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Abstract—Mechanical cardiac activity may be monitored with
phonocardiographic (PCG) signals giving access to cardiac
sounds. However, many noises interfere with cardiac information
in raw signals and denoising such signals is necessary before inter-
pretation. Non-negative Matrix Factorization (NMF) is of interest
for time-frequency representations to separate noise and signal
components. In this paper, to exploit the quasi-periodicity of the
PCG, a quasi-periodic NMF (QP-NMF), based on multiplicative
updates derived from a Majoration-Minimization algorithm,
is proposed to decompose the PCG spectrograms. Numerical
simulations show the good behavior of the proposed method
to separate quasi-periodic components from the others. Finally,
applied on real noisy PCG signals, QP-NMF shows its interest
compared to an unsupervised NMF to denoise PCG signals.

I. INTRODUCTION

Phonocardiogram signals, noted PCG, are cardiac signals
recorded with acoustic sensors of microphonic type. They give
access to cardiac sounds (sounds of the heart valves) which
provide information about mechanical function of the heart.
Two sounds are particularly audible, noted respectively S1

and S2 and corresponding to the closure of respectively the
atrial-ventricular valves (beginning of the ventricular systole)
and the aortic and pulmonary valves (onset of the ventricular
diastole). As shown in Fig. 1, a PCG signal is therefore a
succession of two bumps S1 and S2, following the R peak
of a synchronous electrocardiogram (ECG) signal. Both ECG
and PCG signals are quasi-periodic, due to the physiological
phenomenon of variation in the time interval between heart-
beats (heart rate variability). However raw PCG signals from
cardiac microphones positioned on the chest are most often
disturbed by many ambient interference (gastric or respiratory
noises, cough ...) necessary to be removed before physiological
interpretation.

PCG denoising has been investigated by many approaches
of interest, such as adaptive filtering [1], Kalman filtering [2],
wavelets [3], Empirical Modal Decomposition (EMD) [4] or
Non-negative Matrix Factorization (NMF) [5], [6]. Among
these methods, the NMF [7], [8] is particularly adapted to
take into account the quasi-periodic property of physiological
signals, since the algorithm applied to spectrograms is well-
suited to identify events with particular spectrum and temporal
regularity, such as quasi-periodicity [9]. Indeed, the NMF
method decomposes a signal in k components, by approxi-
mating an observation matrix X ∈ Rm×n+ of positive or zero

coefficients by a product of two matrices with non-negative
values W ∈ Rm×k+ and H ∈ Rk×n+ : X = V + N where
V = WH and N is the residual error from the approximation.
In the specific case of physiological signal spectrogram obser-
vations, W is therefore considered as the matrix of frequency
patterns and H the matrix of time activations. However, the
quasi-periodic structure of PCG signals could be even more
exploited.

In this paper, we propose to include to the cost functions
some specific criteria of quasi-periodicity. This will allow to
extract signal components out of noisy PCG signals, based on
the important property of quasi-periodicity of PCG signals.

Fig. 1. Synchronous ECG and PCG signals. Time interval between heartbeats
is not constant.

II. QUASI-PERIODIC NMF

In this section, a brief recall of using NMF for source
separation is presented (Section II-A) before the proposed
extension to a quasi-periodic NMF (Section II-B) and the
detailed algorithm in Section II-C.

A. NMF for source separation

Let us assume that the observed matrix X is the linear
mixture of two sources V (1) and V (2) so that

X = V (1) + V (2) +N, (1)

with V (i) = W (i)H(i) (W (i) ∈ Rm×ki+ , H(i) ∈ Rki×n+ for
i ∈ {1, 2}). A classical way to tackle the estimation of V (1)

and V (2) is to apply a two steps algorithm. The first step
performs a NMF of X = V + N where V = WH with
W = [W (1),W (2)] and H = [H(1)T , H(2)T ]T (·T is the



transposition operator). In this paper, the euclidian distance
is used

Ŵ , Ĥ = arg min
W∈R+,H∈R+

CD(X|W,H), (2)

with
CD(X|W,H) =

1

2

∥∥X −WH
∥∥2
F
, (3)

and the optimization is based on a majoration-minimization
(MM) algorithm using multiplicative updates [10] to decou-
ple the variables. Then in a second step, a clustering of
the estimated patterns of Ŵ and Ĥ into {Ŵ (1), Ĥ(1)} and
{Ŵ (2), Ĥ(2)} is done to identify the two sources.

However, this unsupervised NMF is often inaccurate in
clustering the estimated patterns into specific components
related to a single source. For instance, the two sources
can partially share some spectral patterns so that the related
activation patterns remain mixtures of the two sources. To
tackle this problem some prior knowledge on the spectral
patterns and/or on the activation ones can be added to the
NMF criterion (2) to enforce the separation during the NMF
decomposition. For instance, one can use a spectral and/or
temporal reference (e.g., [11]–[13]).

B. Criterion for quasi-periodic NMF

In our application and in addition to the data fitting term
CD(X|W,H), some penalization terms are used to constrain
as much as possible V (1) and V (2) to be related to the PCG
signal and to the other sources of interference, respectively.

The main prior knowledge is on the activation patterns
since the heart produces the beats regularly in time (Fig. 1).
However, the PCG signal is only a quasi-periodic signal: all
the beats have slightly different durations and each beat pattern
is sightly different from the others. To take into account the
changes of rhythm, a time-wrapping matrix T (1) is introduced:
V (1) = W (1)H(1)T (1) so that the components of H(1) have
now a regular rhythm instead of the original quasi-regular one.
For the considered application, this matrix T (1) is estimated
from the ECG signal by detecting the R peaks [14]. In practice,
the observed data are pre-time-wrapped by the inverse time-
wrapping

(
T (1)

)−1
leading to X

(
T (1)

)−1
= W (1)H(1) +

W (2)H(2)
(
T (1)

)−1
+N

(
T (1)

)−1
. For the sake of simplicity,

in the remaining of Section II, X
(
T (1)

)−1
, H(2)

(
T (1)

)−1
and N

(
T (1)

)−1
are simply denoted by X , H(2) and N ,

respectively.
To constrain V (1) to be quasi-periodic, the first term is thus

a penalization on H(1) to impose that its k1 components are
P -periodic:

CPπ

(
W (1), H(1)

)
=

1

2

k1∑
k=1

n∑
l=P+1

β
(1)
k

[
H

(1)
k,l−P−H

(1)
k,l

]2
, (4)

where β(1)
k =

∑m
f=1

(
W

(1)
f,k

)2
. Indeed, it enforces the activa-

tion pattern of a beat to be similar to the previous beat. As
in [15], to avoid trivial solution, H(1) decreasing toward 0,
the β(1)

k are introduced.

Two priors are used to enforce the split of the cardiac
activity in V (1) and the other interferences in V (2): H(1) and
H(2) should be different to each other and H(2) should not
be P -periodic. This first constraint is ensured by

C 6=

({
W (i), H(i)

}
i

)
=

k1∑
k=1

k2∑
j=1

λ
(1)
k λ

(2)
j

n∑
l=1

H
(1)
k,lH

(2)
j,l , (5)

where λ(i)k =
∑m
f=1W

(i)
f,k. Indeed, the last summation in (5)

is nothing else but the scalar product between the k-th com-
ponent of H(1) and the j-th one of H(2). Again, the λ(i)k are
used to avoid trivial solutions H(i) = 0. The non-periodicity
criterion is defined by

CPnπ

(
W (2), H(2)

)
=

1

2

k2∑
k=1

β
(2)
k

n∑
l=P+1

H
(2)
k,l−PH

(2)
k,l . (6)

Indeed, the last summation is the value of the auto-correlation
function of the k-th component of H(2) for a lag equal to P .

Nevertheless, this straight implementation of the priors is
not numerically suitable even with the β

(i)
k and λ

(i)
k terms.

Indeed, the constraint (5) can be minimized by degenerated
solutions where H

(1)
k,l = 0 while H

(2)
j,l 6= 0 (or the reverse)

without splitting the cardiac activation patterns in H(1) and
the interferences in H(2). To avoid such a degenerated so-
lution, a temporal smoothness constraint on the components
of H(i) is introduced: H(i)

k,l should be similar to the previous
sample H(i)

k,l−1:

Cs

(
W (i), H(i)

)
=

1

2

ki∑
k=1

n∑
l=2

β
(i)
k

[
H

(i)
k,l−1 −H

(i)
k,l

]2
. (7)

It is worth noting that Cs
(
W (i), H(i)

)
= C1

π

(
W (i), H(i)

)
.

Finally, the quasi-periodic NMF criterion is defined by

CQP (X|W (1), H(1),W (2), H(2)) = CD(X|W,H)

+ γπC
P
π

(
W (1), H(1)

)
+ γ(1)s Cs

(
W (1), H(1)

)
+ γ 6=C6=

({
W (i), H(i)

}
i

)
+ γnπC

P
nπ

(
W (2), H(2)

)
+ γ(2)s Cs

(
W (2), H(2)

)
, (8)

where γ are ponderation coefficients between the different
criteria.

C. Algorithm: auxiliary functions

To minimize (8), an alternating MM algorithm is used to
derive multiplicative updates that ensure the non-negativity
of the estimated W (i) (resp. H(i)) given H(i) (resp. W (i)).
To this end, auxiliary functions L(·|̃·) (where ·̃ stands for
the current estimation) of each term in (8) are expressed in
Appendix. Vanishing the derivative of the overall auxiliary
function of (8) leads to the update equations:

∀i ∈ {1, 2}, W (i) ←W (i) �
X
(
H(i)

)T
X̃
(
H(i)

)T
+ Ψ(i)

(9)



and1

∀i ∈ {1, 2}, H(i) ← H(i) �
(
W (i)

)T
X + Φ(i)(

W (i)
)T
X̃ + Ξ(i)

, (10)

where X̃ = W (1)H(1) + W (2)H(2) and � and the division
are the element wise multiplication and division, respectively.

Ψ(1) = γ 6=1m1TmW
(2)H(2,1) + γ(1)s W (1)diag

(
∆1H

(1)
)

+ γπW
(1)diag

(
∆PH

(1)
)
,

with 1m a column vector of m ones, H(2,1) = H(2)
(
H(1)

)T
,

∆PH
(1) is a vector whose k-th entry is

∑n
l=P+1

(
H

(1)
k,l −

H
(1)
k,l−P

)2
and diag(·) is a diagonal matrix whose diagonal

elements are its arguments.

Ψ(2) = γ 6=1m1TmW
(1)H(1,2) + γ(2)s W (2)diag

(
∆1H

(2)
)

+ γnπW
(2)diag

(
ΠPH

(2)
)
,

where H(1,2) = H(1)
(
H(2)

)T
and ΠPH

(2) is a vector whose
k-th entry is

∑n
l=P+1H

(2)
k,lH

(2)
k,l−P .

Φ(1) = γπdiag
(
β(1)

)[
2H(1) +H

(1)
−P +H

(1)
P

]
+ γ(1)s diag

(
β(1)

)[
2H(1) +H

(1)
−1 +H

(1)
1

]
,

where H(1)
−P (resp. H(1)

P ) is the matrix H(1) whose columns
are shifted to the right (resp. left) by P columns and β(i) =

[β
(i)
1 , · · · , β(i)

ki
]T .

Ξ(1) = γ 6= λ(1)
(
λ(2)

)T
H(2)

+ 4γπdiag
(
β(1)

)
H(1) + 4γ(1)s diag

(
β(1)

)
H(1),

where λ(i) = [λ
(i)
1 , · · · , λ(i)ki ]T .

Φ(2) = γ(2)s diag
(
β(2)

)[
2H(2) +H

(2)
−1 +H

(2)
1

]
,

and

Ξ(2) = γ 6=λ
(2)
(
λ(1)

)T
H(1)+γnπdiag

(
β(2)

)[
H

(2)
−P+H

(2)
P

]
+ 4γ(2)s diag

(
β(2)

)
H(2).

The overall algorithm, called quasi-periodic NMF and denoted
QP-NMF, estimates

{
W (i), H(i)

}
i

by alternating the updates
of W (i) (9) and H(i) (10).

III. RESULTS

The proposed QP-NMF methodology has been evaluated on
simulated and real signals.

1Note that equation (10) does not hold for the first P and last P columns
of the matrices due to the side effects. The complete equations are not given
due to the lack of space but they can be easily obtained.

Fig. 2. Comparison of QP-NMF and NMF. Left column: simulated patterns.
Middle column: estimated patterns by QP-NMF. Right column: estimated
patterns by NMF. The last row plots X for the left column and V̂ for the
middle and right columns.

A. Numerical simulations

In these numerical experiments, a non-negative matrix
X ∈ Rn×m+ (n = 5000, m = 256) has been generated
according to (1). A single quasi-periodic component (k1 = 1)
is generated and the interference sources have two components
(k2 = 2). The activation patterns H(i) have been randomly
generated as Gaussian processes so that they are non-negative
and H(1) has the desired quasi-periodic property. The spectral
patterns W (i) have been randomly generated from gamma
distributions. The additive noise N is uniformly distributed
and white so that the average signal-to-noise ratio is 6dB. The
ponderation coefficients are chosen for QP-NMF as γπ = 1,
γ
(1)
s = 10, γ 6= = 10−4, γ(2)s = 10 and γnπ = 10−3. The

simulations are drawn randomly 50 times by regenerating
all the parameters related to the patterns and with random
initialization. For each simulation, the quality of the estimation
is assessed by the error on V̂ (i) = Ŵ (i)Ĥ(i) defined as

ε
(
V̂ (i)

)
=
∥∥V̂ (i) − V (i)

∥∥
F
, (11)

where Ŵ (i) and Ĥ(i) are the estimates. The figure 2 illustrates
the simulated patterns and the estimated ones. As one can
see, the proposed QP-NMF succeeded to estimate V (1) while
the unsupervised NMF (applied with k = 3 components)
failed: H(1) is definitively better estimated by QP-NMF than
by NMF. This is confirmed by the average performance
(Fig. 3). Indeed, while the error on V̂ is almost the same
for the two methods (ε(V̂ ) = 40), meaning that the sum
V (1) + V (2) is estimated with the same accuracy, the QP-
NMF provides a better estimation of V̂ (1) than by the NMF
method (ε(V̂ (1) = 11 vs. 27 in median values). The QP-NMF
also leads to slightly worse estimation for V (2) than the NMF
method (ε(V̂ (2)) = 42 vs. 33 in median values).

B. Real PCG signals

Behaviour of the proposed QP-NMF is also analyzed for
real PCG signals with additive real interference signals.



Fig. 3. Performance of QP-NMF algorithm on simulated spectrogram obser-
vations, by comparison to standard NMF. The distance between estimations
and reference simulations are computed for the quasi-periodic component, the
free components and the whole set of components.

The database previously proposed to Signal Separation
Evaluation Campaign in 2016 (SiSEC 2016) [16] is used for
evaluation. It consists of sixteen samples with a duration vary-
ing from 10 to 70 seconds. Each sample is composed of a clean
PCG s(t), an interference signal n(t), the artificially noisy
PCG x(t) = s(t) + n(t) and the synchronous ECG ecg(t).
As for the simulation evaluation, we consider k1 = 1 quasi-
periodic component and k2 = 2 interference components. The
algorithm is applied with the following values for penalization
parameters: γπ = .7, γ(1)s = 10, γ 6= = 5e− 3, γnπ = 4e− 1,
γ
(2)
s = 10.
Fig. 4 illustrates the time activations from QP-NMF for

one noisy PCG signal. The quasi-periodic part of the PCG
signal is well represented by H(1) component and does not
seem to be present in H(2) components, which mainly consist
of the interferences. So as to judge the quality of separation
by QP-NMF between the quasi-periodic components and the
interference components, estimation of denoised PCG signals
can be realized and compared to the original “clean” PCG
signals of the database. QP-NMF allows to define signal
and noise components, from which spectral densities can be
computed to define a Wiener filter. This filter is then applied
to the noisy PCG to estimate a denoised PCG reconstruction,
noted ŝ(t). A similar approach is applied on components out
of a standard NMF. From the 3 components estimated, we
visually choose the signal component, as the one which is the
most periodic, according to the ECG reference. We consider
as noise components the 2 remaining ones. The estimation of
denoised PCG from standard NMF is obtained according to
the related Wiener filter and is noted s̃(t). Fig. 5 illustrates
the reconstruction for both QP-NMF and standard NMF for
one real noisy PCG signal. We observe that the impulse noises
around 7s does not appear anymore in the denoised PCG ŝ(t)
with QP-NMF, which is not the case for s̃(t) obtained after
standard NMF. This example shows that it is of interest to
constrain the activation profiles H(1) to be quasi-periodic.

IV. CONCLUSION

In this paper, we have proposed a new supervised NMF
method to constrain explicitly some components to be quasi-
periodic. This approach may be of interest to denoise quasi-

Fig. 4. Time activations from QP-NMF applied on one noisy PCG signal.
x(t) is the noisy PCG signal, H(1)T (1) is the quasi-periodic component
of the signal (corresponding to the “clean” PCG part) and H(2)

i is the i-th
interference component (i = 1, 2).

Fig. 5. Real PCG signals denoising. x(t) is the noisy PCG signal, s(t) the
original clean PCG, ŝ(t) (respectively s̃(t)) the denoised PCG estimation
thanks to Wiener filtering based on the components separated by QP-NMF
(respectively by standard NMF). Both NMF are applied with k = 3
components and consider k1 = 1 signal component and k2 = 2 interference
components.

periodic signals, such as PCG, since it allows the separation of
signal and noise components directly during the components
estimation compared to an unsupervised NMF that sorts the
components after their estimation. The proposed method has
been evaluated on simulated signals, highlighting that quasi-
periodic part of the observations are better estimated with
supervised QP-NMF than with unsupervised standard NMF.
Moreover, observations on noisy real PCG recordings have
been carried out and preliminary results are promising since
the QP-NMF seems to remove some specific interference
occurring in daily situations.

In future works, an automatic selection of the penalization
parameters will be studied as well as the extension of this
QP-NMF to model several quasi-periodic components with
different periods.



APPENDIX

For the generic periodic penalization CPπ (also used for the
smoothness Cs with P = 1)

LPπ

(
W (1)

∣∣∣W̃ (1)
)

= CPπ

(
W (1), H(1)

)
since CPπ is a convex function with respect to W (1) and

LPπ

(
H(1)

∣∣∣H̃(1)
)

=
1

4

k1∑
k=1

β
(1)
k

n∑
l=P+1

[(
2H

(1)
k,l − H̃

(1)
k,l

− H̃(1)
k,n−P

)2
+
(
−2H

(1)
k,l−P + H̃

(1)
k,l−P + H̃

(1)
k,n

)2]
.

For the non-periodic penalization CPnπ

LPnπ

(
W (2)

∣∣∣W̃ (2)
)

= CPnπ

(
W (2), H(2)

)
,

since CPnπ is a convex function with respect to W (2) and

LPnπ

(
H(2)

∣∣∣H̃(2)
)

=

k2∑
k=1

β
(2)
k

×
n∑

l=P+1

[(
H

(2)
k,l

)2 H̃(2)
k,n−P

2H̃
(2)
k,l

+
(
H

(2)
k,l−P

)2 H̃
(2)
k,n

2H̃
(2)
k,l−P

]
.

For the antagonism penalization C6=

L6=

(
W (1),W (2)

∣∣∣W̃ (1), W̃ (2)
)

=

k1∑
k=1

k2∑
j=1

m∑
f=1

m∑
l=1

H
(1,2)
k,j

×

[(
W

(1)
f,k

)2 W̃ (2)
l,j

2W̃
(1)
f,k

+
(
W

(2)
l,j

)2 W̃ (1)
f,k

2W̃
(2)
l,j

]
,

where H(1,2)
k,j =

∑n
l=1H

(1)
k,lH

(2)
j,l and

L6=

(
H(1), H(2)

∣∣∣H̃(1), H̃(2)
)

=

k1∑
k=1

k2∑
j=1

λ
(1)
k λ

(2)
j

×
n∑
l=1

[(
H

(1)
k,l

)2 H̃(2)
j,l

2H̃
(1)
k,l

+
(
H

(2)
j,l

)2 H̃(1)
k,l

2H̃
(2)
j,l

]
.

ACKNOWLEDGMENT

This work has been partially supported by the LabEx
PERSYVAL-Lab (ANR-11-LABX-0025-01) funded by the
French program Investissements d’avenir. This work is also
partially supported by the French National Research Agency,
as part of the SurFAO project (ANR-17-CE19-0012).

REFERENCES

[1] M. Tinati, A. Bouzerdoum, and J. Mazumdar, “Modified adaptive line
enhancement filter and its application to heart sound noise cancellation,”
in Proc. Int. Symp. on Signal Processing and Its Applications (ISSPA),
Gold Coast Australia, 1996, pp. 815–818.

[2] S. Charleston and M. Azimi-Sadjadi, “Reduced order Kalman filtering
for the enhancement of respiratory sounds,” IEEE Transactions on
Biomedical Engineering, vol. 43, no. 4, pp. 421–424, apr 1996.

[3] S. R. Messer, J. Agzarian, and D. Abbott, “Optimal wavelet denoising
for phonocardiograms,” Microelectronics Journal, vol. 32, no. 12, pp.
931–941, dec 2001.

[4] O. Beya, E. Fauvet, and O. Laligant, “EDA, approche non linéaire
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