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PAPR Analysis as a Ratio of Two Random
Variables: Application to Multicarrier Systems with

Low Subcarriers Number
Vincent Savaux and Yves Louët

Abstract—The distribution of the peak to average power ratio
(PAPR) of multicarrier systems is studied in the context of
signals featuring low subcarriers number. Considering the mean
power of the signal as a random variable, a general cumulative
distribution function of the PAPR is suggested. We show that the
new formulation is valid not only for low subcarriers number,
but also for larger subcarriers number. Thus, an asymptotic
analysis using a large subcarriers number proves a perfect
concordance between the suggested approach and the state-of-
the-art derivations only valid for large subcarriers number. All
the theoretical developments are supported through simulations,
and we discuss the case of oversampled signals as well.

Index Terms—PAPR, CCDF, Multicarrier, OFDM.

I. INTRODUCTION

Multicarrier signals are well known to be prone to high
power fluctuations due to the inherent summation of indepen-
dent information carried on different tones. The most common
way to quantify these power fluctuations is to define a metric
taking into account its maximum value relatively to its mean.
This gave birth to the peak factor definition namely the peak
to average power ratio (PAPR) parameter highly discussed
for decades especially in the context of multicarrier systems,
such as orthogonal frequency division multiplexing (OFDM)
(see [1] and references therein). PAPR is defined as the ratio
of the maximum power and the mean power of a signal.
An accurate PAPR derivation of multicarrier signal may be
difficult given the initial statistic of the signal to be considered.
A straightforward way to circumvent this issue is to directly
upper bound the PAPR value regardless of any statistical
hypothesis. As a result, a PAPR upper bound is found to be
equal to N.f(M), N being the useful subcarriers number
of the OFDM systems and f(M) a real value depending
on the digital modulation constellation size M (it is easily
shown that f(M) equals 3M−1

M+1 ). However this upper bound
appears to be very far from reality and almost never reached
due to the random behavior of the signal. As a consequence,
the only way to provide a thorough PAPR model is to
derive its distribution function or similarly its complementary
cumulative distribution function (CCDF) viewing PAPR as a
random variable due to the random character of the signal
itself.
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Considering a large subcarriers number N , a conventional
analysis assumes that each time sample of the OFDM signal
follows a complex Gaussian distribution. The overall signal
can then be modeled as a random vector of N independent
Gaussian samples. This has been first considered in [2], [3]
where the CCDF of the PAPR is given in a very simple
form and remains one of the most popular derivation. But
the latter derivation ((2) in the paper) remains only valid for
an oversampling factor equal to 1, which makes the formula
inaccurate for oversampled signals simulating continuous phe-
nomenons. The reason is that oversampling leads to correlated
samples. Still in [2], [3], the authors extended their work to
provide an approximation of the PAPR CCDF valid for large
oversampling factors, but this approximation is empirical and
yields some discrepancies with simulations for low subcarriers
number (N < 128).

To extend [2], authors suggested more thorough derivations
valid for lower oversampling values (4 or 8) [4]–[7] and
different subcarriers numbers. These works are based either
on the level crossing rate analysis of the peak distribution
(since the envelop of the OFDM signal can be approximated
as a Gaussian process), or theoretical links between peaks of
sampled and continuous signals, called extreme value theory.
However, these suggested expressions of PAPR CCDF are
close to the simulation results only for N ≥ 64.

Nevertheless the recent interest in OFDM systems with
low subcarriers number (e.g. narrowband internet of things
(NB-IoT) signal with 12 subcarriers [8]) should push us
to revisit the aforementioned PAPR derivations. The reason
lies in the PAPR denominator expression: it could not be
approximated as the signal power expectation as previously,
since the ergodic condition is not valid anymore. Even though
the central limit theorem remains valid (down to 10 carriers
[9]), the denominator itself has to be reconsidered as a random
variable and no more as a constant value (the mean power).

Thus, the main contributions of this paper are summarized
as follows.

1) We derive a general PAPR cumulative function valid for
large and low subcarriers numbers, down to 12 subcar-
riers. Our results are supported by original theoretical
developments. The main point is that the denominator
of PAPR CCDF is viewed as a random variable.

2) We show that an asymptotic analysis for large N leads
to existing results [2], [3], which confirms the validity
of our approach. Moreover, the first and second order
moments of PAPR are derived from our suggested
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Fig. 1. Overview of the suggested PAPR analysis compared with state-of-
the-art, according to subcarriers N and oversampling factor L.

CCDF, and perfectly match those found in the state of
the art [4].

In addition, simulations results validate the theoretical devel-
opments, which shows the interest to reconsider PAPR expres-
sion for low subcarriers number. Furthermore, we discuss the
extension of PAPR CCDF for low N value and large oversam-
pling rate. Fig.1 positions the suggested work according to the
number of subcarriers N and the oversampling factor L. Such
as highlighted in Fig. 1, the suggested CCDF is relevant for
low N value, as it was a pending issue, but it remains valid
for larger N value as well.

The remainder of the paper is organized as follows. Section
II presents the problem statement. Section III provides the
new PAPR CCDF, first validated in Section IV to match the
state-of-the-art results in an asymptotic analysis, and second in
Section V through simulation results, which cover both signals
at Nyquist rate and oversampled signals. Several concluding
remarks are made in Section VI. Main proofs are given in
Appendix to maintain the flow of the paper.

II. PROBLEM STATEMENT

Let us consider a signal x(t) sampled at Nyquist rate 1/ts
over an observation window of duration Nts, with ts the sam-
pling time. It is assumed that the samples xn, n = 0, .., N −1
are independent and identically distributed (iid) and obey a
complex white Gaussian distribution CN (0, σ2), where σ2 is
the variance of xn, i.e. σ2 = E{|xn|2}. This hypothesis fits the
multicarrier signal such as OFDM or filter bank multicarrier
(FBMC) [10], according to the central limit theorem for
N > 10 [9]. Note that in that case, N is usually equal to
the number of samples per symbol, which corresponds to the
number of subcarriers of the signal at Nyquist rate. According
to these assumptions, the PAPR of the signal can be expressed
as

λ =

max
n∈J0,N−1K|xn|2

1
N

∑N−1
n=0 |xn|2

. (1)

It is worth mentioning that, in the literature, the mean square in
the denominator expression is almost systematically replaced
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Fig. 2. CCDF of PAPR versus λ for N ∈ {16, 32, 128, 512}, comparison
between theory in (2) and simulations.

by the expectation as 1
N

∑N−1
n=0 |xn|2 ≈ E{|xn|2} = σ2,

assuming large N . This approximation allows for a simpli-
fication of the analytical developments, as the CCDF of the
PAPR is derived from the numerator of (1). Since the elements
|xn|2 are iid and obey a Chi-squared (χ2) distribution with two
degrees of freedom, the CCDF is written as:

CCDF (λ) = 1−
N−1∏
n=0

P(
1

σ2
|xn|2 ≤ λ)

= 1−
(
1− e−λ

)N
, (2)

where P(.) means ”probability of an event”. However (2) holds
when N is large enough. In fact, as shown in Fig. 2, the
CCDF in (2) holds for N ≥ 128. Therefore, a new expression
of the CCDF should be derived for lower N values, i.e.
when the mean 1

N

∑N−1
n=0 |xn|2 cannot be approximated by the

expectation. We hereby propose a more general expression of
the PAPR fitting low N values. Then, we present an asymptotic
analysis of the PAPR when N tends to infinity, which shows
that the known results of the literature can be obtained from
the suggested general expression.

III. SUGGESTED CCDF

For clarity purpose, we denote by n∗ the index correspond-
ing to the maximum value of |xn|2, i.e.

n∗ = arg max
n∈J0,N−1K|xn|2. (3)

Accordingly, we define the set of indexes Ξ = {0, 1, .., N−1},
and the subset Ξ∗ which does not contain n∗, i.e. Ξ∗∪{n∗} =
Ξ and Ξ∗ ∩ {n∗} = ∅.

When N is low, the numerator and denominator of the
PAPR in (1) cannot be considered as independent variables,
since the maximum is included in the sum. Therefore we
should rewrite the denominator of PAPR by using Ξ∗ subset
as
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1

N

N−1∑
n=0

|xn|2 =

max
n∈J0,N−1K|xn|2

N
+

1

N

∑
n∈Ξ∗

|xn|2, (4)

where the sum in the right side of (4) does not contain the
maximum value. Thus, the general expression of the CCDF is
obtained by substituting (4) into (1):

CCDF (λ) =P

( max
n∈J0,N−1K|xn|2

1
N

∑N−1
n=0 |xn|2

≥ λ

)

=P

(
max

n∈J0,N−1K|xn|2

≥ λ

( max
n∈J0,N−1K|xn|2

N
+

1

N

∑
n∈Ξ∗

|xn|2
))

=P

(
max

n∈J0,N−1K|xn|2︸ ︷︷ ︸
X

≥ λ

1− λ
N︸ ︷︷ ︸

λ̃

1

N

∑
n∈Ξ∗

|xn|2︸ ︷︷ ︸
Y

)
,

(5)

where λ̃, X , and Y have been defined for clarity purpose. Note
that (5) holds only if λ < N , which is a reasonable condition
since we assume that N , although low-valued, is large enough
to make the central limit theorem valid, in case of multicarrier
signal. In order to definitely address this issue in the rest of
the developments, we arbitrarily assume that N ≥ 12, which
is consistent with the considered CCDF range (see Fig. 2), as
well as with the condition λ < N imposed by λ̃ in (5).

Let us now investigate the distributions of X and Y , denoted
by fX and fY , respectively. From (2), it can be deduced that
the distribution of X is the derivative of the CDF

N−1∏
n=0

P(|X|2 ≤ x) =
(
1− e−

x
σ2

)N
, (6)

where it can be noted that, unlike (2), |X|2 is not normalized
by σ2, since the denominator is not considered as constant
anymore. Thus, we obtain the corresponding distribution:

fX(x) =
N

σ2
(1− e−

x
σ2 )N−1e−

x
σ2 . (7)

The derivation of the distribution of Y requires more
developments. On one hand, it can be noted that Y is the
sum of N − 1 independent elements |xn|2, which are not
normalized by σ2. On the other hand, each element in the
sum can be rewritten as |xn|2 = |Re(xn)|2 + |Im(xn)|2,
where Re and Im stand for the real and the imaginary parts,
respectively. Since Re(xn) (resp. Im(xn)) is a zero-mean real
Gaussian variable, then we can deduce that fY is similar to a
χ2 distribution with 2N − 2 degrees of freedom. In Appendix
A, it is proved that the distribution of Y is expressed as

fY (y) =
(N − 1)N−1

σ
2(N−1)
y,N Γ(N − 1)

yN−2e
− (N−1)y

σ2
y,N , (8)

where Γ(.) is the Gamma function [11], and the parameter
σ2
y,N is equal to

σ2
y,N = σ2

(
1−

N−1∑
k=0

(−1)k
(
N−1
k

)
(k + 1)2

)
︸ ︷︷ ︸

ΘN

. (9)

ΘN in (9) has been defined for clarity purpose.
It is worth mentioning that X and Y in (5) are uncorrelated,

but not independent, since we know that X ≥ N
N−1Y .

Therefore, the joint distribution fX,Y may be hard to derive,
then we make the following approximation:

CCDF (λ) = P(X ≥ λ̃Y, λ̃Y ≥ 0)

≈
∫ +∞

0

fY (y)

∫ +∞

λ̃y

fX(x)dxdy

= 1−
∫ +∞

0

(
1− e−

λ̃y

σ2
)N

fY (y)dy. (10)

Given the binomial theorem
(
1 − e−

λ̃y

σ2
)N

=∑N
k=0

(
N
k

)
(−1)ke−

kλ̃y

σ2 to develop (10) with (8), we
obtain:

CCDF (λ) ≈ 1−
N∑

k=0

(N − 1)N−1
(
N
k

)
(−1)k

(ΘNσ2)(N−1)Γ(N − 1)

×
∫ +∞

0

yN−2e
− (N−1)y

ΘNσ2 − kλ̃y

σ2 dy. (11)

By substituting z = y
(
kλ̃
σ2 + N−1

ΘNσ2

)
in the exponential, we

recognize the Gamma function [12], then (11) yields

CCDF (λ) ≈ 1−
N∑

k=0

(
N
k

)
(−1)k(N − 1)N−1

ΘN−1
N

(
N−1
ΘN

+ kλ̃
)N−1

= −
N∑

k=1

(
N
k

)
(−1)k

(1 + kΘN λ̃
N−1 )N−1

. (12)

It must be emphasized that (12) can be considered as a
general CCDF expression of PAPR, which holds for low
subcarriers number (or equivalently, for low samples number).
In order to show that this expression still holds for large N
value as well, we derive in Section IV an asymptotic analysis
of PAPR when N tends to infinity.

IV. ASYMPTOTIC PAPR ANALYSIS

For clarity purpose, we remove the notation lim
N→+∞

through-

out this section, as we assume that N is large in all develop-
ments. Also, we note ∼ instead of ∼

N→+∞
. First, we show that

the CCDF (12) asymptotically tends to the usual expression
(2), and second, we derive the mean and variance of PAPR.
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A. Asymptotic CCDF

As preliminary results, it is straightforward to show that
λ̃ ∼ λ, and ΘN ∼ 1. This equivalence can be proved by
reminding that σ2

y,N = σ2ΘN on one hand, and from (27),

σ2
y,N = σ2 − E

{ |Xi,m|2
N

}
∼ σ2 on the other hand. Then, for

any x ∈ R we have (1 + x
N )N ∼ ex. The substitution of the

previous equivalences into (12), in addition to the binomial
theorem, lead to

CCDF (λ) ∼ −
N∑

k=1

(
N
k

)
(−1)k

ekλ

= 1−
N∑

k=0

(
N
k

)
(−1)k

ekλ

= 1−
(
1− e−λ

)N
. (13)

We recognize (2), which shows the relevance of the general
expression of the CCDF in (12), which holds for large N
values.

B. Asymptotic Mean and Variance of PAPR

1) Mean of PAPR: It is must be noticed that the mean and
variance of PAPR cannot be directly derived from (12) since it
involves integrals with respect to λ from 0 to infinity. However,
it has been stated that (5) holds only if λ < N . Therefore,
we make the following approximation: we suppose that N is
large enough so that the numerator and the denominator of the
PAPR are uncorrelated, but the denominator is still considered
as a random variable. Then, we can rewrite (5) and redefine
the variable Y as

CCDF (λ) = P

(
max

n∈J0,N−1K|xn|2︸ ︷︷ ︸
X

≥ λ
1

N

N−1∑
n=0

|xn|2︸ ︷︷ ︸
Y

)
(14)

where X has the same distribution as previously (see (7)), and
Y obeys a χ2 distribution with 2N degrees of freedom and
parameter σ2. By following the same reasoning as in (10)-(12),
the CCDF from (14) can be derived as follows:

CCDF (λ) = −
N∑

k=1

(
N
k

)
(−1)k

(1 + kλ
N )N

. (15)

We then deduce the distribution of PAPR, denoted fλ as

fλ(λ) =
∂

∂λ

(
1− CCDF (λ)

)
= −

N∑
k=1

(
N
k

)
(−1)kk

(1 + kλ
N )N+1

. (16)

The mean, denoted by µPAPR, whose derivation is proved in
Appendix B, is expressed as

µPAPR =

∫ +∞

0

λfλ(λ)dλ

= −
N∑

k=1

(
N
k

)
(−1)kN2

k(N − 1)(N − 2)

∼ γ + ln(N), (17)

where γ is the Euler-Mascheroni constant. It must be empha-
sized that (17) matches the results presented in [13], where
the usual PAPR CCDF (2) is used.

2) Variance of PAPR: The variance of the PAPR, denoted
by νPAPR, is obtained from (15)-(17) as

νPAPR =

∫ +∞

0

λ2fλ(λ)dλ︸ ︷︷ ︸
ν̃PAPR

−µ2
PAPR. (18)

In the following, we focus on the development of ν̃PAPR.
Similarly to (17), the asymptotic ν̃PAPR value is expressed as

ν̃PAPR = −
N∑

k=1

(
N
k

)
(−1)k2N3

k2(N − 1)(N − 2)(N − 3)

∼ π2

6
+ (γ + ln(N))2, (19)

from which we finally deduce:

νPAPR ∼ π2

6
. (20)

We prove (19) in Appendix C. Once again, this result matches
those in [13], which validates the suggested PAPR form.

V. SIMULATIONS AND DISCUSSION

A. Simulations Results

1) Nyquist Rate Signal: Simulations have been carried out
to show the relevance of the proposed theoretical developments
regarding PAPR of multicarrier signal with low subcarriers
number (N ∈ {16, 32, 64, 128}). In all simulations, a 16-
quadratic amplitude modulation (QAM) constellation has been
used. Note that higher order constellations leads to very similar
results. The simulation results have been averaged over 10000
independent runs.

Fig. 3 depicts the CCDFs of PAPR versus λ (in dB), for
(a) N=16, 32 subcarriers, and (b) N=64, 128 subcarriers.
For each subcarriers number configuration, three curves are
compared: one obtained through simulations, and two obtained
from theory, referred as ”usual” in (2), and ”proposed” in (12).
It can be generally observed that the suggested theoretical
PAPR CCDF is closer to simulations than the usual one, for
any N ∈ {16, 32, 64, 128}. In particular, Fig. 3 shows that at
CCDF (λ) = 10−4, the difference between proposed CCDF
and simulation is less than 0.1 dB, whereas compared to (2),
it is equal to 1, 0.5, 0.3, and 0.2 for N =16, 32, 64, and 128,
respectively. This shows the relevance of the proposed PAPR
analysis for N ≤ 128 compared to the usual one. Furthermore,
it shows that the larger N , the closer to simulation the CCDFs.
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(a) CCDF of PAPR versus λ (dB), N=16, 32 subcarriers.
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(b) CCDF of PAPR versus λ (dB), N=64, 128 subcarriers.

Fig. 3. CCDF of PAPR versus λ (dB), comparison of simulated (exact) CCDF,
and usual theoretical CCDF (2) and proposed theoretical CCDF (12), using
N=16, 32, 64, 128 subcarriers.

However, it can be noted that the proposed CCDF does not
perfectly match the simulations, in particular in small λ ranges,
where it is even slightly worse than CCDF in (2). This is
mainly due to the approximation made in (10).

Fig. 4 shows the mean and variance of PAPR versus N
from 16 to 2048. Theoretical results in (17) and (20) are
compared with those obtained through simulations. It can be
clearly observed that µPAPR tends to γ+ ln(N), and νPAPR

tends to π2

6 as N increases. This shows the relevance of the
asymptotic mean and variance analysis of PAPR, and then
confirms the results presented in [13].

2) Oversampled Signal: It must be emphasized that pre-
vious developments and results have been presented for
multicarrier signals sampled at Nyquist rate. However, for
more practical scenarios, the PAPR of oversampled signal
should be considered. In order to fit oversampled signals with
low subcarriers number, we propose two approximations of
CCDF (λ):

• Van Nee based approximation [2], i.e. N is substituted by
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Fig. 4. Mean and variance of PAPR versus N for N =
16, 32, 64, 128, 256, 512, 1024, 2048, comparison between (17), (20), and
simulations.

⌊αN⌉ in (12), where ⌊.⌉ is the nearest integer function.
In that case, the coefficient α is empirically set in order
to fit the curves obtained by simulation. In the following,
this approximation is referred as ”adapted”, since it is
adapted from Van Nee approach in [2].

• Proposed approximation, where λ̃ is substituted by λ̆ =
βλ

1− βλ
N

in (12), where β is a parameter which is empirically
set. In the following, this approximation is referred as
”proposed”.

Furthermore, we compared the suggested approximation
with CCDF expressions derived in the literature [4], [6], [7].
In [4], the authors expressed the CCDF of PAPR as:

CCDF (λ) = 1− exp
(
−Ne−λ

√
πλ

3

)
. (21)

In [6], [7], the authors based their developments on extreme
value theory. The CCDF in [7] is expressed as

CCDF (λ) = 1− exp
(
−Ne−λ

√
π log(N)

3

)
, (22)

and this result has been extended in [6] to more a realistic
model where subcarriers may not be active, and with different
power distribution. In that more general case, the CCDF of
PAPR can be written as

CCDF (λ) = 1− exp
(
−2Ke−λ

√
2ρπλK

3N

)
, (23)

where K is half the number of activated subcarriers, and ρ is
related to the power allocation.

In order to validate the suggested approximations, Figs. 5
and 6 show the CCDFs of PAPR versus λ for adapted and
proposed approximations, respectively. The oversampling rate
is equal to 20, then the PAPR of the signal is very close
to that of the continuous signal. In Fig. 5, Van Nee based
adaptation has been carried out with α = 1.5. Furthermore,
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Fig. 5. CCDF of PAPR versus λ (dB) of oversampled OFDM signal using
Van Nee based approximation. The ”original” corresponds to Nyquist rate
model in (12). The results have been obtained with an oversampling rate of
20, α = 1.5.

the curve referred as ”theory, original” corresponds to the
multicarrier signal with N = 16, and sampled at Nyquist rate
such as proposed in (12). It can be seen that the CCDF in
(12) underestimates the actual CCDF of oversampled signal
of about 0.4 dB. In addition, the Van Nee approximations do
not perfectly match the curves obtained through simulations.
Thus, a specific α value should be set for every N value.

In Fig. 6, the proposed CCDF approximation has been
carried out with β = 0.92. In that case, it can be observed that
the proposed CCDFs match well the curves obtained through
simulations for CCDF (λ) ≤ 0.1. However, it must be noted
that further simulations (not shown here) revealed that this
approximation does not hold anymore for N > 128 with
β = 0.92 (β should then be adapted), whereas Van Nee’s does
with α = 2.8 such as suggested in [2]. Thus, we can conclude
that Van Nee’s approximation can still be used for oversampled
multicarrier signals with large N number (N ≥ 128), whereas
the proposed one fits signals with low N number (N < 128),
even though it can also be used for larger N by adapting β
value.

Fig. 7 compares the CCDF of PAPR of the proposed
approximation with those of the aforementioned state-of-the-
art [4], [6], [7], using a 16-QAM and the same oversampling
rate as previously. The CCDF obtained through simulations
has been plotted as a reference. Two subcarriers numbers are
considered: N=16, in Fig. 7-(a), and N = 64 in Fig. 7-(b).
The curve of CCDF corresponding to (23) has been obtained
by considering that all subcarriers are active, i.e. K = N

2 .
Note that in the case where ρ = 1, then (23) reduces to
(21). Therefore, we arbitrarily set ρ = 0.6 to distinguish
(23) and (21). It can observed in Fig. 7-(a) that the proposed
approximation almost match the simulations, whereas the three
other approximations deviate from simulation for λ ≥ 7
dB. However, in Fig. 7-(b), all the approximations are closer
to the simulation. In particular, it is highlighted that, at
CCDF (λ) = 0.0001, the proposed approximation, (22), and
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Fig. 6. CCDF of PAPR versus λ (dB) of oversampled OFDM signal using
proposed approximation. The results have been obtained with an oversampling
rate of 20, β = 0.92.

(23) are less than 0.2 dB far from the simulation. This shows
the relevance of the suggested analysis and the general CCDF
of PAPR expression (12) for low subcarriers number N < 64.

B. Discussion

The various simulations results show the relevance of the
suggested general expression of CCDF of PAPR, in particular
for low subcarriers numbers 12 ≤ N ≤ 64. However, it can
be noted that (12) involves the derivation of two binomial
coefficients per element of the sum. Therefore, the calculus of
(12) may be not tractable in practice. In fact, if N is higher
than 128, the derivation of the binomial coefficients exceeds
the computing capacity of most of the present computers.
However, it can be noted that ΘN in (9) quickly converges
towards 1

N (γ + ln(N)) (this is not proved in this paper),
which reduces the computation cost of the CCDF for N > 32.
Otherwise, computation tricks should be used to obtain the
binomial coefficient in (12), e.g. by considering logarithmic
additions instead of multiplications.

In practice, we conclude from the different simulations
results that (12) should be used for very low subcarriers
number, typically N < 128 at Nyquist rate, and N < 64 for
oversampled signals. For higher N values, other approxima-
tions [2], [4], [6], [7] can be considered for simplicity matter.

VI. CONCLUSION

In this paper, we presented a new and general expression of
PAPR CCDF for multicarrier systems, which holds for large
and low subcarriers number values, down to N ≥ 12. This
formula has been derived by considering the denominator of
PAPR as a random variable, whereas it is usually assumed to
be a constant. This led us to derive an original distribution
function for this denominator. In addition, we showed that an
asymptotic analysis of the PAPR leads to the existing results in
the literature, in terms of CCDF, mean, and variance of PAPR.
These developments, supported by various simulations results,
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(a) CCDF of PAPR versus λ (dB), N=16 subcarriers.
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(b) CCDF of PAPR versus λ (dB), N=64 subcarriers.

Fig. 7. CCDF of PAPR versus λ (dB), comparison of simulated (exact) CCDF,
proposed approximation, and CCDF (21), (22), and (23) in [4], [7], and [6],
using N=16, 64 subcarriers.

validate the theoretical analysis. Furthermore, we discussed
the issue of PAPR of oversampled signals with low subcarriers
number, and we suggested an original approximation of PAPR
CCDF for such signals. Future works will deal with more
practical applications of the presented analysis, considering
signals with low subcarriers number such as NB-IoT.

APPENDIX

A. Proof of (8)-(9)

Let ΩX = {X0, X1, .., XN−1} be a set of N independent
zero-mean complex white Gaussian variables with variance
σ2 = E{|Xn|2}. Then, the sum Z = 1

N

∑N−1
n=0 |Xn|2 obeys a

χ2 distribution with 2N degrees of freedom and parameter
σ2
Z (due to the fact that Xn are not normalized), i.e. the

distribution of Z is written as

fZ(z) =
NN

σ2N
Z Γ(N)

zN−1e
−Nz

σ2
Z , (24)

where the parameter σ2
Z can be straightforwardly deduced

from (24). In fact, on one hand, we have

E
{
Z
}
=

1

N

N−1∑
n=0

E{|Xn|2} = σ2, (25)

and, on the other hand, by property of random variables
featuring continuous density functions, it can be shown that

E
{
Z
}
=

∫ +∞

0

zfZ(z) = σ2
Z , (26)

which yields σ2
Z = σ2. Note that the latter feature holds for

any degree of χ2 distribution. Thus, suppose that Xi, i ∈J0, N − 1K, is randomly chosen in ΩX , and let Z ′ be defined
as Z ′ = Z− |Xi|2

N . Then Z ′ obeys a χ2 distribution with 2N−2

degrees of freedom with parameter σ2
Z′ = E

{
Z − |Xi|2

N

}
=

N−1
N σ2.
Now, suppose that Xi is chosen such that |Xi|2 = |Xi,m|2,

where |Xi,m|2 = max
i∈J0,N−1K|Xi|2 (the subscript m points out

that |Xi,m|2 is the maximum value). Then, the variable Y =

Z − |Xi,m|2
N still obey a χ2 with 2N − 2 degrees of freedom

with new parameter σ2
Y , which is derived below. It must be

noted that the distribution of X = |Xi,m|2 is given in (7),
therefore the value of σ2

Y is derived as follows:

σ2
Y = E

{
Z − |Xi,m|2

N

}
= σ2 − 1

N

∫ +∞

0

xfX(x)dx. (27)

Then, the binomial theorem applied to fX(x) leads to

fX(x) =
N

σ2
(1− e−

x
σ2 )N−1e−

x
σ2

=

N−1∑
k=0

(
N − 1

k

)
(−1)k

N

σ2
e−

(k+1)x

σ2 . (28)

Therefore, substituting (28) into (27) yields

σ2
Y = σ2 − 1

N

∫ +∞

0

N−1∑
k=0

(
N − 1

k

)
(−1)k

xN

σ2
e−

(k+1)x

σ2 dx.

(29)
Then we substitute w = (k+1)x

σ2 to recognize the Gamma
function, which finally leads to (9), and then concludes the
proof.

B. Proof of (17)

We use the following equivalence
(
N
k

)
∼ Nk

k! to simplify
µPAPR in (17):

µPAPR ∼ −
N∑

k=1

(−1)kNk

kk!
. (30)

Let E1(z) =
∫ +∞
z

e−t

t dt, z ∈ C\R−, be the exponential
integral function, defined in [12]. The series representation
of E1 is
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E1(z) = −γ − ln(z)−
+∞∑
k=1

(−1)kzk

kk!
. (31)

Since lim
z→+∞

E1(z) = 0, and reminding that N → +∞, then
the substitution of z by N in (31) leads to µPAPR in (17),
which concludes the proof.

C. Proof of (19)

Similarly to the reasoning in Appendix B, it should be first
noticed that the first line in (19) becomes

ν̃PAPR ∼ −2
N∑

k=1

(−1)kNk

k2k!
. (32)

Then, we use the series expansion of the so-called generalized
integro-exponential function (see (2.3) and (2.10) in [14]),
denoted by Ej

s , such as hereby described:

Ej
s(z) =

1

Γ(j + 1)

∫ +∞

1

ln(t)jt−se−ztdt

=
+∞∑
k=0

k ̸=s−1

(−z)k

(s− 1− k)j+1k!

+
zs−1(−1)j+s

(j + 1)!

j+1∑
k=0

(
j + 1

k

)
ln(z)1+j−kΨk,s,

(33)

where Ψk,s is the polygamma function [11], whose analytical
values are provided in [14], Table 1, and in [15]. It can be
noticed that, when s = j = 1:

E1
1(z) =

+∞∑
k=1

(−1)kzk

k2k!
+

1

2

2∑
k=0

(
2

k

)
ln(z)2−kΨk,1, (34)

where

Ψ0,1 = 1

Ψ1,1 = γ

Ψ2,1 = γ2 +
π2

6
. (35)

From the integral form of Ej
s(z) in (33) we have

lim
z→+∞

E1
1(z) = 0. Then considering z = N and substituting

(32) into (34) finally leads to

ν̃PAPR ∼ π2

6
+ (γ + ln(N))2, (36)

which concludes the proof.
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