that

P

(

max
1≤k≤n

kBp,M(µk, µ) > ny

)

≪ 1

n2p/dx2





∑

m≥0

2pm (µ(Bm ∩ Cc
M ))1/2





2

≪ 1

n2p/dx2

(∫ ∞

0
tp−1

√

H(t)1t>Mdt

)2

.

Proceeding again as in (6.78), we get

∫ ∞

vn

xr−1
P

(

max
1≤k≤n

kBp,M (µk, µ) > nx/(2C)

)

dx ≪ u
p(r−2)
n

n((r−2)d+2p)/d

∫ ∞

0
trp−1H(t)dt ≪ n−rp/d , (6.83)

the last inequality being true because un = n1/p/n1/d and ‖X‖rp = 1.

Finally, starting from (6.66) with vn = n−p/d, and gathering (6.6), (6.82) and (6.83), the inequality

is proved in the case where p < d/2 and ‖X‖rp = 1.

• p = d/2. Again, without loss of generality we can assume that ‖X‖rd/2 = 1. We proceed as before

to handle the term
∫∞

vn
xr−1

P(max1≤k≤n kAp,M (µk, µ) > nx)dx. We take q > r and use the Rosenthal

inequality. We then have

I1 ≪ n−1/2 log n

(∫ ∞

0
td/2−1

√

H(t)1t≤Mdt

)

+ n−1/2

(∫ ∞

0
td/2−1

√

H(t) log(1/H(t))1t≤Mdt

)

.

Therefore, if we choose

vn ≥ n−1/2max

(

log n

∫ ∞

0
td/2−1

√

H(t)dt,

∫ ∞

0
td/2−1

√

H(t) log(1/H(t))dt

)

=: vn(1) , (6.84)
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we get

∫ ∞

vn

xr−1−qIq1dx ≪ n−r/2(log n)r
(∫ ∞

0
td/2−1

√

H(t)dt

)r

+n−r/2

(∫ ∞

0
td/2−1

√

H(t) log(1/H(t))dt

)r

.

Since H(t) ≤ min(1, t−rd/2), it follows that

∫ ∞

vn

xr−1−qIq1dx ≪ n−r/2(log n)r
(
∫ ∞

0
td/2−1

√

H(t)dt

)r

+ n−r/2 . (6.85)

On another hand, we have

∫ ∞

vn

xr−1−qIq2dx ≪ n−q/2

∫ ∞

vn

xr−1−q

(
∫ ∞

0
td/2−1H1/q(t)1t≤Mdt

)q

dx .

and choosing

M = (nx)2/d/un with un = n1/d ,

we get, by taking into account previous computations, that

∫ ∞

vn

xr−1−qIq2dx ≪ n−r/2

∫ ∞

0
trp−1H(t)dt = n−r/2 . (6.86)

We handle now the quantity
∫∞

vn
xr−1

P(max1≤k≤n kBp,M(µk, µ) > nx)dx. We shall apply this time

the Rosenthal inequality as we did to handle ‖max1≤k≤n kBp,M(µk, µ)‖q, but with q ∈ (2, r). We obtain

‖Bp,M(µn, µ)‖q ≪ J1 + J2 + J3 , (6.87)

with

J1 = n−1/2 log n

∫ ∞

0
td/2−1

√

H(t)1t>Mdt ,

J2 = n−1/2

∫ ∞

0
td/2−1

√

H(t) log(1/H(t))1t>M dt ,

and

J3 = n−1/2

∫ ∞

0
td/2−1H1/q(t)1t>Mdt .

Note that since M = (nx)2/d/un with un = n1/d, applying of Hölder’s inequality as in previous com-

putations, we have
∫ ∞

vn

xr−1−qJq
3dx ≪ n−r/2

∫ ∞

0
trd/2−1H(t)dt . (6.88)

On another hand, using that H(t) ≤ min(1, t−rd/2), we have (since r > 2 and Md/2 = x
√
n),

∫ ∞

vn

xr−1−qJq
1dx ≤ n−q/2(log n)q

∫ ∞

vn

xr−1−q

(
∫ ∞

M
td/2−1t−rd/4dt

)q

dx

≪ n−rq/4(log n)q
∫ ∞

vn

xr(1−q/2)−1dx ≪ n−rq/4(log n)qvrnv
−rq/2
n .
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Therefore if

vn ≥ n−1/2(log n)2/r =: vn(2) , (6.89)

we get
∫ ∞

vn

xr−1−qJq
1dx ≪ n−r/2(log n)2 . (6.90)

We handle now the term involving J2. We have

∫ ∞

vn

xr−1−qJq
2dx = n−q/2

∫ ∞

vn

xr−1−q

(∫ ∞

0
td/2−1

√

H(t) log(1/H(t))1t>M dt

)q

dx .

Using that H(t) ≤ min(1, t−rd/2), simple computations lead to

∫ ∞

vn

xr−1−qJq
2dx ≪ n−rq/4vr(1−q/2)

n (log vn)
q .

Therefore, if (6.89) holds, we get

∫ ∞

vn

xr−1−qJq
2dx ≪ n−r/2(log n)2 . (6.91)

So finally if we choose

vn = max(vn(1), vn(2)) ,

the constraints (6.84) and (6.89) are satisfied. Starting from (6.66), and gathering the bounds (6.6),

(6.85), (6.86), (6.87), (6.88), (6.90), and (6.91), we get the desired inequality in the case ‖X‖rd/2 = 1.
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[4] E. del Barrio, E. Giné and C. Matrán, (1999). Central limit theorems for the Wasserstein distance

between the empirical and the true distributions. Ann. Probab. 27 (1999) 1009-1071.
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[10] V. Dobrić and J. E. Yukich, (1995). Asymptotics for transportation cost in high dimensions. J.

Theoret. Probab. 8 97-118.

[11] R. M. Dudley, (1968). The speed of mean Glivenko-Cantelli convergence. Ann. Math. Statist. 40

40-50.

[12] S. S. Èbralidze, (1971). Inequalities for the probabilities of large deviations in terms of pseudomo-

ments, (Russian). Teor. Verojatnost. i Primenen 16 760-765.

[13] N. Fournier and A. Guillin, (2015). On the rate of convergence in Wasserstein distance of the

empirical measure. Probab. Theory Relat. Fields 162 707-738.

[14] M. Ledoux and M. Talagrand, (1991). Probability in Banach spaces. Isoperimetry and processes.

Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 23 Springer-Verlag, Berlin, xii + 480 pp.

[15] J. Marcinkiewicz and A. Zygmund, (1937). Sur les fonctions indépendantes. Fund. Math. 29 60-90.

[16] I. Pinelis, (1994). Optimum bounds for the distributions of martingales in Banach spaces. Ann.

Probab. 22 1679-1706.

[17] M. Talagrand, (1992). Matching random samples in many dimensions. Ann. Appl. Probab. 2 846-

856.

32


