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Abstract—With the recent advances in the area of wireless
communication networks, a new kind of networks emerges where
entities make contact over time with one another, which makes
topology highly dynamic e.g UAV networks, wireless sensor
networks, vehicular networks etc. A challenge in this context is
to study dynamics patterns and temporal properties and decide
if the evolution of the topology satisfies requirements for given
protocol, algorithm, task efc. and adapt at different levels. In
this paper we focus on testing temporal properties in dynamic
networks, then we consider SDVN - Software-Defined vehicular
networks as a case study where we propose the integration of a
new component in SDVN architecture based on a framework
that allows dynamic networks properties analysis and adaptation
to a given dynamic context. We demonstrated how network
control functions can take benefit from the provided information.

Index Terms—Dynamic networks, Software-Defined Vehicular
Networks, SDN.

I INTRODUCTION

One of the major evolutions in the area of computer science,
we note the emergence of dynamic networks. These networks
consist of entities making contact over time with one another,
which makes them different from static networks where the
topology remains unchanged. Recently, the community has
explored contexts where the dynamic is considered as a prop-
erty of the network, rather then exception and several works
have highlighted the importance of studying and defining
mobility patterns and characterizing dynamic properties in a
dynamic context. In a static context, the stability allows one
to have all parameters to preview the execution on a given
network. A major challenge in dynamic networks is difficulties
to detect mobility patterns and decide whether the evolution
of the topology satisfies requirements. From this point of view
we distinguish two types of dynamic networks: Controlled
dynamic networks where contacts and topological changes can
be directed in a way such that they adapt to the execution of
an algorithm; non-controlled networks where the evolution of
the network topology is completely or partially independent
from the execution and unpredictable without any analysis.
The latter category represents a large part of the practical
contexts, as vehicular networks, telephone networks, social
networks efc. where the movements of communicating and
computing units depend on the movements of the underlying
mobile objects. The types of network dynamics are different,
some of them are connected all the time [16], others are
not but give a temporal connectivity (connectivity over time)
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[13], others are stable, periodic, etc. All of these contexts
can be represented as temporal properties and dynamic graph
classes [5]. In [4] authors propose an analytical approach that
aims to characterize how appropriate a given algorithm is to
a given dynamic context and define based on this relevant
temporal properties. Given a dynamic network, an interesting
question to ask is what temporal property it has and how it
evolves over time. Thus, being able to learn about the evolution
of the network state is useful for determining which problem
can be successfully solved. Furthermore, it can be useful to
adapt at different levels or to control the network to satisfy
a needed property. Different strategies were proposed in the
literature for testing temporal properties in dynamic networks.
In [6] authors present a generic framework for computing
maximum and minimum parameters, testing properties and
show its application by solving some relevant problems. In
this work we are interested in testing temporal properties and
computing parameters in an emerging issue in the field of
dynamic communication networks: SDVN - Software-Defined
Vehicular Networks. We present an adaptation of the existing
frameworks to a more general case and show its application by
proposing a new component in the SDVN architecture allowing
network control functions to learn about the network topology
dynamics and adapt to its evolution.

The paper is organized as follows: In section /I we present
dynamic network model and some basic definitions on dy-
namic graphs. Section [II discusses the characterization of
temporal properties and their impact on algorithms and ap-
plication suitability. In Section IV we present some existing
strategies for testing properties and computing parameters,
then a framework that we will apply in Section V to SDVN
context where we highlight the benefit of our proposition.

I MODEL

In this section we present the dynamic networks model and
some basic notions and concepts that will be used in this paper.

II-A Dynamic Graph Model

In a dynamic context, networks can be represented in many
ways, it depends on the definition of the temporal domain in
which the system evolves. Many models exist and are widely
used in the literature, like Time-varying graphs [5], temporal
networks [14] and link streams [19]. It is often suitable to
represent the evolution of the network as a sequence of global



graphs representing the general state of the network during a
time interval. In what follows, we will use evolving graphs [9]
where the evolution of the graph is modelled by an indexed
sequence of graphs {G; = (V| E;)}, each graph G; being
associated to a time interval [t;,¢;+1) during which it is
available. Figure 1 shows an example. Formally:

Definition 1 (Evolving Graph). Let G = (V, E) be a graph, an
evolving graph G is represented by a triplet G = (G, Sq, St)
where S is an indexed sequence {G; = (V,E;)} of G
subgraphs and St C T C N or R is the associated sequence of
dates tq,ts, ... where Ve € E;, e is present in the time interval
[ti,tit1) (only the graph G is present in this interval).

t1 — t2 to — t3 ts — 14 tes — ts
a:>5\:6 a:/E\I6 “I/f Ie GVE
b d b d b d b o
G1 G2 Gs G4

Fig. 1. Example representation of a dynamic network as an evolving graph.

In a more general case edges could be directed to represent
non-symmetrical links. The state of the links and nodes could
be presented by labels on the edges e.g QoS, capacity, load
etc.

II-B  Temporal Properties

In this work, we are interested in temporal and topological
properties, in other words, characterizing and testing properties
on the evolution of the topology but not only on the state of
the network at a time ¢. For instance, an important property
in dynamic networks is the connectivity between nodes. At
no time, in Figure 1 in the graph G a is connected to e (in
a classical sense). But by allowing the combination of edges
from different graphs, e can be reached from a by means of
a temporal path, e.g: ((a,¢) € Eq, (¢, e) € Ey). This temporal
aspect of a path gives the notion of journey (temporal path).

Other properties can be defined, for example on the stability
of a (same) path e.g ((b,¢),(c,d)) in {G; : 1 > i > 2}, the
existence of a path between tow nodes during a given duration,
the recurrence of a link (periodic, time-bounded, recurrent ...),
properties on a set of links, on a part of the network efc. A
natural question is "what gives sense to a given property and
makes it interesting to consider?". An efficient approach is
to analyze algorithms, protocols, tasks ... and to look at the
assumptions made on the dynamic graph.
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In [4] authors propose a framework that allows to examine
what impact a property has on the execution of an algorithm
and that aims to characterize how appropriate a given
algorithm is to a given dynamic context. The workflow is
presented in Figure 2. Algorithms are analyzed to characterize
conditions that define temporal properties.

CHARACTERIZING TEMPORAL PROPERTIES

Their general methodology consists in considering a prob-
lem, then characterizing the conditions for the success of
its algorithm execution in terms of network dynamics. They
model this in two predicates: objective and condition. The

Dynamic graph
classes

Algorithm Conditions _.

Fig. 2. Characterizing temporal properties [4].

objective O 4 defines the success of the execution of an
algorithm A. For example, for a propagation algorithm A,
which consists in transmitting an information / from a node
u to all the other nodes of the graph, the objective O 4 is
Vv € V,v has the information I. Property: There exists a
Jjourney from a node u to all other nodes of the graph, is
proved to be a necessary condition for A.

A hierarchy of general classes of dynamic graphs, corre-
sponding to temporal properties, was defined based on this
process [4] e.g Temporal Connectivity (for all pairs of nodes
u,v € V, there exist a journey), Constant Connectivity
VG; € G,G; is connected), T-interval Connectivity (every
sequence of length 7" in the dynamic graph G shares a common
connected spanning subgraph), Time-bounded Reappearance
of Edges, Periodic Reappearance of Edges etc. The defined
classes are generic and define properties on the entire graph.
One could be interested in properties on a specific set of nodes
in the graph or a specific path, link efc. Specific properties can
be defined based on what exists or by considering new network
problems and algorithms. This method can be generalized
(Figure 3) to allow the characterization of specific temporal
and topological requirements based on a practical evaluation
of protocols, tasks, algorithms beside the existing analytical
approach.

Analysis,

Protocol,
algorithm,
application ...

Temporal

Practical .
properties

evaluation

Requirements —»

Fig. 3. Characterizing requirements.

In an online setting, where only a recent history of the
network state is considered, it is more interesting to study
the temporal property evolution instead of defining a property
on the whole graph i.e temporal properties on windows
of the network. For example, it gives more information to
compute the Temporal diameter: the smallest duration in which
every node can join all other nodes using a journey at any
instant ¢, than merely test whether the dynamic network is
temporally connected. This information about the evolution of
the property is called Temporal parameter:

Definition 2. p; is a parameter of G with respect to a given
property P, at time i, iff {Gi, Gix1, ..., Gitp;—1} verifies the
temporal property P, that is, starting from time 1, the property
P is true for a duration p;.

Let’s take for example Temporal connectivity, if every node
can reach all the other nodes, using a journey, at time ¢ in a
duration of 5 but not 4 then p; > 4 is a parameter and 4 defines
the temporal diameter of the graph at time ¢ 7.e minimization
of the parameter p;. Different temporal parameters can be
defined based on existing properties, and related information
can be extracted. For instance, the smallest duration in which



a set of links/paths reappear at least once, the largest duration
in which a path is stable efc. Testing temporal properties and
computing parameters allows one to collect information about
the network based on which could decide which task, protocol
or algorithm could be used and when, or adapt its behavior.

IV  TESTING TEMPORAL PROPERTIES AND COMPUTING
PARAMETERS

Dynamic graphs instances can be obtained from network
traces generated from the collection of real-world networks or
network topology estimation. Then testing temporal properties
and computing parameters can give an indication about the
suitability of a given algorithm in a mobility context. This
allows one to adapt the execution of the algorithm, the behavior
of a protocol or an architecture at a given level to the
network dynamics, and conversely control the network topol-
ogy evolution to guarantee needed properties. The workflow
presented in Figure 4 shows a general representation for an
automatic testing framework that produces information about
the dynamics of the network with respect to a given temporal

property.

{yes,no}
Temporal Test Dynamic
properties Parameter graph

computation

Parameter values

Fig. 4.
tation.

Automatic classification of dynamic networks and parameter compu-

A key issue is that of understanding how far such a
framework could be automated. Several works contributed to
the automation of the core operations of Property testing and
Parameter computation, by proposing strategies for the classi-
fication of dynamic graphs for specific classes like Temporal
Connectivity [3] and T-interval connectivity [7].

In [6] authors present a generic framework for computing
maximum and minimum parameters and testing properties
in dynamic networks and show its application by solving
minimization and maximization problems like computing the
temporal diameter, the round trip temporal diameter of a
given dynamic graph, the reappearance-bound of its edges and
computing T for which a given G is T-interval connected.

The proposed algorithm computes a sequence of high-
level structures (graphs) {G(; ;)} with j > i. Each structure
G ;,5) corresponds to a sub-sequence {G;,G; +1,...,G;} of
the original dynamic graph and represents information about
the considered temporal property e.g transitive closures of
journeys {G(13),G(2.4),-.-,G(6,8)} in Figure 6. From this
sequence, by testing the presence of an edge (u,v) in G(; ;12),
one can directly test if a node v can be reached from a node u
using a journey, in a duration of 3 starting at time 7. This high-
level sequence is computed using a composition operation

defined by the user for the considered property or parameter
e.g transitive closure concatenation as operation to compute
the sequence of transitive closure of journeys.

Dynamic graph

High-level

High-level
structures

computation — Parameter values
framework

—

Operations

Fig. 5. Simplified presentation of the framework.

So far, the generic framework is designed to solve mini-
mization and maximization problems (i.e finding the small-
est/largest duration for which a given temporal property is
verified at any time). The framework can be directly extended
to compute the needed high-level structures and extract the
desired information about the network based on what in-
formation the user needs at a given time or depending on
external events. Figure 5 shows a general presentation of this
high-level computation framework. Depending on a specific
temporal property, a composition operation is used to compute
the high-level sequence from the dynamic graph given as input
(see [6] for more details about the composition operation).
Then temporal parameters (w.r.t the considered property) can
be computed directly from the resulting high-level structures.
This hides the complexity of the network dynamics and allows
one to focus only on the extraction of interesting information
about the evolution of the temporal properties of the network
and then adapt to changes at this level. For instance, if
the application tolerates a maximum latency [ using a store
and forward adhoc communication, then the system/protocol
must adapt if the temporal diameter (the considered temporal
parameter in this case) exceeds [, for example, by using an
other communication mode (e.g infrastructure). If the system
can be completely or partially controlled, then the topology
can be directed in a way to guaranty the needed requirement.
More complex computation can be done using the framework
to extract more precise information on the network.
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Fig. 6. Example of high-level structures (transitive closure of journeys) to
test temporal connectivity.

V CASE STUDY

Intelligent Transport System (ITS) brings the idea of pro-
viding the vehicles and the transport infrastructure with com-
munication capabilities, in an effort to improve their safety,
reliability, efficiency and quality [1]. To that end, a large
variety of companies including car makers along with au-
tomotive industry suppliers, telecom operators, and research
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Fig. 7. Software-Defined Vehicular Networks Architecture.

bodies are gathered to propose different ITS services, such
as, Cooperative Collision Avoidance, Automated Overtake,
Traffic information and recommended itinerary, and Vulnerable
Road User Discovery [2]. Therefore, the next generation of
vehicles will be equipped with one or more interfaces enabling
it to communicate with the surrounding vehicles, as well
as, the infrastructure, and organized in networks, known as
Vehicular networks. In the last years, vehicular networks are
attracting more attention, recent research activities [10], [17],
[15] are investigating the possibility of applying Software
Defined Network (SDN) paradigm to vehicular networks to
bring the flexibility and programmability to such dynamic
network, with the aim of efficiently supporting the emerging
ITS services. The SDN paradigm advocates the idea of taking
control plane functions out of network forwarding devices
and relocating them on remote external computing machines
called SDN controllers. By doing so, the network intelligence
becomes logically centralized and the network nodes only
forward packets according to the rules installed by the SDN
controller [2].

V-A SDVN - software-defined Vehicular networks

Applying SDN to vehicular networks consists on the separa-
tion of data plane and control plane. The main objective of data
plane is the forwarding of data , while the control decisions
are taken by the control plane, for example, to decide from

which interface each packet will be forwarded. As shown on
Figure 7 and described on [11], the data plane is composed
of various Forwarding Elements as Base Stations (3G/4QG),
Road Side Units (RSU), Vehicles, all under the control of
SDN controller. Each node sends periodically to the SDN
controller information about its status (connectivity, position,
speed, direction ...) through the Southbound interface. These
information are used in the control plan to build a global
view of the network, which is exposed via the Northbound
interface to the network control applications (routing, mobility
management, ...) in order to generate the control decisions to
be implemented by the data plane, In addition, the Business
Applications (ITS services) can specify their requirements and
the expected behavior of the network through the northbound
interface.

The network control functions constitute the intelligence
of the network, these functions benefit from a personalized
and simplified representation of the underlying network, this
representation is constructed and maintained by the topology
discovery service using the information sent by the forwarding
elements. for example a routing function needs the graph of the
topology of the network and the capacities of the various links
in order to compute the routing path. However, with the high
mobility of vehicles, keeping this view up to date represents a
challenging task, the authors in [11] propose the idea of using a
topology prediction service based on the potential trajectory of
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a vehicle in order to expose an estimated view of the network.

V-B  Temporal property testing in SDVN

In SDVN architecture, the SDN controller, which represents
the control plane, constitutes the intelligence of the network,
it executes various network control functions (known as SDN
applications) allowing the control and management of the
network in a centralized way. These network functions benefit
from the information provided by the basic services of SDN,
such as topology discovery service. In order to enrich the
information provided to the network control functions, we
propose to study the evolution of the graph topology using
the framework presented in the previous sections. Multiple
temporal properties and parameters can be computed using
a historical graph sequence (provided by the topology discov-
ery service), or an estimated one (provided by the topology
prediction service).

Figure 8 shows the integration of the presented framework
in the SDVN architecture. The defined component (Temporal
property testing) operates in the control plane in interaction
with the topology discovery and prediction services, which
provide the needed information about the network topology
evolution as a dynamic graph. Outputs are computed based on
the desired property specified by the SDN application and then
used directly to (1) make decision about the control policies
(e.g switch from an adhoc strategy to a centralized one if the
required property is not verified), (2) adapt the network control
functions behavior to the network, and (3) control the network
to satisfy the desired requirements.

One of the most important network control functions in
such architecture is Routing. The main objective of this service
consists in computing optimal routes to send information from
a source node to one or many destination nodes. In general,
the routing protocols use several metrics like hop numbers
(shortest path), link quality (reliable, fastest path) efc. In
a dynamic environment, communication link disconnections
occur frequently. So, routing based only on classical metrics

may not be efficient in such a context. Testing temporal
properties and computing parameters in dynamic networks
could give relevant information which can be considered in the
optimal path computation. An important temporal parameter
is the stability of paths over time [18]. By giving the right
operation, the routing function can use the output of the
introduced component (Temporal property testing) to test the
stability of paths in a horizon of h (defined by the application)
from the sequence given by the Topology prediction service i.e
starting from a time ¢ test if a path is shared by a sequence
{Gi, Gi+1, ey Gi+d—1} with d < h.

To compute this parameter one should be able to directly
test the stability of a path from the corresponding high-
level structure. An option could be to compute G(;itn—1)
containing all edges that appear in G; labeled with their
stability: every edge e in G(; ;;—1) is labeled with the largest
k < h such that e € N{G;,Git1,..., Gitk—1}. This can
be computed thanks to the Union composition operation that
computes U{G;, G; 11, ..., Gitnh—1} with all appearance dates
of edges and then keeps on G(; ;4,—1) only edges belonging
to GG; with labels corresponding to first_disappearance_date—i
(see [6] for more details about composition operations in this
framework). To test if a path is stable in the network for a
duration d starting from a time i, it is sufficient to test the
existence of the path in G ; ;4,—1) with labels > d on all the
edges. This can be done in a linear time in the number of
edges. Figure 9 shows an example.

To have more information about the presence of links, all
appearance dates could be kept on edges in {G'(; i4-n—1)}. So,
one can determine when missing links are needed to be estab-
lished to ensure the stability of a specific path, then, request
the Topology control function with this precise information
in order to satisfy the general property (path stability) when
possible. In this case (SDVN), thanks to the programmability
offered by SDN, the topology and links can be controlled by
adjusting the range of communication devices for example.

Other important SDN applications could benefit from the
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Temporal property testing module in the same manner. Table
I exposes some network control functions and related proper-
ties. Besides Path stability, Routing control function can take
advantage from other properties like Temporal connectivity
(presented in section II-B) and Link recurrence (periodic
and time-bounded links reappearance), which enable different
routing strategies (e.g. store-and-forward, foremost broadcast
etc.). It also can be interesting for Load balancing control
function to use information about the connectivity between a
set of vehicles on one hand, and their connectivity with the
infrastructure (e.g. Fog data centers), on the other hand: For
instance, depending on the nature of transmitted data, a vehicle
can use a distant data center (instead of directly connected
one) using a stable path (e.g. for a continuous traffic, Instant
connectivity otherwise) or a Journey (Temporal connectivity)
if transmitted data tolerate a certain latency.

Temporal Properties Netwo_rlf Control Function
Routing Mobility Loaq Topology
Mgmt balancing control
Path stability VA V4 V4 V4
Instant connectivity v/ N N
Temporal connectivity v/ N N
Link recurrence NV v
TABLE T
EXAMPLE OF TEMPORAL PROPERTIES FOR NETWORK CONTROL
FUNCTIONS.

Furthermore, an other utilization of the computed output
could be the analysis of the computed parameters flow and its
variation using analytical tools for the extraction of correlation
relations with other parameters or other information on the
network (e.g. using Pearson’s correlation coefficient [8]), in
order to find relevant information and meaning. We can note
that it is easier to predict high-level structures or parameter
values based on the output computed before a given instant
than predict the topology of the dynamic network itself.
This could lead to predictive strategies using for example
Long Short-Term Memory (LSTM) Based Recurrent Neural
Network Architectures [12] for sequence prediction.

VI CONCLUSION

In this paper, we presented an application of a general
framework for testing temporal properties in Software-defined
Vehicular Networks. We integrated a new component in the

existing architecture allowing the network control functions to
take benefit from the computed network evolution information,
in order to efficiently control the network in such a highly
dynamic context.

As a perspective, one direction could be to define new
requirements and properties for other fundamental network
control functions. Also, it could be interesting to extend the
application of the framework to consider more properties.
Finally, this work could profit from an experimental evaluation
which would show its applicability.
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