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a ENTPE, Transport, Urban Planning and Economics Laboratory

b UGA, Grenoble Applied Economics Laboratory

c University of Montpellier, Institute for Functional Genomics, UMR 5203

April 8, 2016

Abstract

In this paper, we model mode choice with the new specification of gen-
eralized linear models proposed by Peyhardi et al. (2015). In logit models
used by economists, the link function can be decomposed into the reference
ratio of probabilities and a cumulative distribution function (cdf). Alter-
native cdfs (Student, Cauchy, Gumbel, Gompertz, Laplace, Normal) can
be used. These cdfs differ in their symmetry (symetric or asymetric distri-
butions) and in their tails (heavy or thin tails), each allowing a different
distribution of behaviors. We test the statistic and economic implications
of changing the cdf. First, we investigate the goodness-of-fit indicators
(AIC, BIC, Mc-Fadden R2). Then, we compare estimated parameters
in terms of sign and significativity. And finally, we look at behavioural
outputs such as value of time and demand elasticities. We use a recent
stated preferences survey conducted by the author in the Rhône-Alpes
Région (France). Its specificity is to specifically address the question of
mode choice (rail, coach and car) in a regional context. Attributes in-
clude travel time, cost and comfort. We also investigate the cross effect
of travel time and comfort. Comparisons between cdfs are made on the
basis of three models, including only attributes variables or only individ-
ual variables or both. Our results show that the different cdfs provide
quite similar results. But, in our estimations, the logistic cdf never ranks
among the best options. In terms of significance and sign of coefficients,
parameters’ estimation are globally the same even if some special features
can be noticed. Looking at time equivalence of comfort, we notice that
in the model without individual variables, the cdf has a major influence
on outputs. In particular, the Student cdf provides very consistent results
while some other cdfs (e.g. Gompertz, Logistic, Normal) are extreme.

1 Introduction

Mode choice modeling is a recurring challenge, broadly discussed in the trans-
portation economics literature. It is the support of the development of discrete
choice models: conditional logit (McFadden, 1974), nested logit (Ben-Akiva,
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1974), mixed logit (McFadden et al., 2000) were all developed and illustrated
with mode choice applications. While developing these models, the authors
proved their compatibility with economics theory, namely the random utility
models (Thurstone, 1927). Thus, they are used to explore the determinants of
mode choice behavior and to derive economic concepts such as willingness-to-
pay, value of time, elasticities or market shares. For example, Wardman et al.
(2004) uses a multinomial logit to calculate the rail demand elasticities of a
general cost function, a clockfaced index and a timetable’s memorability index.
Yanez et al. (2010) calculate subjective value of time, wait and walk with an
integrated choice latent variables model . They also predict changes in market
shares following an artificial increase of individual income.

Multiple variations of the above mentioned models can be found in the litera-
ture. In particular, a significant body of literature on discrete choice model deals
with heterogeneity in behaviour and preferences (Fiebig et al., 2010; Hensher
et al., 2015). They focus on changes in error terms specification. For example,
HEV models specify errors which are not independently distributed. In mixed
logit, parameters are random since the error terms are divided into two parts
with one following any distribution specified by the author. Latent class models
authorizes variations of coefficients between groups.

For the multinomial logit, the conditional logit and the mixed logit model, the
link function between the probabilities and the predictors is the multinomial
logit function (canonikal link function). It can be remarked that this function
is defined using the logistic cdf. Alternative cdfs were proposed by Peyhardi
et al. (2015), e.g. Student, Cauchy or Laplace cdf. These cdf differ in their
symmetry (symetric or asymetric distributions) and in their tails (heavy or thin
tails), each allowing a different distribution of behaviors. For example, heavy
tails distributions, such as the Cauchy or Student cdf, permit a greater dis-
persion ofthe response behavior to changes in predictors. Our aim is to test
and compare these new specifications with the logistic cdf and to address the
economic implications of such models on a real and recent database collected
by the author. Beyond explanatory consequences and potential differences in
significance of predictors, we test to which extent these new models affect mode
choice and behavioral outputs like value of time, equivalent between time and
comfort as well as elasticities.

In this paper, we use a dataset that explores the determinants explaining train
as a mode choice. Train is a relevant alternative for some suburban trips but
mainly for interurban trips. We also believe that to understand the determi-
nants of rail use, it is important to study the behavior of train users as well as
non-train users such as car users and coach users. Nevertheless, mode choice
models including rail have previously been studied either on a single specific
rail corridor (Kottenhoff, 1995; Ben-Akiva and Morikawa, 2002; Börjesson and
Eliasson, 2011) or interviewing only train users (Wardman 2004; Richter and
Keuchel, 2012). One exception is Arentze and Molin (2013) who conduct four
stated preferences survey (SP) in the Netherlands, interviewing all types of users.
In three surveys, rail alternatives are proposed. But there is no car alternative,
except for medium distances (20 kms). Yet it seems that, in SP surveys, offering
alternatives to the train is a condition for understanding mode choice. We do
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not know of any paper that examines regional trips, offering differentiated travel
modes to travelers. We intend to fill this gap with the data analyzed in this
paper.

Ben-Akiva and Morikawa (2002) provides a comprehensive list of factors which
are important in a choice of a mode between train and coach but which are
usually not specified in the models. It includes for example, reliability, comfort
(e.g. seating availability) or safety from accidents. For these specific character-
istics of train, stated preferences data may be preferred over revealed preference
data. Indeed, in a real choice world the variables may not vary sufficiently (e.g.
frequency) ; there may be strong correlations between variables of interest (e.g.
time and cost) ; it is not possible to directly evaluate demand under conditions
which do not yet exist (e.g. a new timetable with clockfaceness) ; variables must
be expressed in objective units (such as euros for cost) which is difficult for some
secondary variables such as seat design. Neverthess, stated preferences data also
have drawbacks (Wardman, 1988). Stated preferences may not correspond to
actual preferences due to systematic bias responses or because of difficulties in
carrying out the choice task.

In our survey, we study comfort which is solely addressed in the literature. Com-
fort, and more precisely the possibility of working or resting during the trip, is
often seen as an asset of rail trips. But this advantage is being challenged in
trains where seating availability is not guaranteed. Richter and Keuchel (2012)
find out that seat availability is the most important component of comfort in
trains. Most papers in which values of time are differentiated according to the
mode show that value of time is greater for car trips than for public trans-
port trips. Fosgerau et al. (2010) investigate the reasons explaining this result:
strategic bias responses, self-selection (car users having higher values of time) or
linked to comfort (travel time is seen less as a waste of time if mode choice is the
train). There may thus be a link between comfort and travel time: the longer
the trip, the more important the guarantee of a seating availability. For more
literature on travel time use, see (Lyons G, 2013; Joly and Vincent-Geslin, 2016).

The paper is organized as follows. Section 2 presents the new specification in the
context of discrete choice models. Section 3 presents the comparison method of
the estimations with the different specifications and presents the data. Results
are discussed in section 4. Section 5 concludes.

2 Generalized linear models for categorical data

2.1 Logit models

The family of logit models is a particular subset of generalized linear models
(Nelder and Baker, 1972) which are composed of a random response variable
associated to a probability distribution, a set of predictors which are determin-
istic and a link function which describes the relation between the predictors
and the expectation of the response variable. Such models are characterized by
the distribution of the response variable Y , the linear predictor η and the link
function between the expectation E(Y ) and η.
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Let Yi denote the response variable corresponding to the choice of individual
i (with alternatives j = 1, . . . , J), xi denote the vector of individual variables
and ωi,j denote the vector of alternative-specific variables. In the following, we
will suppress the individual subscript i without loss of generality. Luce’s choice
axiom (Luce, 1959) and the principle of random utility maximization lead to
the logit defined by

πj =
exp(ηj)

1 +
∑J−1

k=1 exp(ηk)
(1)

where πj = P (Y = j). Depending on the form of the linear predictors ηj , we
obtain different logit models:

• ηj = αj + xT δj . Individual characteristics x are used with J − 1 different
slopes δj . This is the classical multinomial logit model.

• ηj = αj + ω̃T
j γ where ω̃j = ωj − ωJ . Choice characteristics ωj are used

with common slope γ. This is the conditional logit model introduced by
McFadden (1974).

• ηj = αj + xT δj + ω̃T
j γ. This is a combination of the two previous

parametrizations.

2.2 A new specification

To introduce the new specification, let us remark that the equation (1) is equiv-
alent to:

πj
πj + πJ

=
exp(ηj)

1 + exp(ηj)
, j = 1, . . . , J − 1. (2)

More generally, all the classical regression models for categorical responses
(Tutz, 2012; Agresti, 2013) share the generic equation

rj(π) = F (ηj), j = 1, . . . , J − 1,

where r is a differentiable and invertible map between the simplex ∆ = {π ∈
(0, 1)J−1|∑J−1

j=1 πj < 1} and an open subset of the hypercube (0, 1)J−1, π is

the vector of probabilities (π1, . . . , πJ−1)T and F is a continuous and strictly
increasing cdf (Peyhardi et al., 2015).

The ratio of probabilities r is chosen according to the ordinal or nominal nature
of the response variable. The reference ratio (see the left part of the equation
(2)) is appropriate in the context of qualitative choices because there is no
natural ordering among the different alternatives. Therefore, this part of the
equation is conserved. Now, remark that the right part of the equation (2) is
the logistic cdf. The main idea of our methodology is to replace the logistic cdf
by other continuous and strictly increasing cdfs. The proposed models are thus
described by the equations

πj
πj + πJ

= F (ηj), j = 1, . . . , J − 1.

where F is either the logistic, normal, Laplace, Gumbel, Gompertz or the
Cauchy cdf. The heavy tails of the Cauchy distribution or the asymmetry of

4



the Gumbel and Gompertz distributions may markedly improve the model fit.

Since all these cdfs are strictly increasing functions with ηj , the parameters can
still be easily interpreted (Equation (3)). For instance, if the slope parameter of
the alternatives cost is significantly negative then the proportion of alternative
j is decreasing when its cost is increasing.

πj
πJ

=
F

1− F (ηj) (3)

In the particular case of the logistic cdf, we have :

πj
πJ

= exp(ηj) (4)

This family of models stays easily estimated using the Fisher scoring algorithm.
The scores and the Fisher’s information matrix computation are a few changed
by the use of different cdf F ; see (Peyhardi et al., 2015) for more details. In
the same way, the elasticities of a single alternative specific characteristic ω are
given by

∂ lnπj
∂ lnωk

= γωkdk

{
(1− πk) , j = k,
−πk , j 6= k,

(5)

where dk = f(ηk)/[F (ηk){1 − F (ηk)}], f denoting the derivative of F , i.e. the
associated probability density function. For the particular case of logit model
(i.e. F is the logistic cdf) we have f = F (1−F ) (i.e. dk = 1 for all alternatives k)
and (5) is the classical result of elasticities computation for logit model, given in
(Greene and Hensher, 2003) for instance. One can remark that the IIA property
is conserved since dk is not depending on alternative j.

3 Methods, data and models

3.1 Methods for comparing models

Our objective is to compare the different specifications of the model, in terms
of explanation and in terms of prediction. We test 7 seven cdfs: Cauchy, Gom-
pertz, Gumbel, Laplace, Logistic, Normal and Student.

Comparison of models is a classical task. For example, Greene and Hensher
(2003) compare latent-class model to mixed logit and multinomial logit. To
do so, they use Log-Likelihood, pseudo-R2, estimates of Value Of Time (VOT)
kernel density for choice probabilities (mixed and latent-class model), direct
elasticities of time and cost as well as probabilities profiles of mixed and latent-
class models. Yanez et al. (2010) uses likelihood ratio tests to compare the
fit of a multinomial logit and two hybrid choice models. They also compare
predictions of market shares and so-called ”subjective value of time”. Fiebig et al.
(2010) propose a systematic comparison of multinomial logit, scale multinomial
logit, mixed logit and generalized multinomial logit with AIC, BIC and CAIC
indicators. They also compare the willingness-to-pay between models and face
them to the comparison of the percent of individual choosing an alternative
versus another facing a given price change.
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The methods to be used depend on the objectives (e.g. AIC is preferred to BIC
to predict an outcome), on the comparability of the models (LR tests require
the models to be nested) and on the nature of the data (comparisons on VOT
or elasticities show which estimates are in the range of plausible values but do
not point to a ”better” model if data are real and not simulated).

The 7 models we propose are comparable in terms of goodness-of-fit: McFadden
R2, Loglikelihood, AIC and BIC. The three lasts indicators will offer the same
results since all models have the same number of parameters except the one with
the Student cdf which requires the estimation of only one additional parameter,
the degrees of freedom.

As a second step, we focus on the outputs of the models: significativity of pa-
rameters, elasticities, value of time and equivalence between time and comfort.
With this approach, we can grasp the scopes of values and estimate the impact of
choosing one model over the others. Even if the scales of parameters are partly
normalized to provide comparable estimations, a residual scale effect preclude
a direct comparison of estimated parameters . We thus focus on a compari-
son of significativity and on the relation linking coefficients of a model. Indeed,
the parameters’ estimations should correspond to identical preference structures
between models (Viney et al., 2005). This linear structure is frequently illus-
trated plotting estimates of coefficients from two models (Flynn et al., 2008;
Kerr and Sharp, 2009). We also propose a comparison of significativity. Con-
cerning elasticities and equivalences cost-time-comfort, there is no scale effects,
but the formulas integrate derivates of utility with respect to the attributes (see
part2.2).

3.2 Data

We conducted a choice experiment (web and face-to-face) among 1, 774 inhabi-
tants of the Rhône-Alpes region, in February and March 2015. Each respondent
had to choose between three travels modes: train, coach and car. In the exper-
iment, alternatives are described in terms of mode (train, coach and car), cost,
time, probability and time delay, frequency, clock-face timetable and comfort.
To avoid a cognitive burden, attributes describing the journey are split into
three exercises. In exercise 3, on which we focus here, modes vary according to
time, cost and comfort (Table 1). Respondents had to answer to four choices
questions in exercise 3, leading to a database with 6,373 observations since some
rare respondents did’nt answer all four questions.

Respondents described a reference journey in terms of time, cost, purpose, ori-
gin and destination... This reference journey is then used to personalize the
choice questions and minimize the well-known hypothetical bias. Levels of at-
tributes are also presented in Table 1. Levels of time and cost attributes are
pivoted around the values collected for a reference journey. One of the three
alternatives was systematically a status quo alternative with the mode, travel
time and travel cost identical to the reference journey.

To improve the efficiency of the design, a Bayesian efficient design was im-
plemented. A priori weights of attributes were taken from the literature and
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adjusted during the pilot tests.

Table 1: Attributes by exercise

Variations and
unit

Exercise 1 Exercise 2 Exercise 3

Mode
Train, train,
car

Train, train,
car

Train,
coach, car

Travel time
−30%,0%,+30%
(minutes)

X X X

Travel cost
−30%,0%,+30% (eu-
ros/travel)

X X X

Frequency
In number of trains
or coach/hour

X X -

Time delay In minutes X - -

Probability of
delay

In % X - -

Clockfaceness Yes (1) or No(0) - X -

Comfort
Guarantee of a seat
(1) or not (0)

- - X

Figure 1: Exemple of choice question for exercise 3

3.3 Variables selected in the model

We used stepwise selection to select the variables that enter into the models. It
defines a full model, S3, that includes alternative-specific and individual vari-
ables. To get a deeper understanding of what the new specification provides to
the modeling of discrete choices, we divide this full models into two submodels.
Model S1 includes only alternative-specific variables. Model S2 includes only
individual variables.
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Along modal alternative-specific constants (ASC), we include variables describ-
ing the alternatives (time, cost, comfort and time * comfort) as well as individual
variables. Individual variables are related to socio-economic characteristics (age,
income), spatial characteristics (% of the origin and destination municipalities
in high density area), journey characteristics (type of user (car or coach user
for the reference trip), frequency of the trip, imperative schedule) and general
mobility (access to car, frequency of use of modes alternative to car).
Summary statistics for alternative-specific variables are in table 2. For coach
and car, comfort is set to 1 since seating position is guaranteed. Summary
statistics for individual variables are in table 3. Concerning the choice made by
respondents, 29.6 % chose the train alternative, 21% chose the coach alternative
and 49,4% chose the car alternative.

Table 2: Descriptive statistics on alternative-specific variables

Mean S.D. Min Max
CostA 8.88 7.56 0.63 62.00
CostB 8.90 7.80 0.46 78.00
CostC 9.99 8.64 0.38 62.00
TimeA 69.89 51.86 7.00 325.00
TimeB 70.22 53.23 7.00 325.00
TimeC 57.24 36.89 4.00 330.00
ComfortA 0.50 0.50 0.00 1.00
TimeA*ComfortA 37.16 53.04 0.00 325.00

Table 3: Descriptive statistics on individual variables

Label Definition Mean S.D. Min Max

age In years 47.57 15.76 19.00 90.00
size hh Size of the household 2.63 1.27 1.00 8.00
nb car number of cars available in the household 1.69 0.72 1.00 5.00

access car nb car/size hh 0.76 0.38 0.12 4.00
income h 1 : Income above 4 000 euros 0.28 0.45 0.00 1.00

dep dens
% of the origin municipality in high density
area

0.74 0.40 0.00 1.00

arr dens
% of the destination municipality in high den-
sity area

0.86 0.30 0.00 1.00

type coach 1 : user of coach for the reference trip 0.03 0.16 0.00 1.00
type car 1 : user of car for the reference trip 0.54 0.50 0.00 1.00

regular 1 : regular trip 0.28 0.45 0.00 1.00
imperative 1 : imperative schedule at destination 0.45 0.50 0.00 1.00

alt pt
1 : car user who had already used public trans-
ports to do the reference trip

0.15 0.35 0.00 1.00

alt car
1 : train or coach user who had already used
car to do the reference trip

0.26 0.44 0.00 1.00

freq alt 1 : frequency of use of modes other than car 0.41 0.49 0.00 1.00
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Figure 2: Log-likelihood depending on the degrees of freedom - S3

4 Results

Seven specifications are estimated and compared on three models (S1, S2 and
S3). Models are estimated using the sofware ”Statiskit” developed by Pierre
Fernique and Jean Peyhardi, in C++ with an interface in Python. For the lo-
gistic distribution, we compared and validated estimations’ results with the one
provided by the package ”Mlogit” in R. The Student distribution depends on
the degrees of freedom (df) chosen. Several Student distributions were tested to
select the one that maximizes the log-likelihood which appears to be empirically
generally concave. As shown in 2 and the zoom 3, it is the Student distribu-
tion with 2 degrees of liberty which meet that criterion for the S3 model (and
df=0.35 for the S1 and df=1.5 for S2; 4 to 7 ).
Note that for model S3, the specification with the Gompertz cdf did not con-
verge.

4.1 Comparison of models

In this subsection, we compare the models considering the usual goodness of fit
indicators (table 4): Log-likelihood, AIC, BIC, and McFadden R2.
For all distributions we focus on the rank of the models in terms of AIC, BIC,
and McFadden R2. In model S1, all indicators converge in a common finding:
the Student cdf performs the best. It is followed by the Cauchy cdf. In model
S2, the Laplace cdf performs best. Cauchy and Student (1.5) follow depending
on the criteria. In model S3, the Gumbel cdf ranks first, followed by Student
(2) and Laplace cdfs.
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Figure 3: Log-likelihood depending on the degrees of freedom (zoom) - S3
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Figure 4: Log-likelihood depending on the degrees of freedom - S1
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Figure 5: Log-likelihood depending on the degrees of freedom (zoom) - S1
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Figure 6: Log-likelihood depending on the degrees of freedom - S2
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Figure 7: Log-likelihood depending on the degrees of freedom (zoom) - S2

Globally, the Logistic and Normal cdfs performs badly. Student performs well.
Its worst rank is three, but the premiums are globally low, except for the Mc-
Fadden R2 in model S1.
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Table 4: Comparison of fit indicators

Cauchy Gompertz Gumbel Laplace Logistic Normal Student (0.35)

Value of indicators (S1)

Log-likelihood -5,966 -6,194 -6,073 -6,028 -6,083 -6,115 -5,908
Mc Fadden R2 0.097 0.062 0.081 0.087 0.079 0.074 0.105
AIC 11,945 12,400 12,157 12,068 12,178 12,242 11,830
BIC 11,985 12,441 12,198 12,109 12,219 12,282 11,877

Rank (S1)

Mc Fadden R2 2 7 4 3 5 6 1
AIC 2 7 4 3 5 6 1
BIC 2 7 4 3 5 6 1

Cauchy Gompertz Gumbel Laplace Logistic Normal Student (1.5)

Value of indicators (S2)

Log-likelihood -5,358 -5,382 -5,366 -5,356 -5,363 -5,367 -5,357
Mc Fadden R2 0.189 0.185 0.188 0.189 0.188 0.187 0.189
AIC 10,767 10,816 10,784 10,765 10,778 10,785 10,767
BIC 10,943 10,992 10,959 10,941 10,954 10,961 10,950

Rank (S2)

Mc Fadden R2 3 7 5 1 4 6 2
AIC 2 7 5 1 4 6 3
BIC 2 7 5 1 4 6 3

Cauchy Gumbel Laplace Logistic Normal Student (2)

Value of indicators (S3)

Log-likelihood -4,797 -4,782 -4,791 -4,803 -4,823 -4,789
Mc Fadden R2 0.274 0.276 0.275 0.273 0.270 0.275
AIC 9,654 9,624 9,642 9,665 9,705 9,639
BIC 9,856 9,826 9,845 9,868 9,908 9,849

Rank (S3)

Mc Fadden R2 4 1 3 5 6 2
AIC 4 1 3 5 6 2
BIC 4 1 2 5 6 3
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4.2 Estimation of models

Before comparing estimations between models, we can draw some conclusions
on the effects of the included variables on the probability to choose the coach or
the car option relative to the train option. All significant effects are consistent
with theory, in the final model S3 including alternative and individual variables.
Some exceptions appear in S1 and S2 models.

As expected, time and cost are associated to significant and negative effects.
Comfort is significant and positive. In model S3, the crossed effect of time and
comfort positive and globally significant, indicating the propensity to accept
longer time in comfortable situation. In model S1, it is either non significant or
significant and negative which is contrary to intuition. Except with the Cauchy
cdf in model 1, car and coach are associated to a significantly smaller baseline
utility than train.

Age, high income, using coach and car in the reference journey, having already
used a car alternative for the reference journey and level of accessibility to a
car all increase the probability to choose the coach or the car options in the
SP survey. Population density at destination, regular trip and frequent use of
modes other than car, all decrease the probability to choose the alternatives to
train. Other variables have adverse effects. For example, density at the origin
has no influence on the coach choice’s probability but has a positive effect on car
choice which is surprising. Indeed, our expectation was a positive effect: high
density being a motive to take public transports. On the contrary, having an
imperative at destination and having already used a public transport alterna-
tive for the reference journey decrease the probability of choosing the car option.

Comparisons of estimations are done on the sign of coefficients, their significa-
tivity and the structure of preferences (figures 8 to 22).

First, we can notice that the signs of coefficients are the same whatever the
chosen cdf and the model investigated. Exception is, as mentioned before, in
the model S1, for the car intercept and for the cross-variable (Time*Comfort).
Indeed, the car intercept in model S1 with the Cauchy cdf is positive whereas it
is negative in all other situations. The cross-variable is significantly negative in
model S1 (Gompertz, Logistic, Normal) and significantly positive in model S3
(all cdfs taken together).
Second, significativity of variables can vary greatly between estimations. But
we can notice some patterns. In model S1, the only differences in significativity
concerns the cross variable (time*comfort) which is either not significant, ei-
ther highly significant. In model S2, some variables’ significativity is stable over
specifications (e.g., car intercept) and others are highly heterogeneous. Some
individual variables have thus higher significativity depending on the model.
For example, age associated with the car option is significant at the 0.1% level
with the Cauchy or Laplace cdf and not significant with the Gompertz cdf. In
model S3, the estimations done with the Cauchy cdf seem to be atypical. The
car intercept is not significant, the density at destination has a highly significant
negative effect. These differences in terms of variables significance show that the
choice of the distribution matters if the model is used for explanatory purposes.
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The general structure of the preferences seems to be captured almost equiva-
lently by the different model specifications. Figures 8 to 22 illustrate relatively
stable patterns of the estimates. The Cauchy and the Student give estimates
closer to the logistic ones than the Normal, the Gumbel and Laplace distribu-
tions.
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Table 5: Estimation of models S1

Cauchy Gompertz Gumbel Laplace Logistic Normal Student (0.35)

Intercepts
Coach -0.608 *** -1.16 *** -0.497 *** -0.403 *** -0.67 *** -0.413 *** -1.223 ***
Car 0.173 *** -0.617 *** 0.164 *** 0.108 *** 0.176 *** 0.104 *** 0.338 ***

Alternative-
specific
variables

Time -0.021 *** -0.004 *** -0.01 *** -0.01 *** -0.012 *** -0.006 *** -0.061 ***
Cost -0.195 *** -0.072 *** -0.099 *** -0.106 *** -0.147 *** -0.079 *** -0.496 ***
Comfort 0.606 *** 0.598 *** 0.49 *** 0.433 *** 0.796 *** 0.511 *** 1.089 ***
Time*Comfort 0.0003 -0.004 *** -0.0001 -0.001 -0.003 ** -0.002 *** 0.003

*** = significant at the 0.1 % level
** = significant at the 1 % level
* = significant at the 5 % level
. = significant at the 10 % level
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Table 6: Estimation of models S2

Cauchy Gompertz Gumbel Laplace Logistic Normal Student (1.5)

Intercepts
Coach -0.649 ** -1.13 *** -0.491 ** -0.385 * -0.635 * -0.376 * -0.56 **
Car -0.804 ** -1.311 *** -0.49 ** -0.478 ** -0.765 ** -0.442 ** -0.714 **

Individual
variables

Coach

Age 0.076 * 0.009 0.042 . 0.05 * 0.059 0.029 0.064 *
Income h 0.269 *** 0.209 *** 0.193 *** 0.202 *** 0.302 *** 0.18 *** 0.246 ***
Dep dens -0.018 0.041 -0.018 -0.004 0.024 0.015 0.005
Arr dens -0.372 *** -0.232 * -0.246 ** -0.28 *** -0.404 ** -0.233 ** -0.333 ***
Type coach 2.1 *** 1.319 *** 1.591 *** 1.358 *** 2.07 *** 1.247 *** 1.748 ***
Type car 0.888 *** 0.786 *** 0.767 *** 0.603 *** 1.075 *** 0.666 *** 0.817 ***
Regular -0.12 -0.054 -0.079 -0.087 -0.128 -0.072 -0.112 .
Imperative 0.021 -0.068 -0.033 -0.021 -0.072 -0.051 -0.014
Alt pt 0.107 -0.089 0.112 0.03 0.021 0.005 0.065
Alt car 0.049 -0.016 0.044 0.009 0.014 0.004 0.034
Freq alt -0.095 -0.11 . -0.048 -0.096 . -0.129 -0.077 -0.093
Access car 0.205. 0.096 0.169 * 0.157 * 0.23 . 0.13 . 0.191 *

Car

Age 0.134 ** 0.01 0.061 * 0.07 ** 0.082 * 0.037 . 0.107 **
Income h 0.353 ** 0.099 * 0.159 ** 0.186 ** 0.221 ** 0.116 * 0.268 **
Dep dens 0.148 0.094 . 0.018 0.092 0.145 0.077 0.148
Arr dens -0.47 ** -0.101 . -0.182 * -0.247 * -0.286 * -0.141 * -0.35 *
Type coach 1.805 *** 1.229 *** 1.285 *** 1.17 *** 1.789 *** 1.088 *** 1.49 ***
Type car 3.441 *** 1.806 *** 2.127 *** 1.954 *** 2.796 *** 1.652 *** 2.642 ***
Regular -1.119 *** -0.301 *** -0.459 *** -0.538 *** -0.662 *** -0.361 *** -0.776 ***
Imperative -0.359 *** -0.167 *** -0.215 *** -0.228 *** -0.321 *** -0.182 *** -0.302 ***
Alt pt -0.693 *** -0.389 *** -0.189 * -0.404 *** -0.533 *** -0.306 *** -0.522 ***
Alt car 0.305 ** 0.167 * 0.087 0.151 * 0.17 0.088 0.218 *
Freq alt -0.629 *** -0.306 *** -0.342 *** -0.408 *** -0.544 *** -0.311 *** -0.511 ***
Access car 0.53 *** 0.126 * 0.358 *** 0.308 *** 0.415 *** 0.216 ** 0.443 ***

*** = significant at the 0.1 % level
** = significant at the 1 % level
* = significant at the 5 % level
. = significant at the 10 % level
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Table 7: Estimation of model S3

Cauchy Gumbel Laplace Logistic Normal Student (2)

Intercepts
Coach -0.414 . -0.475 ** -0.254 -0.54 * -0.43 ** -0.332 .
Car -0.348 -0.577 *** -0.534 ** -1.137 *** -0.762 *** -0.625 **

Alternative-specific
variables

Time -0.041 *** -0.021 *** -0.022 *** -0.03 *** -0.016 *** -0.027 ***
Cost -0.197 *** -0.087 *** -0.098 *** -0.127 *** -0.069 *** -0.122 ***
Comfort 0.493 *** 0.26 *** 0.319 *** 0.46 *** 0.275 *** 0.364 ***
Time*Comfort 0.003 ** 0.003 *** 0.002 ** 0.003 ** 0.002 ** 0.003 **

Individual
variables

Coach

Age -0.009 ** -0.005 ** -0.006 *** -0.009 ** -0.005 ** -0.007 ***
Income h 0.381 *** 0.221 *** 0.247 *** 0.371 *** 0.202 *** 0.302 ***
Dep dens -0.067 -0.096 -0.027 -0.035 0.003 -0.051
Arr dens -0.355 ** -0.141 -0.22 * -0.273 * -0.101 -0.267 *
Type coach 3.51 *** 1.848 *** 1.75 *** 2.38 *** 1.282 *** 2.224 ***
Type car 1.062 *** 0.917 *** 0.758 *** 1.289 *** 0.792 *** 0.93 ***
Regular -0.079 0.006 -0.042 -0.028 0.001 -0.043
Imperative 0.024 -0.019 -0.008 -0.04 -0.023 -0.015
Alt pt 0.157 0.121 . 0.03 0.026 0.006 0.058
Alt car 0.028 0.045 0.004 -0.01 -0.02 0.009
Freq alt -0.131 -0.099 -0.143 * -0.213 * -0.128 * -0.139 .
Access car 0.012 0.099 0.056 0.138 0.103 0.064

Car

Age -0.034 *** -0.013 *** -0.016 *** -0.018 *** -0.009 *** -0.019 ***
Income h 0.697 *** 0.227 *** 0.297 *** 0.346 *** 0.173 *** 0.374 ***
Dep dens 0.249 -0.046 0.126 0.15 0.079 0.146
Arr dens -0.561 ** 0.017 -0.143 -0.057 0.021 -0.205
Type coach 3.283 *** 1.563 *** 1.709 *** 2.34 *** 1.357 *** 2.084 ***
Type car 4.678 *** 2.626 *** 2.62 *** 3.701 *** 2.13 *** 3.158 ***
Regular -1.133 *** -0.327 *** -0.445 *** -0.469 *** -0.228 *** -0.556 ***
Imperative -0.348 ** -0.153 ** -0.184 ** -0.248 ** -0.135 ** -0.238 **
Alt pt -0.413 * -0.091 -0.234 ** -0.276 * -0.147 * -0.272 *
Alt car 0.219 0.125 . 0.149 . 0.231 . 0.142 * 0.167
Freq alt -0.708 *** -0.375 *** -0.458 *** -0.599 *** -0.338 *** -0.5 ***
Access car 0.601 *** 0.367 *** 0.323 *** 0.442 *** 0.247 *** 0.404 ***

*** = significant at the 0.1 % level
** = significant at the 1 % level
* = significant at the 5 % level
. = significant at the 10 % level
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4.3 Value of Time and equivalence time of comfort

Due to the introduction of the cross variable (Time*Comfort), values of time
(VOT) differ depending on the guarantee to have a seat in the train. VOT
should be greater when seat is not guaranteed since travel time can’t be used
to rest or to work. Values depend also greatly on the model (S1 or S3) and on
the chosen cdf (Table 8). For model S1, if seat is not guaranteed, VOT ranges
from 4.44 to 7.42 euros per hour. In the same conditions, it ranges from 12.53
to 14.56 euros per hour in model S3. If seating position is guaranteed, then
VOT is comprised between 5.95 and 7.2 euros par hour (model S1) or between
11.47 and 12.66 (model S3). Minimum and maximum values are not always ob-
served with the same cdf. But can notice that the smallest ratio between VOT
estimated with models S1 and VOT estimated with model S3 are observed with
the Student and Cauchy cdfs which are the best performing model regarding
likelihood based indicators for model S1.

Despite very heterogeneous across models and cdfs, VOT found in this paper
are in line with literature. Literature’s VOT also prove to be very heterogeneous
depending on mode, travel purpose, type of survey... (Abrantes and Wardman,
2011; Wardman and Wheat, 2013). For example, in a stated preference survey,
Arentze and Molin (2013) find values between 14.4 and 17.4 euros per hour for
train travels. Even if we do not have a great confidence to the values found in
model S1, we can notice that they are not totally inconsistent with the french
rail context. A stated preference survey done by the french rail operator (RFF)
in 2013 provide values between 3.9 and 7.7 euros per hour.

Concerning comfort, we convert it in minutes to get a time equivalent. First of
all, we notice that most values found with models S1 are totally inconsistent.
Cauchy and Student cdfs are the only one providing believable values. The
values found with the Student distribution in model S1 are even very close to
the values found with models S3. This result tends to support that, even if the
model is misspecified, the Student distribution captures well the effects of time
and comfort.

We now focus on equivalence time of comfort in models S3. For a short travel
time of 30 minutes (corresponding to the first quartile of the sample), having a
seated position guaranteed is equivalent to 14.51 to 20.07 minutes of travel time.
For medium travel time of 60 minutes, it ranges from 17.05 to 23.17 minutes.
And for a long travel time of 60 minutes (corresponding to the last quartile of
the sample), seated position is equivalent to 19.58 to 26.27 minutes of travel
time. In the literature, values of comfort are rare. RFF (2013) finds that users
are ready to spend between 13 and 51 more minutes in the train to avoid a
standing position in comparison to a seated position.

We also notice that choosing one cdf over the others has strong implications
in terms of prediction and thus in terms of transport policy which commonly
uses these kinds of values to calculate a generalized travel cost or time function.
Indeed, even considering only model S3, VOT may be increased by up to 16%
depending on the chosen cdf and equivalent time of comfort by up to 38%. This
result has strong implications.
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Table 8: Estimated mean value of time and equivalence time of comfort

S1 Cauchy Gompertz Gumbel Laplace Logistic Normal Student (0.35)
VOT (comfort = 0) -6.40 -3.44 -6.26 -5.82 -4.89 -4.56 -7.42
VOT (comfort = 1) -6.32 7.18 -6.32 -6.16 -5.95 -6.13 -7.10
Eq. Time of comfort (time = 30) 29.45 120.04 47.15 40.51 60.14 75.25 19.04
Eq. Time of comfort (time = 60) 29.82 94.17 46.85 38.76 53.64 64.93 20.32
Eq. Time of comfort (time = 90) 30.19 68.31 46.54 37.00 47.13 54.61 21.61

S3 Cauchy Gumbel Laplace Logistic Normal Student (2)
VOT (comfort = 0) -12.53 -14.57 -13.56 -14.10 -14.12 -13.46
VOT (comfort = 1) -11.47 -12.55 -12.24 -12.57 -12.66 -12.03
Eq. Time of comfort (time = 30) 14.51 16.45 17.37 18.63 20.07 16.51
Eq. Time of comfort (time = 60) 17.05 20.60 20.28 21.87 23.17 19.70
Eq. Time of comfort (time = 90) 19.58 24.74 23.18 25.12 26.27 22.88
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4.4 Elasticities

As a first step, elasticities are presented without probabilities’ weighting (Table
9 and Table 10). Weighted elasticities are available from authors upon request.
Own-elasticities measure how the probability of choosing alternative i is influ-
enced by increasing time or cost of the same alternative i. Cross-elasticities
measure how the probability of choosing alternative j is influenced by increas-
ing time or cost of alternative i (∀j 6= i).

Probability of choosing the train and coach options is much more sensitive to
their own cost and time than probability to choose the car option. It is hard
to find a specific pattern for cross-elasticities, which may be due to the IIA
property.

Comparison between cdfs show that there is a strong heterogeneity, especially for
models S1, models S3 being more homogeneous. As for VOT and equivalent time
of comfort, we notice that with some distributions, misspecification has more
impacts. For example, own-time-elasticities with the Normal or the Gumbel cdf
are very different in model S1 and in model S3.

Table 9: Elasticities for models S1

Own-time-
elasticities

Cauchy Gompertz Gumbel Laplace Logistic Normal Student (0.35)

Train -1.329 -0.227 -0.702 -1.013 -0.583 -0.461 -2.973
Coach -1.156 -0.179 -0.944 -0.885 -0.665 -0.547 -1.345
Car -0.583 -0.115 -0.551 -0.551 -0.37381 -0.314 -0.624
Own-cost-
elasticities

Cauchy Gompertz Gumbel Laplace Logistic Normal Student (0.35)

Train -1.636 -0.677 -0.884 -1.377 -0.946 -0.803 -3.128
Coach -1.380 -0.520 -1.196 -1.170 -1.057 -0.934 -1.377
Car -0.953 -0.456 -1.004 -0.877 -0.827 -0.746 -0.842
Cross-time
elasticities

Cauchy Gompertz Gumbel Laplace Logistic Normal Student (0.35)

Train 0.525 0.103 0.298 0.419 0.252 0.205 1.172
Coach 0.340 0.046 0.218 0.251 0.174 0.139 0.447
Car 0.446 0.112 0.340 0.340 0.310 0.266 0.431
Cross-cost
elasticities

Cauchy Gompertz Gumbel Laplace Logistic Normal Student (0.35)

Train 0.570 0.274 0.33462 0.500 0.355 0.310 1.131
Coach 0.361 0.128 0.24522 0.296 0.248 0.215 0.417
Car 0.679 0.431 0.55179 0.647 0.637 0.589 0.552

5 Conclusion

Based on the work of Peyhardi et al. (2015), we estimate and compare to the
multinomial logit six models with different cdfs (Cauchy, Gumbel, Gompertz
Laplace, Normal and Student). This work is done on three different types of
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Table 10: Elasticities for models S3

Own-time-
elasticities

Cauchy Gumbel Laplace Logistic Normal Student (2)

Train -2.547 -1.389 -2.12384 -1.42001 -1.21497 -1.86245
Coach -1.956 -2.177 -1.77218 -1.67352 -1.55391 -1.83435
Car -0.703 -2.239 -2.23863 -0.96663 -1.01252 -0.84285
Own-cost-
elasticities

Cauchy Gumbel Laplace Logistic Normal Student (2)

Train -1.679 -0.793 -1.298 -0.837 -0.716 -1.147
Coach -1.268 -1.046 -1.030 -0.910 -0.835 -1.070
Car -0.596 -1.605 -0.675 -0.712 -0.739 -0.659
Cross-time-
elasticities

Cauchy Gumbel Laplace Logistic Normal Student (2)

Train 1.114 0.655 0.962 0.671 0.592 0.842
Coach 0.558 0.420 0.474 0.427 0.382 0.497
Car 0.497 0.631 0.631 0.746 0.801 0.620
Cross-cost-
elasticities

Cauchy Gumbel Laplace Logistic Normal Student (2)

Train 0.549 0.277 0.437 0.293 0.259 0.385
Coach 0.324 0.205 0.257 0.224 0.200 0.271
Car 0.416 0.460 0.517 0.559 0.605 0.483

models. The full model S3 gathers the best adapted variables (individual and al-
ternatives) to the data. S1 and S2 are sub-models that include only alternative-
specific variables (model S1) and only individual variables (model S2). Our
comparisons are done based on goodness-of-fit indicators signs and significativ-
ity of variables. We also draw some conclusions based on behavioural outputs
(structure of preferences, value of time, equivalence time-comfort and elastici-
ties).

For a same type of model (S1, S2 or S3), our results suggest that changing the
cdf does not alter the estimated sign of the covariables effects on the choice
probability (apart one exception in model S1), but can lead to variations in
the significance level of the coefficients. Whereas the coefficients can not be
compared in absolute value between models, we can observe relatively stable
structure of the preferences (or weight of covariables in the decision).

Models S1 and S3 are voluntary misspecified since important variables are with-
drawn. We show that some cdfs can encounter this misspecification and provide
behavioral outputs consistent with literature or expectations. In model S1, the
Student (0.35) cdf largely outpeforms the other cdfs. Even if the model is mis-
specified, the Student (0.35) cdf captures the effects of time and comfort. In
model S2, it is less clear but we can notice that the Laplace, Cauchy and Stu-
dent (1.5) cdfs stand out.

Conclusions drawn with model S3 are consistent with expectations. Analysis
of mode choice between rail, coach and car indicates usual significant negative
effects of time and monetary cost. The comfort attribute is a significant and
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positive determinant of mode choice. We also find a crossed effect with travel
time. Comfort increases the propensity to accept higher travel time. Estimated
value of time are around 12 euros / hour if a seated position is guaranteed,
and around 14 euros / hour if it is not. Our results suggest that for example
substituting the Logistic cdf for the Cauchy cdf induces a reduction in value
of time (with comfort = 1) of approximately 10% or 1.1 euro / hour. Thus,
even with a model that we believe to be correctly specified, changing the cdf
has operational impacts. Impacts are also in terms of explanation, since the
significant explanatory variables differ from one model to the other. In terms of
goodness-of-fit indicators, changing the cdf is associated with a low premium.
Yet, we notice that, with our data, the logit function is never associated with
the best fit indicators.

Globally, testing a variety of cdfs allowed us to point out the one that best fit the
data. If behaviour are heterogeneous, it is interesting to select cdfs with heavy
tails. Some behaviour patterns, such as high value of time for some types of users
(e.g. car users or travelers with a business purpose), may be preferably modeled
with asymetric cdfs. These assumptions still have to be tested on simulated data
sets but we can already state that playing on the form of the cdf allows more
flexibility and a better fit to the data. Further research on the cdf influence is
thus needed to evaluate the potentials gains of the different specifications. This
first evaluation is conditional to our data and need to be extended to data from
different fields, survey types, etc. Evaluations and comparisons have to be done
including the well established and well known models in the literature (as for
example, the probit model, nested and mixed logit).
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Figure 8: Coefficients Comparison - S1 - Cauchy : Logistic

Figure 9: Coefficients Comparison - S1 - Gumbel : Logistic
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Figure 10: Coefficients Comparison - S1 - Laplace : Logistic

Figure 11: Coefficients Comparison - S1 - Normal : Logistic
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Figure 12: Coefficients Comparison - S1 - Student : Logistic
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Figure 13: Coefficients Comparison - S2 - Cauchy : Logistic

Figure 14: Coefficients Comparison - S2 - Gumbel : Logistic
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Figure 15: Coefficients Comparison - S2 - Laplace : Logistic

Figure 16: Coefficients Comparison - S2 - Normal : Logistic
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Figure 17: Coefficients Comparison - S2 - Student : Logistic
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Figure 18: Coefficients Comparison - S3 - Cauchy : Logistic

Figure 19: Coefficients Comparison - S3 - Gumbel : Logistic
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Figure 20: Coefficients Comparison - S3 - Laplace : Logistic

Figure 21: Coefficients Comparison - S3 - Normal : Logistic
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Figure 22: Coefficients Comparison - S3 - Student : Logistic
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