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Abstract

Heat diffusion in stratified materials with the layers running parallel to the main heat flux direction is analyzed with
special emphasis on the temperature field near the boundaries. In a previous work, a semi-analytical general solution
was proposed as an extension of the thermal quadrupole method for heat conduction in heterogeneous media. In this
paper, the steady solution is separated into an homogenized transfer in series with a constriction term, and a conductive
boundary layer is defined. The same decomposition method is implemented for the semi-infinite transient case, and
some simplified models are obtained from asymptotic expansions. For long times, the transient averaged signal is found
to be superposed to the steady constriction matrix effect. The main application is to better envision experimental
temperature field analysis for thermal non-destructive evaluation methods.

1. Introduction

The thermophysical characterization of heteroge-
neous media is a quite difficult problem, due to the
multiple spatial scales and characteristic times involved
in the heat transfer process, as well as the difficulty to
describe the microstructure. Two main approaches are
commonly used, as the temperature measurements and
processing can be implemented either at the macroscopic
level or from the local scale. The local methods consist
of heating the sample and measuring the thermal re-
sponse on a microscopic domain smaller than the spatial
characteristic lengths of the components, assuming that
the investigated domain is homogeneous at the micro-
scopic scale [1,2]. On the other hand, the classical and
widespread transient methods designed for homoge-
neous materials, such as flash [3] and hot wire [4]
methods, can apply at the macroscopic scale for hetero-

geneous media, but the corresponding macroscopic
effective properties must be carefully defined, because
their existence and definition strongly depend on the
validity of the local thermal equilibrium assumptions.

The homogenization [5] and volume averaging
methods [6] yield an in-depth phenomenological analysis
allowing both to validate the local thermal equilibrium
assumption and specify the relationships between the
microstructure, the components properties and the cor-
responding macroscopic parameters. Quintard and
Whitaker [7] achieved a quite general volume averaging
approach for the analysis of transient diffusion in two-
phase systems, where the generalized volume average is
defined from a convolution product with a smooth
weighting function. Glatzmaier and Ramirez [8] used a
two-equation model to interpret measurements obtained
on two-phase samples by the hot wire method, deducing
the two effective thermal conductivities and the exchange
coefficient. Quintard and Whitaker [7], since they in-
tended to validate their method with the experimental
data from [8], showed how these results yield an error
due to the fact that the coupled fluxed related to the
non-diagonal terms of the macroscopic conductivity
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tensor were neglected. From thermal diffusivity mea-
surements in a periodic two-layer slab, Truong and
Zinmeister [9] suggest that an equivalent homogeneous
medium approach is not acceptable when the heat flux is
parallel to the layers. A two-equation model is generally
needed at the macroscopic scale, because local thermal
equilibrium is not fulfilled, especially when the thermal
properties of the two constituents differ widely, or when
fast transient states are observed.

Although the ‘‘change of scale’’ methods provide a
consistent formalism for the implementation of one and
two-equation models, they experience important diffi-
culties to specify the boundary conditions at the mac-
roscopic scale [10], and no general formulation seems to
be available [11]. Sahraoui and Kaviani [12] introduce a
variable effective conductivity near the boundaries of the
macroscopic domain. Batsale et al. [13] propose to solve
the local problem in the vicinity of boundary, and then
couple the corresponding solution to the macroscopic
model in the bulk body. The spatial domain where the
local model applies is envisioned as a conductive
boundary layer. This problem is quite important for the
thermal characterization methods, which mostly mea-
sure the temperature field at the boundary of the sample.
However, such boundary layer is difficult to define, since
no systematic approach seems to be available to the
authors knowledge.

For homogeneous media, the concept of constriction
resistance is widely used in order to give a suitable

representation of the two or three-dimensional distor-
tion effects in a globally one-dimensional problem. The
thermal constriction resistance Rc is commonly defined,
in steady state, for a finite slab of total cross-section At

and thickness L, with adiabatic lateral walls, as

T A0
ð0Þ # T AtðLÞ ¼

L
kAt

!
þ Rc

"
U ð1Þ

where T A0
ð0Þ is the average temperature over a reduced

area A0 crossed by the heat flux U and T AtðLÞ is the
average temperature over At. On the right side of Eq. (1),
the first term represents the one-dimensional thermal
resistance, that is the solution obtained if the heat flux
applies over the total cross-section At, while the con-
striction term contains the information relative to the
deviation from the one-dimensional case.

Many solutions are available for various geometries
in order to calculate this constriction resistance for
homogeneous materials: for the half space [14,15], coni-
cal asperities [16], finite flux tube [17], or sliding solids
[18]. Few works are published about the constriction
resistance in heterogeneous media. Negus et al. [19] study
the case of a layer coated on a semi-infinite material, with
the heat flux perpendicular to the layers. Dryden et al.
[20] evaluate the effect of cracks on the thermal resistance
of fiber composites, and define a constriction resistance
factor that accounts for the effects of both inhomogeneity
and geometry. Their analytical solution method is used
further in Section 4 for validation.

Nomenclature

a thermal diffusivity
A cross-section
b thermal effusivity
A, B, C, D generalized quadrupole matrices
e thickness
k thermal conductivity
K thermal conductivity diagonal matrix xDz
L length
Mc constriction matrix
M== matrix relative to heat transfer versus z
N nodes number
P eigenvectors matrix
Rc thermal constriction resistance
R&
a analytical constriction resistance for the

average medium
s Laplace variable
T temperature
T average temperature versus z
Tx temperature vector at x location
U averaging matrix
Z generalized thermal impedance

Greek symbols
d conductive boundary layer thickness
Dz space step diagonal matrix
U heat flux vector
U total heat flux in the x-direction
W Laplace heat flux vector
u heat flux density
h Laplace temperature
qc volumetric heat capacity
X diagonal eigenvalues matrix

Subscripts
a, b relative to material a or b
1, 2 relative to medium 1 or 2

Superscripts
* relative to averaged properties
+ relative to a reduced matrix without the zero

eigenvalue
–– averaged variable versus z-direction



For transient state, Degiovanni [21] and Degiovanni
et al. [22] proposed a simplified model based on integral
transforms and asymptotic expansions: the one-dimen-
sional short times thermal impedance is in parallel with
the steady state constriction resistance. Some extensions
of the flash method designed in order to measure the
thermal diffusivity of composite materials with oriented
reinforcement were numerically studied by Balageas
[23].

The main purpose of this paper is to study heat dif-
fusion in stratified materials with the layers running
parallel to the main heat flux direction. Special emphasis
is laid on the thermal behavior near the boundaries, that
is in the domain where local thermal equilibrium is not
achieved.

This problem is fundamental for the thermal char-
acterization methods, since a sensor is to be used on the
boundary of the heterogeneous sample. The global
objective of this work is to obtain some convenient
representations of the transfer matrices between the heat
flux and temperature fields at the boundary of a longi-
tudinally stratified medium, in order to implement in-
verse methods for the cartography of thermophysical
properties in heterogeneous media.

The constriction effects near the boundary seem to
represent an adequate indicator to quantify the devia-
tion from the homogeneous solution. Thus, the thermal
constriction resistance concept is extended here to the
multilayered media case.

In next section, the guidelines of the semi-analytical
quadrupole approach are given, and the solution of the
general problem is pointed out. Then, the solution is
split out into two components, the constriction matrix is
defined, as well as the conductive boundary layer. In
Section 4, the method is validated with an analytical
solution in the two-layered slab case, the constriction
matrix structure is analyzed and various results are
presented. Section 5 is devoted to the extension of this
approach to transient state in a semi-infinite medium.

2. The semi-analytical quadrupole approach

The basic thermal quadrupole formalism is an effi-
cient method for multidimensional linear heat conduc-
tion modelling and calculation, when involved in
multilayer systems [24,25]. For transient conduction in
an homogeneous material, a linear intrinsic transfer
matrix is relating the input and output temperatures and
heat fluxes using some convenient integral transforms.
The main advantages of the quadrupole formalism is to
make the representation of multilayered systems easy––
when the heat flux direction is perpendicular to the
layers––by multiplying the corresponding quadrupole
matrices, and to avoid gridding the whole domain, as the
state variables and fluxes are only calculated on the

boundaries. This is an important point when a
straightforward relationship between some boundary
temperature and heat flux is needed, for instance when
dealing with experimental data processing and inverse
problems. In a previous work, a general extension of this
approach was implemented for heterogeneous media
with one-dimensional variation of thermal properties
[26], and a semi-numerical general solution was pro-
posed for transient heat transfer in finite or semi-infinite
media in both axial and radial coordinate systems, based
on a semi-gridding approach. The relationships between
the input and output [temperature–heat flux] vectors
were written in a matrix form, and some functions
of matrix were defined. Such cases are very important
for applications to the development of thermal non-
destructive evaluation methods by infrared thermo-
graphy [27] or thermoreflectance measurements [2].

A finite volume grid following the z-direction is ap-
plied to the conductive two-dimensional steady state
problem shown in Fig. 1(a). It yields the representation
depicted in Fig. 1(b), where Tx and Ux are respectively
the temperature and heat flux vectors at location x
corresponding to the N nodes. The general resulting
vectorial equation is

K#1M==Tx #
d2Tx

dx2
¼ 0 ð2Þ

where Tx ¼ ½ T1ðxÞ T2ðxÞ ( ( ( ( ( ( TN ðxÞ )t
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Fig. 1. (a) Two-dimensional steady state problem; (b) Semi-
gridding approach.



with Hi# ¼ Dzi#1

2ki#1
þ Dzi

2ki

# $#1

and Hiþ ¼ Dzi
2ki

þ Dziþ1

2kiþ1

# $#1

and

K ¼ diagð½ k1Dz1 ( ( ( kNDzN )Þ, where the operator
‘‘diag’’ is used in order to build a diagonal matrix from
the corresponding vector. The matrix M== is representa-
tive of transverse transfer in the z-direction, while K#1 is
the diagonal matrix of lineal thermal resistances versus x.

The heat flux vector is defined as

Ux ¼ #K
dTx

dx
ð3Þ

Eq. (2) can be solved directly by the diagonalization:

K#1M== ¼ PXP#1 ð4Þ

where X is the diagonal matrix of eigenvalues, arranged
in increasing order. A generalized quadrupole is then
written [26] as

T0

U0

% &
¼ A B

C D

% &
TL

UL

% &
ð5Þ

where the generalized quadrupole terms A, B, C and D
are the N * N matrices defined as the functions of
matrices

A ¼ Pcoshð
ffiffiffiffi
X

p
LÞP#1

B ¼ P
sinhð

ffiffiffiffi
X

p
LÞffiffiffiffi

X
p ðKPÞ#1

C ¼ KP
ffiffiffiffi
X

p
sinhð

ffiffiffiffi
X

p
LÞP#1

D ¼ KPcoshð
ffiffiffiffi
X

p
LÞðKPÞ#1

Eq. (5) also applies between any location x in the
heterogeneous slab and x ¼ L. Assuming the boundary
conditions defined in Fig. 1(b), the temperature vector
Tx can be computed as a function of the input heat flux
U0 as

Tx ¼ P sinhð
ffiffiffiffi
X

p
ðL

#
# xÞÞð

ffiffiffiffi
X

p
coshð

ffiffiffiffi
X

p
LÞÞ#1

$

* ðKPÞ#1U0 ð6Þ

Eq. (6) is a compact intrinsic relationship, suitable
for determining the temperature field as a function of the

input heat flux U0. The temperature field computed with
Eq. (6) has been validated in a previous work [26]. It is
shown in next section how this equation can be used to
build a constriction matrix.

3. Conductive boundary layer and constriction resistance
matrix

In this section, the semi-analytical solution given by
Eq. (6) is split into (i) the averaged homogeneous part
and (ii) the part due to heterogeneous properties, con-
sidered as a constriction effect. The conductive boundary
layer concept introduced by Batsale [13] is then better
envisioned and specified. The two lateral boundary
conditions are included in the first and last lines of the
matrix M==. Assuming adiabatic lateral boundary con-
ditions, this matrix has a tridiagonal discrete laplacian
structure, thus zero is a particular eigenvalue of this
matrix. Adiabatic lateral boundary conditions are rele-
vant when studying periodic media. The solution T&

x
corresponding to the zero eigenvalue is determined by

• K#1M==T
&
x ¼ 0 ) T &

x;1 ¼ T &
x;2 ¼ ( ( ( ¼ T &

x;N

• d2T&
x

dx2 ¼ 0 ) T&
x is a linear (vector) function of x.

Thus T&
x is the one-dimensional linear solution cor-

responding to the equivalent parallel homogeneous
medium such as

T&
x ¼

L# x
k&e

½ 1 1 ( ( ( 1 )tU with

k&e ¼
XN

1

kiDzi and U ¼
XN

1

/0;i ð7Þ

where k& is the equivalent parallel thermal conductivity
and U is the total input heat flux.

The diagonal matrix of eigenvalues can be written as

X ¼ 0 0
0 Xþ

! "
ð8Þ

where Xþ is a square matrix of dimension (N # 1),
containing all eigenvalues but zero, arranged in
increasing order. The solution given by Eq. (6) is split
out into

M== ¼

H1þ #H1þ 0
#H2# H2# þ H2þ #H2þ
0 #H3# H3# þ H3þ #H3þ 0

( ( ( ( ( ( ( ( (
#Hi# Hi# þ Hiþ #Hiþ
( ( ( ( ( ( ( ( (

#HN# HN#

2

666666664

3

777777775



Tx ¼ ðL# xÞP

1 0 ( ( ( 0½ )
0

( ( (
0

2

64

3

75 0

0

BBB@

1

CCCAðKPÞ#1U0

þ P

0 ½ 0 ( ( ( 0 )
0

( ( (
0

2

64

3

75 fð
ffiffiffiffiffiffiffi
Xþ

p
; xÞ

0

BBB@

1

CCCAðKPÞ#1U0 ð9Þ

where

fð
ffiffiffiffiffiffiffi
Xþ

p
; xÞ ¼ sinhð

ffiffiffiffiffiffiffi
Xþ

p
ðL# xÞÞð

ffiffiffiffiffiffiffi
Xþ

p
coshð

ffiffiffiffiffiffiffi
Xþ

p
LÞÞ#1.

The first term in the right part of Eq. (9) is the
homogeneous solution T&

x . It is important to point out
that the zero eigenvalue contribution is equivalent to an
averaging operation, as

P

1 0 ( ( ( 0½ )
0
( ( (
0

2

4

3

5 0

0

BB@

1

CCAP#1

¼ 1

k&e

k1Dz1 k2Dz2 ( ( ( kNDzN
k1Dz1 k2Dz2 ( ( ( kNDzN
( ( ( ( ( ( ( ( ( ( ( (
k1Dz1 k2Dz2 ( ( ( kNDzN

0

BB@

1

CCA ð10Þ

The second term in the right part of Eq. (9) is rep-
resentative of the two-dimensional transverse con-
striction effects. The function of matrix f is the only
term depending on the space variable x in Eq. (9). The
constriction effects in the medium are obviously negli-
gible when this function is turned to be independent
of x.

Practically, when the medium is long enough, the
function f can be approximated by

f
ffiffiffiffiffiffiffi
Xþ

p
; x

# $
+ exp

#
#

ffiffiffiffiffiffiffi
Xþ

p
x
$
=

ffiffiffiffiffiffiffi
Xþ

p
ð11aÞ

and this function tends to zero with increasing x, except
in a finite layer d, such as

x < d ¼ 6ffiffiffiffiffiffiffiffiffiffiffiffiffi
Xþð1Þ

p ð11bÞ

d + 6e
p

+ 2e ð11cÞ

The approximated value of d given by Eq. (11c) is de-
duced from the fact that, for adiabatic lateral boundary
conditions, the square root of the eigenvalues is quite
close to the eigenvalues bn ¼ np=e of the associated
homogeneous medium eigenvalue problem––see [26] for
more details. The thickness d defines a conductive
boundary layer, where the constriction effects are effec-
tive. Outside of this layer, the temperature field is
homogeneous, and is correctly described by T&

x . It is

important to point out that the conductive layer thick-
ness is defined as a maximum value. In some particular
cases, when the input perturbation or the thermal con-
trast between layers is low, the apparent two-dimen-
sional effect could be located quite near the surface.

Applying Eq. (9) at x ¼ 0 yields

T0 ¼ T&
0 þMcU0 with

Mc ¼ P

0 ½ 0 ( ( ( 0 )
0

( ( (
0

2

64

3

75 tanhð
ffiffiffiffiffi
Xþ

p
LÞffiffiffiffiffi

Xþ
p

0

BBB@

1

CCCAðKPÞ#1 and

T&
0 ¼

L
k&e

½ 1 1 ( ( ( 1 )tU ð12aÞ

The decomposition of the temperature vector given
by Eq. (12a) for the multilayered medium is quite similar
to the previous definition of the constriction resistance
for homogeneous materials––see Eq. (1). The first term
of the right side of Eq. (12a) is the one-dimensional
homogeneous solution corresponding to the zero
eigenvalue contribution. The matrix Mc is a constric-
tion matrix describing the two-dimensional constric-
tion phenomenon that accounts for the effects of both
heterogeneity and geometry. The constriction matrix
Mc represents the transverse coupling effects between
layers.

For a long shaped medium, an asymptotic expansion
can be used for the constriction matrix, such as

lim
L!1

Mc ¼ Mc;1 ¼ P

0 ½ 0 ( ( ( 0 )
0
( ( (
0

2

4

3

5 ðXþÞ#1=2

0

BB@

1

CCAðKPÞ#1

ð12bÞ

This expression will be use in Section 5 in order to de-
scribe transient conduction in a semi-infinite medium.
Due to the previous remark about the eigenvalues––see
Eq. (11c), the long shaped medium assumption must be
understood here as L , e.

4. Analysis of the constriction resistance matrix

In this section, some results are validated and ana-
lyzed for the two-layer slab despicted in Fig. 2(a–c), for
various input heat flux boundary conditions.

The temperature field Tx given by Eq. (6) is plotted in
Fig. 3, for the uniform input heat flux shown in Fig.
2(a). The homogeneous part and the constriction term
are clearly apparent in Fig. 3. The conductive layer
thickness is found to be d ¼ 0:19 m––Eq. (11b)––quite
near to d ¼ 0:20 m obtained with the approximated
value––Eq. (11c). This result is quite consistent with the
temperature field as plotted in Fig. 3.



When the input heat flux is uniform and the space
step Dz is constant, a scalar global constriction resis-
tance can be defined in order to compute a macroscopic
one-dimensional relationship between the heat flux
density u and the temperature. This approach is quite
useful when an average field is to be used, for instance if
d - L. It yields

T ¼ L
k&

uþ Rcu with Rc ¼
1

e
½ 1 1 ( ( ( 1 )

Mc½ 1 1 ( ( ( 1 )t and T ¼ 1

N
½ 1 1 ( ( ( 1 )T0:

ð13Þ

The corresponding average temperature T is indi-
cated in Fig. 3. The average constriction resistance Rc is

plotted in dimensionless form in Fig. 4 as a function of
the relative thermal conductivity ka=k&. The case
ka=k& ¼ 1 is relative to an homogeneous medium, and
consequently Rc is zero. Decreasing values of e=L cor-
respond to a long shaped medium, and Rc tends both to
decrease and become independent of L (the curves are
closer to each other).

If the input heat flux applies on the whole layer a
only (see Fig. 2(b)), the corresponding constriction
resistance is obtained by averaging the temperature be-
tween z ¼ 0 and z ¼ ea. The methodology of solution
proposed by Dryden et al. [20] for the radial case is
adapted here for the axial case, based on a Fourier co-
sine transform applied on the x-coordinate. The result-
ing analytical solution is used in order to validate the

x

z

0

e

L

ka

kb

ea TL = 0

0=
∂
∂

z
T

0=
∂
∂

z
T

Uniform
input

heat flux

x

z

0

e

L

ka

kb

ea TL = 0

0=
∂
∂

z
T

0=
∂
∂

z
T

Input
heat flux

on layer a

φ0,i

x

z

0

e

L

ka

layer i 

kb

ea

ei

TL = 0

0=
∂
∂

z
T

0=
∂
∂

z
T

Input
heat flux

on grid (i)

(a)

(b)

(c)

Fig. 2. Two-layer slab subjected to heat flux: (a) Uniform; (b)
on layer a; (c) on grid (i) only.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

20

25

30

35

40

45

50

Tx  (˚C)

x (m)conductive
boundary layer

Homogeneous solution

T
*
0T

Fig. 3. Temperature field in the two-layer slab with uniform
input heat flux: ka ¼ 0:01 Wm#1 K#1; kb ¼ 1 Wm#1 K#1;
e ¼ 0:1 m; ea ¼ 0:05 m; N ¼ 20.

10
-2

10
-1

10
0

-1

0

1

2

3

4

5

6

7

e/L = 1.00
e/L = 0.50
e/L = 0.33
e/L = 0.25
e/L = 0.20
e/L = 0.17 

*

c

k

L
R

*
a k/k

Fig. 4. Constriction resistance: two-layer slab subjected to
uniform input heat flux.



present semi-analytical approach. It yields the following
analytical solution for the constriction resistance
through the layer a:

This analytical solution is compared to the constric-
tion resistance obtained from the constriction matrix
(Eq. (12a)), and plotted in Fig. 5 as a function of the
relative thermal conductivity ka=k& for various location
of the a=b interface. The agreement between the ana-
lytical solution and the semi-analytical solution is quite
good. The relative thermal conductivity ka=k& tends to
unity when the material tends to be homogeneous. This
limiting case yields the constriction resistance due to
geometrical effects only. This means that the remain-
ing part of the curves mostly shows the heterogeneity
effects––that is transverse transfer due to the variation
of the thermal conductivity.

Another situation is helpful to analyze the constric-
tion matrix, when the input heat flux is non-zero only on
a given layer (i), as shown in Fig. 2(c). Applying Eq.
(12a) yields:

Ti ¼
L
k&e

/0;i þMcði; iÞ/0;i ð15aÞ

Since Ti is the average temperature of layer i (with
respect to the control volume), the diagonal termMcði; iÞ
represents the corresponding constriction resistance for
this layer. In order to compare this term with the con-
striction resistance in the equivalent homogeneous
medium k&, with the same geometrical characteristics,
the analytical solution of the problem shown in Fig. 2(c)

is implemented from a Fourier cosine transform applied
on the z-coordinate, and yields the following analytical
constriction resistance:

R&
a ¼

2

k&eDz2
X1

n¼1

tanhðbnLÞ
½sinðbnðei þ DzÞÞ # sinðbneiÞ)

2

b3
n

ð15bÞ

where bn ¼ np=e are the eigenvalues of the associated
boundary value problem.

Eq. (15b) is found to be consistent with the results
given by Laraqi [18], if the velocity is set to zero, and
L , e. The integral transform applies on z and not on x
as for Dryden’s approach.

The local relative constriction effect in the two-layer
slab, as defined in Fig. 2(c), is plotted in Fig. 6 as a
function of the dimensionless thermal conductivity
contrast and the location of the interface between the
layers. As expected, the dimensionless constriction
resistance is found to tend to unity when the thermal
conductivity contrast tend to one, that is when the
medium is homogeneous. When the layer i where the
input heat flux applies is located in the more conductive
phase (ea < ei or ea=e < 0:50, corresponding to the line
with points in Fig. 6), heat transfer is almost one-
dimensional in the conductive layer, the insulating layer
is mostly unperturbated, and the relative constriction
resistance tend to 1: Mcði; iÞ + R&

a. When the layer i is
located in the insulating phase (ea=eP 0:50), the con-
striction effect is strongly increased, except if the med-
ium is quasi-homogeneous (when ka=k& tends to 1).
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In next section, it is shown how this approach can be
extended to the transient case in order to study the
transient constriction effects at the boundary of a semi-
infinite longitudinally stratified medium.

5. Transient conduction at the boundary of a semi-infinite
stratified medium

Studying transient heat conduction at the boundary
of a semi-infinite longitudinally stratified medium is
relevant for various measurements technics, such as non-
destructive testing by infrared camera, cartography of
thermophysical properties in heterogeneous media or
photoreflectance images treatment, where some conve-
nient transfer functions between the superficial temper-
ature field and heat flux are required, in order to
implement suitable inverse methods.

For transient state, a Laplace transform relative to
time is applied to the vector TxðtÞ as

hxðsÞ ¼
Z 1

0

expð#stÞTxðtÞdt ð16Þ

Eq. (2) is turned into

ðK#1M== þ a#1sÞhx #
d2hx
dx2

¼ 0 ð17aÞ

where the vector hx is the Laplace transform of Tx and a
is the diagonal matrix of the thermal diffusivities:
a ¼ diagð½ a1 ( ( ( aN )Þ. The matrix in Eq. (17a) is di-
agonalized as

ðK#1M== þ a#1sÞ ¼ PLXLP
#1
L ð17bÞ

and the transfer matrix between the Laplace input
temperature and heat flux vectors is found for the semi-
infinite medium as a generalized thermal impedance [26]:

h0 ¼ ZW0 ð18aÞ

where the vectorW0 is the Laplace transform of heat flux
vector U0, and the transfer matrix Z is defined as a
product between a function of matrix and the thermal
conductivity matrix such as

Z ¼ ðK#1M== þ a#1sÞ#1=2K#1 ¼ PLðXLÞ#1=2P#1
L K#1

ð18bÞ

Previous considerations about the smallest eigen-
value separation in steady state can be extended to this
transient case through an examination of the function of
matrix defined by Eq. (18b), in order to find some sim-
plified representations of the transfer matrix. Some
asymptotic expansions for short times and long times
can be considered.

5.1. Short times asymptotic expansion

For short times, the square matrix on the left side of
Eq. (17a) can be approximated by the single product
a#1s, the matrix K#1M== vanishes, and the corresponding
heat transfer is one-dimensional for each layer. The
expression ‘‘short times’’ should be understood as ‘‘low
Fourier numbers relative to the corresponding layers
ait=Dz2i ’’. The diagonalization is no more necessary, and
the solution given by Eq. (18) is approximated as

h0;short time ¼
ffiffiffi
a

p
ffiffi
s

p K#1W0 ¼
b#1Dz#1

ffiffi
s

p W0 ð19Þ

where b is the diagonal matrix of thermal effusivities
(i ¼ 1# N : bi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kiðqcÞi

p
) and Dz is the space step

diagonal matrix. If a step heat flux is applied, then the
short times temperature response is a linear function of
the square root of time, and the slop of each layer de-
pends on the local thermal effusivity––see Fig. 9. This
result is consistent with the analytical results about
transient constriction in homogeneous media as given by
Degiovanni [21].

5.2. Long times asymptotic expansion: simplified model

The asymptotic expansion for long times corresponds
to the limit when s tend to zero. In that case, the aver-
aging characteristics of the zero eigenvalue and the
previous steady state decomposition, such as Eq. (9),
would suggest that s could be neglected in the diagonal
matrix, except for the term corresponding to the zero
eigenvalue, such as

lim
s!0

Z +
ffiffiffiffiffi
a&

p
s#1=2P

1 0 ( ( ( 0½ )
0
( ( (
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0 ½ 0 ( ( ( 0 )
0
( ( (
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5 ðXþÞ#1=2

0

BB@

1

CCAðKPÞ#1

ð20aÞ

where a& is the average thermal diffusivity calculated
with the average thermal conductivity and volumetric
heat capacity.

The form of Eq. (20a) means that for long times, a
transient averaged part is superposed to the steady state
constriction matrix effect. This approximation would be
valid if

s
a&

- Xþð1Þ () t , slt ¼
1

a&Xþð1Þ
+ e2

a&p2
ð20bÞ

that is when the penetration depth of heat in the
homogenized medium is greater that e=3. Eq. (20b) also



means that the penetration depth has the same order of
magnitude that the steady conductive boundary layer
defined in Eq. (11b). In that case, Eq. (18a) is turned into
an equivalent transient form of the previous steady state
decomposition given by Eq. (12a), such as

h0;long time + h&0 þMc;1W0 ð21Þ

where Mc;1 is the steady constriction matrix defined in
Eq. (12b),

h&0 ¼
1

b&e
ffiffi
s

p UW0 represents the one dimensional

averaged contribution;

U ¼

1 1 ( ( ( 1
1 1 ( ( ( 1
( ( ( ( ( ( ( ( ( 1
1 1 1 1

0

BB@

1

CCA is an averaging matrix;

b& ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k&ðqcÞ&

q
is the average thermal effusivity of

the medium;

ðqcÞ&e ¼
XN

1

qciDzi is the average volumetric

heat capacity:

The function of matrix used in Eq. (18b) is neither
additive nor separable, and no exact separated solution
can be deduced from Eq. (18a). The simplified model
proposed by Eq. (21) is only an approximation of the
exact model for long times. Moreover, when the thermal
diffusivity matrix is uniform (each layer has the same
thermal diffusivity a), then the exact solution for long
times matches exactly the simplified model, thus

Za¼cste ¼ K#1M==

#
þ s
a
I
$#1=2

K#1 ¼ P

* X
#

þ s
a
I
$#1=2

P#1K#1 ð22aÞ

lim
s!0
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p
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5 ðXþÞ#1=2

0

BB@

1

CCAðKPÞ#1

ð22bÞ

Eq. (22b) yields exactly the simplified model given by
Eq. (21). In the general case where the thermal diffusivity
is not uniform in the layers, Eq. (18b) tends asymptot-
ically to Eq. (21) when the thermal diffusivity tends to be
uniform.

For the two nodes model (N ¼ 2), the complete
analytical solution of Eq. (18b) is available, since the
eigenvectors and eigenvalues matrices corresponding to
Eq. (4) can be calculated analitically. The resulting
generalized impedance has the following form

Z2 ¼ P2
s=a& x12s
x21s x22sþ X

! "
P#1

2

! "#1=2 k1e1 0
0 k2e2

! "#1

ð23aÞ

where the non-diagonal terms of the inner matrix are
found to be zero when a1 ¼ a2, P2 is the eigenvectors
matrix and X the non-zero eigenvalue corresponding to
Eq. (4).

It is apparent in Eq. (23a) that the inner matrix has
almost a diagonal structure when s tend to zero. More-
over, the characteristic equation of this inner matrix
shows that its eigenvalues, with a first order approxi-
mation in the Laplace variable s, are s=a& and X, thus

lim
s!0

Z2 + P2

ffiffiffiffiffi
a&

p
s#1=2 0
0 1=

ffiffiffiffi
X

p
! "

ðKP2Þ#1 ð23bÞ

and the validity of the resulting approximation with the
simplified model corresponding to Eq. (21) is demon-
strated for the two nodes case. When the thermal dif-
fusivity profile differ widely, a longer time must be
reached for the simplified model to be valid.

Anyway, the behavior of the temperature field for
long times can be computed and investigated systemat-
ically from the semi-analytical model given by Eqs. (18),
and then be compared with the simplified model corre-
sponding to Eq. (21). A numerical Laplace transform
inversion is performed, using a Gaver–Stehfest algo-
rithm [28]. For all the cases investigated, the approxi-
mation of Eq. (21) is found to be acceptable, as shown
on Fig. 7, where the long time temperature profiles ob-
tained from both models for the two-layer slab of Fig.
2(a) are plotted as a function of z for various thermal
diffusivity ratio, for an instant corresponding to ten
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Fig. 7. Long times asymptotic expansion. comparison with the
simplified model: ka ¼ 0:1 Wm#1 K#1; kb ¼ 1 Wm#1 K#1;
qca ¼ 104 Jm#3 K#1; ea=e ¼ 0:5.



times the characteristic time given by Eq. (20b), where
slt ¼ 140 s.

The long times input temperature vector T0 is com-
puted from the semi-analytical model corresponding to
Eqs. (18) and plotted on Fig. 8 as a function of the
square root of time, for a two-layer semi-infinite slab
and a uniform input step heat flux, such as Fig. 2(a). For
homogeneous materials, this case is illustrative of the
hot film method, designed in order to measure the
thermal effusivity of homogeneous semi-infinite materi-
als [29]. For long times, the curves become parallel to the
average solution. As expected from Eq. (21), the general
solution is composed of two contributions: the transient
average term is added to the steady constriction matrix

effect. The transient homogeneous term is a linear
function of

ffiffi
t

p
, and the slope is found to be the inverse

of the average thermal effusivity. The results are con-
sistent with the calculated characteristic time slt.

The same case is presented in Fig. 9, for a larger time
domain. It is apparent from this logarithmic plot that
both short and long times correspond to some linear
functions of the square root of time, since the slop is 1/2.
For short times, the two curves correspond to the ther-
mal effusivities of both layers, as predicted by Eq. (19).
The characteristic time for short times expansion, given
by the Fourier numbers relative to the corresponding
layers is in this case about three seconds. For long times,
the curves exhibit the dependance on

ffiffi
t

p
of the one-

dimensional average medium.

6. Conclusions

Heat conduction at the interface of a stratified het-
erogeneous medium, with insulated lateral walls, can be
split out into an equivalent average one-dimensional
resistance in series with a constriction matrix term. A
conductive boundary layer can then be defined, where
two-dimensional effects occur, and the thickness of this
layer can be evaluated. For transient heat conduction in
a semi-infinite stratified medium, the well known results
about the one-dimensional behavior for short times
are extended to the long times case through an asymp-
totic expansion study. A transient averaged signal
corresponding to the equivalent homogeneous medium
is found to be superposed to the steady constriction
matrix contribution. The governing parameter of such
approximation is thermal diffusivity. When the thermal
diffusivity profile differ widely, a longer time must be
reached for this approximation to be valid.

These results could be quite useful for the imple-
mentation of inverse methods for thermal properties
measurement technics such as thermoreflectance, flash
or hot probe methods, when applied to heterogeneous
media with one-dimensional varying properties. This
new approach could be implemented in a radial coor-
dinate system and in a three-dimensional form, in order
to be applied to fibrous materials. The semi-analytical
solutions proposed in this paper contribute to better
envision the problem of including the boundary condi-
tions effect in the homogenization methods.
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