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Abstract

The measurement of 4D (i.e., 3D space and time) displacement fields of in situ
tests within X-ray Computed Tomography scanners (i.e., lab-scale X-CT) is considered
herein using projection-based Digital Volume Correlation. With one single projection
per loading (i.e. time) step, the developed method allows for loading not to be in-
terrupted and to vary continuously during the scan rotation. As a result, huge gains
in acquisition time (i.e., more than two orders of magnitudes) to be reached. The
kinematic analysis is carried out using predefined space and time bases combined with
model reduction techniques (i.e., Proper Generalized Decomposition with space-time
decomposition). The accuracy of the measured kinematic basis is assessed via gray
level residual fields. An application to an in situ tensile test composed of 127 time
steps is performed. Because of the slender geometry of the sample, a specific beam
space regularization is used, which is composed of a stack of rigid sections. Large
improvements on the residual, whose SNR evolves from 9.9 dB to 26.7 dB, validate
the procedure.
Keywords: 4D measurements; Digital Volume Correlation; In situ test; Model re-
duction; Tomography

1 Introduction

The development of Computed Tomography (CT) has been a major breakthrough in mate-
rials science [1, 2, 3, 4], providing nondestructive measurements of the 3D microstructure
of imaged samples. Initially developed using synchrotron sources, it is now a common
equipment accessible in laboratories. In addition to the broad range of spatial resolutions
(from nanometer to few meter scans), significant progress has been achieved in ultra-fast
X-ray tomography as illustrated with the 20 Hz full scan acquisition for the study of crack
propagation [5].
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Coupled with mechanical tests, these acquisitions become an attractive tool in exper-
imental mechanics. First used for ex situ tests where the materials are deformed outside
of the tomograph [6], the recent evolution of testing machines and CT makes in situ tests
possible [7, 8, 9]. In the latter cases, the sample is imaged inside a tomograph, either with
interrupted mechanical load or with a continuously evolving loading and on-the-fly acqui-
sitions. Visualization of fast transformation, crack opening, or unsteady behavior become
accessible. Combined with full-field measurements, in situ tests coupled with X-ray CT
offer a quantitative basis for identifying a broad range of mechanical behavior.

A robust and accurate method to quantitatively measure kinematic data from the
acquired images is Digital Image Correlation (DIC) in 2D and its 3D extension, Digital
Volume Correlation (DVC). The latter aims at capturing the way a solid deforms between
two states from the analysis of the corresponding 3D images. The measured displacement
field is then used to calibrate model parameters from inverse problem procedures (e.g.,
finite element model updating [10], virtual fields method [11]). The more numerous the
acquisitions, the more accurate and sensitive the identification procedure. DVC methods
have hence been developed in a 4D space-time framework [12, 13, 14] using all available
volumes globally. In 4D analyses, an acquisition of 5 to 15 steps is usually performed.

However, the major limitation of CT imaging, especially in lab-tomographs is the acqui-
sition time. To give orders of magnitude, each reconstructed CT volume, being composed of
about one thousand 2D radiographs, takes approximately one hour to be acquired. This du-
ration limits the number of possible acquired scans and hence restricts such identifications
to time-independent behavior. Moreover, spurious motions may occur during acquisitions,
blur the projections and reconstructions. In some cases it is required to wait 0.5 to 1 hour
for relaxation or creep stabilization at each loading step, before each scan [15, 16].

The recently developed Projection-based DVC (P-DVC) [17] is an interesting method
to circumvent these difficulties. Instead of working with a series of 3D volumes, it is
proposed to directly measure the 3D displacement field from few of those radiographs.
This procedure exploits the property that two projections at a given orientation of the
sample under different loads contain a partial information about the full 3D kinematics,
and sampling few angles may be sufficient to extract the entire displacement field. In a
similar spirit, and very recently, the 3D tracking of rigid grains was proposed using few
radiographs [18]. Previous works have developed the P-DVC method for the analysis of a
cracked cast iron sample imaged with a synchrotron X-ray source [19, 20]. It was shown that
the measurement was possible with only two orthogonal projection angles, thereby allowing
for a huge gain in acquisition time (i.e., a factor 300). In Ref. [21], a spatiotemporal
framework was proposed in order to analyze the kinematics with a single projection per
angle, provided a suited temporal regularization was used. This methodology was applied
to a lab-tomograph in situ experiment where crack propagation in plaster was monitored
and quantified (via double cleavage drilled compression test).

In order to deal with space and time displacement field, a Proper Generalized Decom-
position (PGD) framework [22, 23, 24] will be used. The displacement field is decomposed
over a basis of separated functions, namely, spatial modes and time (or projection angle)
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modes. The spirit of the approach, which is inspired from the PGD technique, consists
of a progressive enrichment of the space-time modes for displacement corrections. Modes
are progressively added until a convergence criterion based on the residual field is reached.
First introduced in DIC and DVC [25, 26] to provide a reduced basis for the displace-
ment field (separating different spatial directions), PGD has been extended to the P-DVC
framework for the calibration of material parameters in a lab-tomograph using a single
projection instead of two [27]. In that work, deviations from a perfect rotation were taken
into account over one scan in order to reach a good quality tomographic reconstruction.
The spurious motions were described as small amplitude rigid body motions over time in
addition to the ideally expected rotation. In the same spirit, a developed projection-based
approach allows the imbibition process to be followed in sandstone at a frequency of 5 Hz
using Neutron tomography [28].

In the sequel it is proposed to measure 4D (space and time) displacement fields based
on a series of projections acquired at different angles. Using only one projection per
angle allows the sample to be loaded and continuously rotated without hold and/or dwell
time. This reduction in the number of radiographs, which is offered by the mathematical
formulation, together with the now tolerable continuous loading leads to half the acquisition
time of the previous method. The analysis of a complex kinematics, up to localization,
with such an approach is a novelty.

In Section 2, a highly regularized PGD framework coupled with a P-DVC procedure
is introduced in order to capture the kinematics of the studied sample. Section 3 focuses
on the specific formulation of the approach to slender samples, and the space and time
bases are discussed. Section 4 is devoted to the analysis of a tensile in situ test on nodular
graphite cast iron with the proposed methodology. The experiment, which is composed
of 127 time steps, is performed in 6 minutes with a continuous loading until failure. The
measurement of the displacement field for each time step is presented and shown to provide
very low registration residuals. A gain in acquisition time of more than two orders of
magnitude compared with standard methods is obtained.

2 Full-field measurement

2.1 Projection-based DVC

The proposed approach to fast 4D (space and time) measurements is called Projection-
based Digital Volume Correlation (P-DVC) [17, 20]. Instead of working with reconstructed
volumes as in standard DVC (whose acquisition time is one of the major limitations of CT
in laboratory facilities [29]), it aims to measure the 4D displacement field from a series of
2D projections acquired at different angles θ(t) and loadings.

The registration operation consists of minimizing the sum of squared differences be-
tween Nθ 2D projections g(r, t) of the deformed configuration at different times t, or angles
θ(t) and loading steps. The procedure makes use of the 3D reference image, F (x), which is
reconstructed using classical means. It provides for all voxels of the 3D space x = (x, y, z)
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the local X-ray absorption coefficient. This reference volume, corrected by the displace-
ment, u(x, t), and projected with the orientation θ(t) should coincide with the acquired
projections, g(r, t) when the displacement, u(x, t), is correctly measured. In other words,
introducing the reference volume deformed by any trial displacement field, v,

F̃v(x) ≡ F (x− v(x, t)) (1)

and the so-called residual field, ρ(r, t;v),

ρ(r, t;v) =
(

Πθ(t)[F̃v]
)
(r, t)− g(r, t) (2)

the 3D displacement field, u(x, t), is sought as the minimizer of the following cost function

χ2[v] =
∑
r,t

ρ(r, t;v)2 (3)

where Πθ(t) is the projection operator in the θ(t) angular direction, and r = (r, z) the
coordinates in detector space. The integrand of the previous functional can be linearized
considering small displacement field corrections δu compared to the microstructure corre-
lation length

χ2[u+ δu] =
∑
r,t

(
ρ(r, t;u)−

(
Πθ(t)[δu ·∇F̃u]

)
(r, t)

)2
(4)

with ∇ the 3D gradient operator. It is noteworthy that after each evaluation of the
displacement corrections δu from a known displacement u(n−1) such that u(n) = u(n−1) +

δu, a correction of the volume F̃u(x) is performed so that the previous equation is used
without approximation. The P-DVC framework requires the acquisition of one reference
volume in order to compute the correction terms. The latter is to be performed ideally in
the same conditions as for the experiment, but without load (or with a very modest one).
This only one classical tomographic scan is generally not challenging.

In order to validate the proper evaluation of the displacement, one should consider
the magnitude of the residual field that highlights all projection differences that are not
captured by the measured displacement field (e.g., noise, artifacts of the detector, ill-
convergence, model error). Ideally, it should be statistically indistinguishable from noise.
The Signal to Noise Ratio (SNR) can also be defined to evaluate the residual quantitatively.
The higher the SNR, the better the solution. It is commonly defined as 20 times the decimal
logarithm of the ratio of the standard deviation of the projections over that of the residual
fields [30].

2.2 Regularization procedure

CT images are defined by a huge number of data (usually billions of voxels treated in-
dependently). However even if the displacement field is to be defined for all voxels, its
regularity legitimates the use of much less degrees of freedom so that it is sought in a
vector space generated by a reduced kinematic basis. In the following, it is proposed to
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choose as reduced basis the product of separated space Φj(x) and time σi(t) fields for
which the sought amplitudes are uij

u(x, t) =

Nt∑
i=1

Ns∑
j=1

uijσi(t)Φj(x) (5)

with the space and time dimensionality respectively Ns and Nt. Such separated expression
is standard practice and implies no restrictions (provided Nm = Ns ×Nt is large enough),
but it will reveal convenient for the following model reduction technique. The previous
displacement is written in a different way

u(x, t) =

Nm∑
l=1

(
Nt∑
i=1

aliσi(t)

) Ns∑
j=1

bljΦj(x)

 (6)

Hence the previous amplitude matrix is uij =
∑
l

alib
l
j .

Different regularization procedures of the displacement field have been introduced in the
literature for global DVC when the kinematics is discretized over finite element meshes [31].
Spatially, local (elastic) equilibrium-gap penalty was proposed [32, 33, 34]. Other model-
based regularizations can be used to calibrate model parameters [35, 13, 14, 29]. These
regularizations lead to drastic reductions in the number of unknowns and enable for seam-
less experimental/numerical interfaces. They will not be considered herein. A more generic
approach will be followed hereafter.

2.3 Greedy approach to P-DVC

The entire problem composed of a large number of unknowns (i.e., 630 degrees of freedom
in the present application) may be costly. The method proposed to solve the minimiza-
tion problem is the Proper Generalized Decomposition (PGD) approach, where modes are
successively determined and added as long as the residual level is considered too high to
be explained by noise, which corresponds to detector artifacts or if the noise is assumed to
be white and Gaussian: χ[u] > 2γfNpix, with γf the standard deviation of the noise and
Npix the total number of pixels on which the procedure is applied).

Proper Generalized Decomposition techniques [22, 36, 23, 24] consist of successive en-
richments of the displacement field u(x, t) adding a new contribution at each iteration,
each term of the sum being sought a priori in a separate representation. PGD-DIC and
PGD-DVC [25, 26] with one-dimensional space functions are here extended to 3D space
and time (i.e., 4D) analyses.

In the following progressive PGD procedure, the time and spatial modes are identified
successively, one per iteration, with a greedy approach [37]

ul(x, t) = ul−1(x, t) +

(
Nn∑
i=1

aliσi(t)

) Ns∑
j=1

bljΦj(x)

 (7)
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Let us note that only the product alnb
l
j matters so that a convention such that ‖{al}‖ = 1

or ‖{bl}‖ = 1 can be freely chosen without consequences. A fixed point algorithm is used
to get the solution. Alternate minimizations of the two unknown column vectors {al} and
{bl} are proposed. The minimization of the functional leads to the determination of the
unknowns with two coupled equations

{al} = Argmin
{a}

(χ2
u({a}, {b})) (8)

{bl} = Argmin
{b}

(χ2
u({a}, {b})) (9)

i.e., the minimization of χ2
u with respect to the additional mode is considered.

It is proposed to write the projected sensitivity for each degree of freedom of each
section as

Si(r, t) = Πθ(t)[Φi(x
′) ·∇F (x′)] (10)

and the associated matrix

Bij(t) =
∑
r

Si(r, t)Sj(r, t) (11)

where x′ is the corrected position of any voxel x with the previously identified modes such
that x′ = x−u(l−1). The sensitivity Si(r, t) is composed of degrees of freedom i, pixels of
the detector r and angles θ(t) hence it is of size [Ns×Np×Nθ]. Computing and storing this
matrix is the longest operation in the procedure. The other quantities are easily obtained
from combinations of these projected 3D sensitivity fields. It can be noted that Si(r, t)
should be recomputed for each identified mode while x′ is updated. Because the degrees
of freedom per sections are quite independent, the sensitivity matrix can be stored as a
sparse matrix (and could be highly parallelized if the beam is non-diverging).

The two parts are obtained from the above linearized integrand using Newton’s scheme.
The derivative with respect to {bl} leads to

{bl} = [N l]−1{nl} (12)

where [N l] is the spatial Hessian matrix of χ2
u with respect to {bl} (i.e., N l

ij = ∂bi∂bjχ
2
u)

and {nl} the second member vector based on the residual field, which is written as a

weighted sum over time of the sensitivities with αl(t) =

Nn∑
i=1

aliσi(t)

N l
ij =

∑
t

αl(t)Bij(t)α
l(t) (13)

and
nlj =

∑
r,t

ρ(r, t,ul−1)αl(t)Sj(r, t) (14)

Similarly, the derivative with respect to {al} leads to

{al} = [M ]−1{m} (15)
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where, as previously, [M l] is the temporal Hessian matrix (i.e., M l
ij = ∂ai∂ajχ

2
u) and {ml}

the second member vector based on the residual fields

M l
ij =

∑
t

σi(t)b
l
nBnm(t)blmσj(t) (16)

and
ml
j =

∑
r,t

ρ(r, t,ul−1)σj(t)b
l
nSn(r, t) (17)

A general overview of the 4D PGD P-DVC procedure is shown in the algorithm 1. Even
though a maximum value of iterations or convergence criteria, εp and εα, can be enforced
to stop the fixed-point algorithm, this revealed unnecessary as the maximum number of
iterations to reach stagnation is usually quite low (i.e., 3-5).

Algorithm 1 4D-P-DVC fixed-point procedure
while High residual norm do

Initialize {al} and {bl}
Correction F (x)← F (x− ul−1)
Compute updated projected sensitivities Si(r, t), Equation (10)

while ‖
Ns∑
j=1

∆bljΦj(x)‖ < εp and ‖∆{αl}‖ < εα do

Compute spatial mode {bl}, Equation (12)
Compute temporal amplitude {al}, Equation (15)

end while
Update displacement field ul, Equation (7) l = l + 1

end while

3 Application to slender samples

It is proposed to analyze the kinematics of a nodular graphite cast iron dog bone sample
during in situ tension until failure (Figure 1(a)). As many of the standard in situ test
geometries, the proposed sample is slender and may be considered as a beam with one
dimension much higher than the other two. An appropriate kinematic regularization based
on a very small number of degrees of freedom is thus proposed.

3.1 Slender-shaped specimen kinematics

The slender geometry is axially divided into Ns undeformable beam sections, normal to
the beam axis, with trilinear interpolations. The displacement field is hence written in this
reduced basis

Φi(x) =

Ns∑
j=1

6∑
k=1

pj(z)ψk(x) (18)
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with i = (j, k), ψk(x) the 6 rigid body motions of the entire sample, pj(z) the shape
functions that allow specific sections to be selected and interpolations to be performed
between them. For a linear interpolation, the shape function will be triangular functions
whose maxima are located at the section positions and its length will correspond to the
size of two sections. It can be noted that the shape functions are the same for all sections
(thus do not depend on mode j). The consequence is some coupling between rotation and
translation for the section far from the center of rotation. In the present application, the
beam is composed of 15 cross-sections (see Figure 1(c) for the depiction of few sections
on the slender sample used in the application), each animated with 6 Rigid Body Motions
(RBMs, i.e., 3 translations and 3 rotations).

(a) (b) (c)

Figure 1: (a) Radiograph of the sample (the rotation axis is at the center of the image).
Gray levels have been normalized so that the maximum log-attenuation is set to 1, and
that of air to 0. (b) Reconstructed volume, and (c) the proposed space regularization with
rigid body motions on few sections of the beam

3.2 Time dependence

Generically, in the time dimension, σi(t) are chosen functions that also introduce temporal
regularizations [38, 39]. The availability of additional measurements, such as tensile loads,
T (t), also offers the possibility to define temporal variations that may depend on load
rather than time, or any combination that may be physically motivated. This is a very
convenient and non-intrusive way of incorporating some information, or some possible
relationship, in the measurement parameterization. Ultimately, no time regularization can
be introduced if wanted by choosing as elementary functions σi(t), functions valued 1 only
for time step t = ti and 0 otherwise. Other basic examples are provided by tent shaped
(piecewise linear) functions, polynomials, Fourier modes and splines.

In the treated application, the time basis does not change with mode identification
thus does not depend on i, but such cases could be designed (if the goal was for example
to extract first the elastic part of the test).
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4 Test case

4.1 Tomography acquisitions

The application case for this study is an in situ tensile test on a nodular graphite cast iron
sample (similar sample geometry can be found in Refs. [40, 13, 14]). The geometry of the
sample is described in Figures 1(b) and 2a. The central part was thinned with a radius
of 20.5 mm in order to ensure that the specimen would break in the ligament area and
not in the grips. The sample was mounted in an in situ tensile testing machine similar to
that used by Buffière et al. [41] (see Figure 2b) and was scanned in the LMT equipment
(X-View X50-CT, North Star Imaging, 180 kV, 130 µA, W target). The voxel size (using
4× 4 binning at the acquisition stage) was set to 10.7 µm.

(a) (b)

Figure 2: In situ tensile test with (a) the dog-bone sample used in the present procedure
(measured size of the rectangular cross section of 1.31×0.91 mm2). (b) Testing setup with
1○ the testing machine with a carbon fiber composite loading tube, 2○ the X-ray source,
and 3○ the X-ray detector

Two flat-fields and one dark-field were acquired after conditioning and before the ex-
periment in order to perform flat-field and dark-field corrections. Each radiograph was
averaged with 5 frames in order to reduce acquisition noise without loosing too much time
(it is noteworthy that a single frame would have been sufficient inasmuch as noise were white
and Gaussian). The radiographs had a definition of 954× 768 pixels and an initial crop of
the edges allowed its size to be reduced to 954×432 pixels (Figure 1(a)). All the projections
used herein have been normalized to 0 for air, and 1 for the maximum log-attenuation,
after dark-field and white field corrections as well as beam-hardening corrections. In order
to perform a multiscale approach, one lower scale was used in the following procedure.
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Coarse graining of 2 × 2 elementary pixels into one superpixel was carried out with the
convolution of the projections by a Gaussian kernel with a characteristic width of 2 pixels,
and downsampling to a coarse 2×2 regular square grid to create smaller images (called im-
ages at scale 2). The projections were obtained after flat field normalization and standard
(i.e., third order polynomial) beam hardening corrections [42] due to the high absorption
of the ferritic matrix. Reconstructions and projections were performed with the ASTRA
toolbox [43], using the Feldkamp-Davis-Kress (FDK) procedure suited for cone beams [44].
The initial projection f(r, θ) were compared with the re-projection of the reconstructed
volume Πk[F (x)]. The SNR of these projection residuals was 21.70 dB. These systematic
reconstruction/reprojection residuals were then subtracted to the projected volume in the
following procedure after a 2D registration.

4.2 In-situ tensile test

The fast space-time in situ experiment is composed of three phases:

1. loading to T = 250 N in order to remove the backlash that would introduce rigid
body motions,

2. a complete scan of the reference state (at 250 N) that consisted of 600 radiographs
captured at equally spaced angles ranging over a full 360° rotation. This scan took
22 min to be acquired,

3. continuous rotation of the sample with 50 projections per full rotation at a rate of
one projection every 2 s. One hundred twenty seven projections were acquired during
2.5 full rotations (as illustrated in Figure 3). The first full rotation (i.e., 50 time steps
or 100 s) was performed at constant load and was used to quantify the uncertainty.
The remaining rotation (starting after 100 s) was carried out with a continuous load
change (from 250 to 750 N), as shown in Figure 4, controlled at a constant stroke
velocity of 2 µm/s.

Figure 3 shows 3 selected projections at different times, angles and load. The particular
choice of these angles will be discussed after the analysis of the results. The 60-pixel
wide right and left edges of the radiographs and 100-pixel long top and bottom parts were
discarded. This operation avoided the top and bottom parts whose quality was low because
of the divergent X-ray beam and reconstruction process.
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(a) (b) (c)

Figure 3: Projection at scale 1 of the sample at different angles and load during the tensile
experiment. Projections are normalized between 0 (air) and 1 (maximum attenuation over
a full rotation). (a) Time step 90, θ = 80◦, T = 630 N. (b) Time step 110, θ = −64.8◦,
T = 715 N. (c) Time step 123, θ = −158.4◦, T = 736 N.

The measured axial force T during the test at each radiograph acquisition is shown
in Figure 4. This signal is used in the work only as a component of the time basis. The
force measurement will play a much stronger role for the elastoplastic identification (see
the companion paper [45]).

Figure 4: One hundred twenty seven force measurements T (t) of the tensile test starting
from 250 N. A first rotation is performed at constant load (corresponding to the first
plateau until the 50th time step, or 100 s). Then the load is increased until failure. The
three red dots are the projections shown in Figure 3 for time steps 90, 110 and 123.

11



The temporal basis used to measure the rigid body motions is composed of Nn = 7

time functions σn(t) (Table 1). The sine and cosine functions are introduced as they are
expected to occur for a slight misalignment of the sample with respect to the rotation
axis [27].

Table 1: Temporal basis chosen for the kinematic measurement.

σ1(t) σ2(t) σ3(t) σ4(t) σ5(t) σ6(t) σ7(t)

T (t) sin(θ(t)) cos(θ(t)) t0 = 1 t1 max((t− 50), 0) max((t− 50), 0)2

The initial residual field is shown in Figure 5 for the three selected angles at different
time steps and loads of the procedure with a divergent color map that highlights the positive
and negative patterns (so as to ease the visual interpretation of a residual displacement).
Let us stress that here and in all subsequent figures showing residuals, the gray level
normalizations of the initial projections between 0 and 1 have been preserved so that the
color bar values can be compared. Large levels of the residual field are observed at the
edges of the sample corresponding to large rigid body motions. The initial SNR is 9.94 dB.

(a) (b) (c)

Figure 5: Initial residual field (keeping the projection normalization) composed of a large
motion for (a) time step 90, θ = 80°, T = 630 N, (b) time step 110, θ = −64.8°, T = 715 N,
(c) time step 123, θ = −158.4°, T = 736 N.

4.3 Rigid body motion measurement

It is first convenient to start erasing the mean RBMs that occurred during the mechanical
test, which are due to compensated backlash or the testing machine compliance. Instead of
studying each section independently, it is proposed to use pj(z) = 1. Six spatial degrees of
freedom (i.e., the 6 RBMs) are hence measured for each mode (i.e., the three translations
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and three rotations). This makes a total of 42 unknown amplitudes. The PGD approach
consists in sorting out all those 42 degrees of freedom in “modes,” such that the first is the
“major” one, in the sense that it allows the residual to decrease by the largest amount.

Eight rigid body modes are measured at scale 2 until the root-mean-square average
residual no longer decreases. Because of the successive updates of the non-linear problem
(image registration) after each mode acquisition, the identified modes are not expected
to be strictly orthogonal to each other. Hence, there is no reason to converge after the
6 modes that would result from the singular value decomposition of a full identification
procedure. The choice of scale 2 is a matter of convenience as long as it is much cheaper
computationally, and sufficient for RBM evaluations, as this is only a pre-correction. The
results are then applied to scale 1. The residual fields for the three selected angles are
shown in Figure 6. Note that the color scale is magnified by a factor of 4 since a large part
of the initial residual has been erased. It is observed that the edges of the projection are
composed of large vertical and horizontal scratches due to the registration process. Those
areas are not taken into account in the SNR measurement. The SNR at this step of the
procedure is 25.4 dB confirming this observation.

(a) (b) (c)

Figure 6: Residual field after the rigid body motion correction. Tensile patterns not yet
corrected are visible at (a) time step 90, θ = 80°, T = 630 N, (b) time step 110, θ = −64.8°,
T = 715 N, (c) time step 123, θ = −158.4°, T = 736 N.

What is visible from these images is that the central part has been properly corrected
by the rigid body motions. The top and bottom parts are composed of moving features
that will be corrected by the next procedure. The mean translation values are shown in
Figure 7, and designated as 〈ux〉, 〈uy〉 and 〈uz〉. The vertical 〈uz〉 component evolves with
the applied force and corresponds to the compliance of the testing machine, and the motion
of the bottom part of the sample by the grip. The 〈ux〉 component is a transverse motion
between the rotation axis and the sample, which accidentally almost coincides with the
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x-axis as can be seen from the fact that 〈uy〉 is much smaller.

Figure 7: Mean corrected translation measured with 8 rigid body motion modes for all
loading steps with (1), (2) and (3) respectively corresponding to 〈ux〉, 〈uy〉 and 〈uz〉.

4.4 Tensile deformations

From the previous corrected residual fields where the rigid body motions have been erased,
it is now possible to measure motions corresponding to a tensile deformation. Each section
of the beam is now considered as being independent. 4 deformation modes are measured
(for a problem composed of 630 degrees of freedom). The residual field at the end of the
procedure is shown in Figure 8 and reaches a mean SNR value of 26.7 dB.

(a) (b) (c)

Figure 8: Residual field at the end of the procedure. (a) Time step 90, θ = 80◦, T = 630 N,
(b) time step 110, θ = −64.8◦, T = 715 N, (c) time step 123, θ = −158.4◦, T = 736 N.
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It is observed that the previous alternating positive and negative features have disap-
peared. The captured displacement field correctly reduces the residual and thus is deemed
trustworthy. Some residuals are still visible in the center of the sample and may be a
consequence of the shrinkage of the section expected from plastic incompressibility, but
not included in the chosen kinematics. The dark residual located in the central part for
the last steps (see Figure 8c) is due to localized necking, a precursor to ductile fracture
that will break the sample shortly thereafter, at step 127.

The initial SNR for each step is shown in Figure 9. The time periodicity that is seen
on the graph, with a period of 25, is due to specific angles at which the residuals are more
sensitive to the displacement field (e.g., angles where the faces of the sample are parallel to
the X-ray beam). The significant improvement from the initial images shows the accuracy
of the proposed 4D approach. Step 50 has an accidentally low SNR value and corresponds
to the beginning of the load variation.

Figure 9: SNR of each projected residual field. The mean value, 9.9 dB for the initial SNR
(a), 25.4 dB for the RBM corrected (b) and 26.6 dB for the corrected residual (c) shows
an excellent description of the kinematics.

The vertical displacement field and the vertical strain εzz = ∂zuz(t) for each section is
shown in Figure 10. The mean tensile extension between the top and bottom part reaches
about 15 voxels. A large plastic strain concentration (i.e., not only proportional to the
force measurement) is visible in the central part as expected from the chosen geometry.
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(a) 〈uz(z, t)〉(x,y) (b) 〈εzz(z, t)〉(x,y)

Figure 10: (a) Measured vertical displacement field for each sections without rigid body
motions, expressed in voxels, and (b) corresponding vertical strain. A large strained zone
of approximately 8− 9% appears in the central part.

The very small displacement field in the first part [0;50] should be null. However it can-
not be considered as uncertainty because some real displacements due to creep for example
could appear. It can also be noted that the strain field displays some heterogeneities (see
e.g., Section 4 at the end of the experiment) that was not anticipated from the geometry.
Adding some regularizations (e.g., local mechanical regularization or directly from models)
would provide a smoother field.

5 Discussion

5.1 Kinematics

The kinematics was simplified in the spirit of that used in beam theory (i.e., slender body).
The displacement field was assumed to be well approximated by a rigid body motion for
each section of the sample, but these rigid body motions were slowly varying along the
longitudinal axis. This assumption is quite generic and believed to be applicable to many
uniaxial mechanical tests. In the present study, six parameters (i.e., three translations
and three rotations) for each rigid body motion defined at 15 cross-sections were linearly
interpolated along the sample axis. Hence 90 kinematic parameters defined the motion
at each instant of time. Seven time functions were introduced to account for the loading
history, namely, a discretization involving a total of 630 kinematic degrees of freedom to
be determined.

The choice of such a discretization is, by itself, a regularization. It was here designed to
suit a slender body loaded along its longitudinal axis. However, for other cases, additional
degrees of freedom may be introduced. Any information about the experiment may be
used to regularize the displacement field and find a ‘smart’ 4D-kinematic basis, e.g., crack
propagation, sudden motion (because of a shock), temperature variations. The number of
unknowns may not be the major limitation of the method when a PGD procedure is used,
yet including part of prior knowledge in a relevant kinematics is always beneficial. With
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such a suited parameterization of the kinematics, the approach followed in the present
study can be generalized without notable restrictions. The only requirement is to keep the
evolution between consecutive radiographs progressive and that during the experiment,
the rotation has been large enough (a few full 360° rotations is appropriate), otherwise
uncertainty may be large in some directions.

5.2 PGD

The proposed methodology relied on model order reduction, namely, PGD. By itself, PGD
is not restrictive (i.e., separated form for the time and space variations is not limiting) nor
does it rely on any smoothness assumption. It is meant to exploit the intrinsic “simplicity”
of the problem, which is however difficult to formulate in other terms than saying that
only few “modes” are needed for describing the kinematics. Additionally, this number of
modes is not a priori defined. Rather, being driven to lower the residuals, one may argue
that PGD is a smart technique able to pick up only those degrees of freedom, or modes,
that are relevant, hence making the algorithm very efficient but not intrinsically based on
smoothness. It has been shown that smoothness could independently be tuned through
regularization [45].

In the present case, instead of an exhaustive analysis of all 630 degrees of freedom,
PGD was used to select the relevant modes. Convergence was considered satisfactory
based on residuals after 8 rigid body modes and 4 deformation modes. Thus the efficiency
of this model reduction technique is very significant. Let us stress that a space and time
separation accounting for the deformation of samples is quite generic and is expected to
have a very broad range of applicability with a similar high level of efficiency.

5.3 Residuals

The residual field (i.e., differences at all angles between the projected and corrected volume
and the deformed radiographs) that were minimized are the key information to validate the
method. It gives a global and quantitative evaluation of the trustworthiness of the results
and — if and where relevant — allows error areas (due to noise, imperfect convergence,
sensor artifacts or model errors) to be visually localized and interpreted. In the present
case, it was observed that the residuals mostly showed imperfections of the X-ray detector.
From this observation, it was earlier suggested that the choice made prior to the experiment
of averaging over 5 frames each radiography could have been reduced presumably to a single
acquisition. Let us also note that the last residuals show localized features than can be
interpreted as the inception of a crack. This observation stresses once more the value of
such residual fields.

Additionally, residuals can also be quantified in terms of Signal-to-Noise Ratio (SNR).
In the reported example, the mean SNR of the residual fields increased from 9 dB to
26.6 dB along with the correction by the 4D displacement field. This residual change
highlights the accuracy of the results. The measured displacement field was presented
for the vertical component (although all other components were captured). A tensile
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displacement amplitude of 15 voxels was measured at the end of the experiment and high
strain levels were concentrated in the central part of the specimen, as expected from its
geometry, until localization leads to ductile failure.

6 Conclusion

The full 4D (i.e., 3D space and time) kinematics of the 6 min experiment was captured
with an extension of P-DVC that uses a model order reduction technique (PGD). Based
on regularized fields relying on the slender sample geometry as well as a dense sampling
in time, this method measures displacement fields from single projections at each time (or
load) step of the experiment instead of reconstructed volumes in standard DVC methods.

The procedure was tested with an in situ tensile test on nodular graphite cast iron
composed of 127 radiographs with continuous load changes and rotation of the sample
until failure. The experiment was carried out in a lab tomograph with an X-ray cone
beam source. The entire experiment was carried out in 300 s, which is more than two
orders of magnitude faster than standard methods. This performance goes together with
the benefit of having a continuous (i.e., uninterrupted) loading so that load and rotation
can be varied simultaneously. PGD was used to only focus on important space and time
separated modes, thereby reducing the number of effective kinematic degrees of freedom,
not from prior judgment, but as called by the experiment itself.

The measurement of the kinematics is a first step toward mechanical identification,
which is one of the major goals of experimental mechanics [46]. Being able to measure
the 4D motions of the studied sample at fast rates is a major asset. From the estimated
displacement fields at each space and time steps, it is possible to use an inverse method
in order to calibrate the mechanical parameters of, say, an elastoplastic model. Another
variant called “integrated measurement” directly identifies the model parameters from the
images, here radiographs, and is presented in a companion paper [45].
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