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Abstract—Multiple sclerosis (MS) is a major auto-immune
disease that is the leading cause of non-traumatic impairment
of the central nervous system (CNS) in young adults. Successful
treatment of MS patients depends on accurate tools for both the
MS diagnosis and the disability progression. The neurological
examination is an expert procedure which aims to accurately
describe the function of the nervous system, but despite the
complexity of the neurological examination it still lacks accuracy.
This study explores the capabilities of applying a commercial elec-
tromyographic and inertial sensor (MYO Armband by Thalmic
Labs Inc.) coupled with a multichannel signal processing tool to
standard neurological examination. In this pilot study, a dataset
of electromyographic signals from 71 individuals (31 MS patients
and 40 healthy controls) was acquired during neurological ex-
amination routine. Temporal and spectral features of the signals
were extracted in order to train and validate a classification
model. Finally, a Support Vector Machine classifier was obtained
giving AUROC = 0.94, 95% CI = [0.88, 0.99] and verified using
five-fold cross-validation.We propose a set of signal descriptors
that correlate with objective components of the neurological
examination. The proposed signal acquisition and processing
technique, being easy to integrate into the traditional neurological
exam, may have high potential for aiding in diagnosing MS and
quantifying its progression.

I. INTRODUCTION

Multiple sclerosis (MS) is a chronic debilitating neuro-
logical disorder that mainly affects young individuals aged
between 20 and 40. As a cause of neurologic disability MS is
second only to trauma, having its prevalence estimated at 2.5
million worldwide in 2014. The actual cause of MS is yet to
be identified, but a complex interaction between genetic and
environmental factors contributes to the risk. To date, there
is no reliable method to predict MS onset or progression.
Successful managing of the symptoms and attacks for MS
patients highly depends on accurate and timely diagnosis as
well as the possibility to measure disability progression.

Diagnostic criteria for multiple sclerosis include a num-
ber of clinical and paraclinical laboratory assessments [1],
[2]: cerebrospinal fluid analysis, study of visual evoked po-
tentials, electromyography analysis, neuroimaging and mo-
tor/sensory/balance function tests. The latter involves various
motor tasks to be accomplished by the subject: timed 25-foot

walk [3], 9-hole peg test, finger-to-nose test [4], heel-knee-shin
test, finger tapping, foot tapping, etc.

The most common motor manifestations of MS are muscle
fatigue, spasticity and tremor. Listed symptoms involve ab-
normal functioning of skeletal muscles and thus affect their
activation patterns. In such cases, deviations may be revealed
by analysis of limb trajectories and of involved muscles’
electromyography (EMG). These measurements are proven to
be efficient in different studies of MS progression [5]–[7].
Thus, an EMG recording along with the inertial measurement
unit (IMU) data may aid to characterise presence and severity
of MS.

Common MS diagnosis approaches, as those listed above,
require specific equipment, procedures and clinical expertise.
A lack of them may slow down or make the diagnosis
impossible, which is a common case for unpopulated areas
or developing countries. A possible way to overcome these
difficulties is to apply a widespread cheap acquisition sys-
tem, along with unified assessment protocol and automated
decision-making. As such an acquisition system we propose
the MYO armband (Figure 1) developed and commercialised
by Thalmic Labs Inc [8]. It comprises eight EMG channels
and an IMU giving acceleration, orientation and rotation speed
measurements in three axes. This device is wireless, cheap,
easy to use, actively supported by community and can be
shipped to any location.

MYO armband’s default software is capable of recognising
five different hand gestures, based on EMG. Also, IMU sensor
provides a pointer control. In academic studies, this device
was applied in sign language gesture recognition [9] and pros-
thetic control [10], [11]. Typical signal processing pipeline in
these applications consists of the following steps: windowing,
feature extraction, feature projection and classification using
machine learning techniques [12], [13]. Such an approach
may also be effective in an application to MS diagnostics
since there is no strictly defined model of how MS affects
surface EMG signals or limb trajectories. Other reasons to use
machine learning techniques in this case are the dimensionality
of the data and the fact that measurements are to be made with



Fig. 1. MYO armband by Thalmic Labs Inc.

two different kinds of sensors (EMG and IMU).
In the sequel, we present the entire processing pipeline

including the data acquisition, signal preprocessing, dimen-
sionality reduction and decision-making steps. At last, experi-
mental results involving MS patients and healthy controls are
discussed.

II. MATERIALS AND METHODS

This section contains description of our equipment, test
protocol, data acquisition software and data processing ap-
proaches.

A. Acquisition system

As it was already mentioned, a proposed acquisition device
was an armband consisting of eight blocks connected by an
elastic rubber band. Each block has a differential surface EMG
electrode on the side opposed to the skin. It also contains an
integrated IMU providing acceleration and orientation data.
The armband hardware itself performs filtering and sampling
of the signals (EMG at 200 Hz and IMU at 50Hz, 10bit
quantisation) and may be connected wirelessly to a PC using
Bluetooth Low Energy protocol.

A custom acquisition software with graphical user interface
(figure 3) was developed to conduct the acquisition. It handled
several major tasks: management of acquisition database,
indication of correct armband placement and real-time signal
visualisation. Back-end, or communication part of the software
was developed using myo-python library [14], that provides a
Python wrapper for original MYO libraries. Signals from all
the channels were visualized during the acquisition, and then
stored to a database.

B. Acquisition protocol

During tests, the MYO armband was placed either on the
dominant forearm or on the lower leg, depending on the test.
While on the forearm, the armband was placed so that its
distal side was approximately in the middle of ulna bone and
its logo-block was aligned with virtual line passing through
middle fi nger (see figure 2). On the lower leg, its distal side
was set in the middle of tibia, with logo-block placed laterally
to it, covering tibialis anterior muscle. In function of limb size
armband was loosened or tightened using special clips to assert

Fig. 2. Armband positioning on the forearm, example shown for finger tapping
test.

Fig. 3. The graphical user interface visualising acquired signals in real time.

comfort of the subject and firm contact of EMG electrodes to
the skin. Electrodes were evenly distributed around the limb.

The dataset for this publication was obtained during clinical
follow-up of MS patients at Oslo University Hospital, Oslo,
Norway. It consisted of 40 healthy controls and 31 MS
patients, who gave their informed consent according to local
guidelines. Tables I and II provide demographics and clinical
evaluation statistics of the participants.

Each subject performed seven motor function tests: timed
25 foot walk (T25FW), finger tapping (FIT), finger-to-nose
(FTN, foot tapping (FT), 9 hole peg test, hell-knee-shin test
and Romberg’s test. Within each test, two or three trials were
performed, depending on subject’s performance.

C. Dataset

Only the four following tests were considered in this study:
T25FW, FIT, FTN and FT. Romberg’s and heel-to-knee tests
were rejected because of a low signal-noise ratio. In addition,
9 hole peg test was performed on two different equipments
and thus was excluded from the study. Patients and healthy
control (HC) formed two classes labelled by ”1” and ”0”
respectively. Each of the four tests was used to form a separate
dataset for a separate classification problem. Within the tests,
each valid trial represented a sample. Later, for each person,
a classification score obtained for all trials of a selected test
were averaged to obtain a final score.



TABLE I
DEMOGRAPHICS OF PARTICIPANTS

Variable, mean (SD) Patients
N = 31

Healthy Controls
N = 40

Age 37.7 (7.4) 33.3 (6.8)
Gender (% of females) 70 75
Height 170.2 (7.5) 171.2 (8.8)
Weight 71.4 (16.4) 67.1 (12.4)
Right handed (%) 86.7 90

TABLE II
CLINICAL EVALUATION OF PATIENTS

Variable, mean (SD, min-max) Value, patients
Age of first symptoms 28.1 (7.7, 12 - 42)
Age of MS onset 32.5 (7.5, 19 - 49)
Disease duration 5.7 (2.6, 1.3-12.0)
EDSS 2.1 (1.1, 0.0 - 4.0)
Total number of attacks 2.3 (1, 1 - 5)

D. Feature extraction

Signals from all the trials were first visually analysed and
regions of interest (ROIs) were manually extracted. Next, ROI
lengths were equalised by trimming longer signals. Then, from
each EMG channel, twelve temporal features were extracted
[13]: number of zero crossings, waveform length (WL), slope
sign change, Wilson amplitude (WA), root mean square, mean
absolute value (MAV), integrated EMG (IEMG), signal vari-
ance and auto-regressive coefficients (4th order model).

Twelve spectral features were extracted as follows: the
whole spectral band of the signal was partitioned into three
sub-bands (0-20Hz, 20-50Hz, 50-100Hz), within each band
mean and median frequencies (MNF and MDF) were cal-
culated, as well as energy (EN) and dispersion of spectrum.
As for IMU, only accelerometer data was taken into account,
extracted features were mean and median frequencies, without
band partitioning.

E. Dimensionality reduction

Overall number of sample descriptors was 24 for each
of eight EMG channels plus two features for each of three
accelerometer channels, giving an overall dimensionality of
198 for each sample. In order prevent overfitting during
classification, PCA was applied to the feature matrix of each
test. Depending on the test, from six to ten principal compo-
nents were kept. Features that were most represented in first
principal components are EMG features: Wilson amplitude

TABLE III
FEATURES MOST REPRESENTED IN FIRST PRINCIPAL COMPONENTS

Test Features (EMG channels)
T25FW WL(1), WA(1), EN(8, 1, 5, 2, 4, 6)
FT WL(4, 5), WA(4, 5), EN(2, 7, 5, 1, 8)

FIT WL(2, 1), WA(1, 2), EN(8, 7, 5),
MNF(0-20Hz)(1,2,3,5,6)

FTN WA(3, 5, 6, 4), WL(3, 5, 6, 4), EN(1, 6),
IEMG(2, 4, 5), MAV(2, 4, 5)

Fig. 4. ROC curves for four motor function tests, T25FW stands for timed
25 foot walk.

(WA), waveform length (WL) and energy (EN) in all three
sub-bands (listed in table III).

F. Classification

Support vector machine (SVM) models were learned from
four datasets corresponding to each of the tests, using svmlib
library [15]. Polynomial kernel was used, best values of kernel
and of regularization parameter were found using grid-search.
We performed 5-fold cross validation of the result. Absolute
value of SVM output is distance between the sample and
separating hyperplane, while its sign represents estimated class
label.

III. RESULTS AND DISCUSSION

For each data sample (single test trial), SVM model output
characterises the sample score, probability of being either
healthy or having MS. For each subject, scores corresponding
to multiple trials of the same test were averaged. Then,
sigmoidal function was applied to map the average scores onto
the [0,1] interval to then trace ROC curves for each of four
tests 4. Best performance obtained was for T25FW (area under
ROC 95% CI [0.88, 0.99]).

The obtained scores may be interpreted differently, depend-
ing on a classification strategy. Therefore, in the situations
where one single decision (for example, ”no MS”/”possible
MS”) must be provided, the results obtained from the different
tests should be combined. As an example of a possible
approach, we propose a rule that consists of diagnosing a
subject to have MS if 1) his most positive score is larger,
by its absolute value, than his scores for the other tests; or
2) if he has at least two positive scores. Confusion matrix for
that approach reveals its high sensitivity (see table IV).

IV. CONCLUSION AND FUTURE WORK

In this study we assessed the classification capabilities of
MYO armband and typical EMG processing pipeline, applied
to a sample of MS patients and healthy subject. Timed 25
feet walk test has shown a superior performance (in terms of



TABLE IV
CONFUSION MATRIX FOR COMBINED CLASSIFICATION APPROACH

Healthy controls Multiple Sclerosis
Healthy controls 30 10

Multiple Sclerosis 2 25

the area under ROC curve) compared to other tests. Possible
explanation is the fact that walking requires coordination of
the whole body and thus may be affected by MS-caused
abnormalities in any body part. Other tests involve independent
movement of either upper or lower limb and thus may not
represent the actual state of a subject if his/her MS manifests
elsewhere.

Possible development of this study have to consider, first
of all, the acquisition protocol. In order to compare the data
acquired by two different groups, a common protocol should
be established, including subject’s position and trajectory of
walking. Also, special care should be taken considering the
intra-class variability of the EMG signals caused by different
skin and body fat conditions. Necessity of EMG normalisation
with respect to maximum voluntary contraction level should be
investigated. No common diagnostic protocol involving MYO
armband may be established until these questions are assessed.
Finally, as possible follow-up based on this study we are
investigating the possibility of predicting MS disability based
on regression of SVM scores on EDSS (Expanded Disability
Status Scale) [16]. For that purpose, another dataset consisting
only of MS patients with different levels of disability based
on EDSS is currently being acquired.
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