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A TOPOLOGICAL APPROACH TO SOERGEL THEORY

ROMAN BEZRUKAVNIKOV AND SIMON RICHE

To Sasha Bĕılinson and Vitya Ginzburg with gratitude and admiration.

Abstract. We develop a “Soergel theory” for Bruhat-constructible perverse

sheaves on the flag variety G/B of a complex reductive group G, with coeffi-

cients in an arbitrary field k. Namely, we describe the endomorphisms of the
projective cover of the skyscraper sheaf in terms of a “multiplicative” coinvari-

ant algebra, and then establish an equivalence of categories between projective

(or tilting) objects in this category and a certain category of “Soergel mod-
ules” over this algebra. We also obtain a description of the derived category of

T -monodromic k-sheaves on G/U (where U , T ⊂ B are the unipotent radical

and the maximal torus), as a monoidal category, in terms of coherent sheaves
on the formal neighborhood of the base point in T∨k ×(T∨k )W T∨k , where T∨k is

the k-torus dual to T .

1. Introduction

1.1. Soergel theory. In [So2], Soergel developed a new approach to study of
the principal block O0 of the Bernstein–Gelfand–Gelfand category O of a complex
semisimple Lie algebra g (with a fixed Borel subalgebra b and Cartan subalgebra
h ⊂ b). Namely, let P be the projective cover of the unique simple object in O0 with
antidominant highest weight (in other words, of the unique simple Verma module).
Then Soergel establishes the following results:

(1) (Endomorphismensatz) there exists a canonical algebra isomorphism

S(h)/〈S(h)W+ 〉
∼−→ End(P ),

where W is the Weyl group of (g, h), S(h) is the symmetric algebra of h,
and 〈S(h)W+ 〉 is the ideal generated by homogeneous W -invariant elements
of positive degree;

(2) (Struktursatz) the functor V := HomO0
(P,−) is fully faithful on projective

objects; in other words for any projective objects Q,Q′ this functor induces
an isomorphism

HomO0(Q,Q′)
∼−→ HomEnd(P )(V(Q),V(Q′));

(3) the essential image of the restriction of V to projective objects in O0 is
the subcategory generated by the trivial module C under the operations of
(repeatedly) applying the functors S(h)⊗S(h)s− with s is a simple reflection
and taking direct sums and direct summands.

R.B. was partially supported by the NSF grant DMS-1601953. This project has received
funding from the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No 677147).
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Taken together, these results allow him to describe the category of projective objects
in O0, and hence the category O0 itself, in terms of commutative algebra (“Soergel
modules”). On the other hand, Soergel relates these modules to cohomology of
Bruhat-constructible simple perverse sheaves on the Langlands dual flag variety,
which allows him in particular to give a new proof of the Kazhdan–Lusztig con-
jecture [KL] proved earlier by Bĕılinson–Bernstein and Brylinsky–Kashiwara, and
opened the way to the ideas of Koszul duality further developed in his celebrated
work with Bĕılinson and Ginzburg [BGS].

1.2. Geometric version. If G is the semisimple complex algebraic group of ad-
joint type whose Lie algebra is g, and if B ⊂ G is the Borel subgroup whose Lie
algebra is b, then combining the Bĕılinson–Bernstein localization theory [BB] and
an equivalence due to Soergel [So1] one obtains that the category O0 is equivalent
to the category PervU (G/B,C) of U -equivariant (equivalently, B-constructible) C-
perverse sheaves on the flag variety G/B, where U is the unipotent radical of B (see
e.g. [BGS, Proposition 3.5.2]). Under this equivalence, the simple Verma module
corresponds to the skyskraper sheaf at the base point B/B. The main goal of the
present paper is to develop a geometric approach to the results in §1.1, purely in
the framework of perverse sheaves, and moreover valid in the setting where the co-
efficients can be in an arbitrary field k (of possibly positive characteristic) instead
of C.

In fact, a geometric proof of the Struktursatz (stated for coefficients of charac-
teristic 0, but in fact valid in the general case) was already found by Bĕılinson, the
first author and Mirković in [BBM]. One of the main themes of this paper, which
is fundamental in our approach too, is an idea introduced by Bĕılinson–Ginzburg
in [BG], namely that it is easier (but equivalent) to work with tilting objects in O0

(or its geometric counterparts) rather than projective objects. Our main contribu-
tion is a proof of the Endomorphismensatz; then the description of the essential
image of the functor V follows by rather standard methods.

1.3. Monodromy. So, we fix a field k, and consider the category PervU (G/B, k)
of U -equivariant k-perverse sheaves on the complex variety G/B. This category has
a natural highest weight structure, with weight poset the Weyl group W , and as in
the characteristic-0 setting the projective cover of the skyskraper sheaf at B/B is
also the tilting object associated with the longest element in W ; we will therefore
denote it Tw0 . Our first task is then to describe the k-algebra EndPervU (G/B,k)(Tw0).

In the representation-theoretic context studied by Soergel (see §1.1), the mor-

phism S(h)/〈S(h)W+ 〉
∼−→ End(P ) is obtained from the action of the center of the

enveloping algebra Ug on P . It has been known for a long time (see e.g. [BGS,
§4.6] or [BBM, Footnote 8 on p. 556]) that from the geometric point of view this
morphism can be obtained via the logarithm of monodromy for the action of T
on G. But of course, the logarithm will not make sense over an arbitrary field k;
therefore what we consider here is the monodromy itself, which defines an algebra
morphism

ϕTw0
: k[X∗(T )]→ End(Tw0

).

We then need to show that:

(1) the morphism ϕTw0
factors through the quotient k[X∗(T )]/〈k[X∗(T )]W+ 〉,

where 〈k[X∗(T )]W+ 〉 is the ideal generated with W -invariant elements in the
kernel of the natural augmentation morphism k[X∗(T )]→ k;
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(2) the resulting morphism k[X∗(T )]/〈k[X∗(T )]W+ 〉 → End(Tw0
) is an isomor-

phism.

1.4. Free-monodromic deformation. To prove these claims we need the second
main ingredient of our approach, namely the “completed category” defined by Yun
in [BY, Appendix A]. This category (which is constructed using certain pro-objects
in the derived category of sheaves on G/U) is a triangulated category endowed with

a t-structure, which we will denote D̂U ((G/U)( T, k), and which contains certain
objects whose monodromy is “free unipotent.” Killing this monodromy provides a
functor to the U -equivariant derived category Db

U (G/B, k). The tilting objects in
PervU (G/B, k) admit “lifts” (or “deformations”) to this category, and we can in

particular consider the lift T̂w0 of Tw0 . Now the algebra EndD̂U ((G/U)( T,k)(T̂w0)

admits two morphisms from (the completion k[X∗(T )]∧ with respect to the aug-
mentation ideal of) k[X∗(T )] coming from the monodromy for the left and the right
actions of T on G/U , and moreover we have a canonical isomorphism

End(Tw0
) ∼= End(T̂w0

)⊗k[X∗(T )]∧ k.

Hence what we have to prove transforms into the following claims:

(1) the monodromy morphism k[X∗(T )]∧ ⊗k k[X∗(T )]∧ → End(T̂w0
) factors

through k[X∗(T )]∧ ⊗(k[X∗(T )]∧)W k[X∗(T )]∧;

(2) the resulting morphism k[X∗(T )]∧⊗(k[X∗(T )]∧)W k[X∗(T )]∧ → End(T̂w0
) is

an isomorphism.

1.5. Identification of End(T̂w0
). One of the main advantages of working with the

category D̂U ((G/U)( T, k) rather than with Db
U (G/B, k) is that the natural lifts

(∆̂w : w ∈ W ) of the standard perverse sheaves satisfy Hom(∆̂x, ∆̂y) = 0 if x 6= y.
This implies that the functor of “taking the associated graded for the standard
filtration” is faithful, and we obtain an injective algebra morphism

(1.1) End(T̂w0
)→ End(gr(T̂w0

)).

Now we have gr(T̂w0
) ∼=

⊕
w∈W ∆̂w, so that the right-hand side identifies with⊕

w∈W k[X∗(T )]∧. To conclude it remains to identify the image of (1.1); for this
we use some algebraic results due to Kostant–Kumar [KK] (in their study of the
K-theory of flag varieties) and of Andersen–Jantzen–Soergel.

1.6. The functor V. Once we have identified End(Tw0
) and End(T̂w0

), we can
consider the functor

V := Hom(Tw0 ,−) : PervU (G/B, k)→ Mod(k[X∗(T )]/〈k[X∗(T )]W+ 〉)

and its version V̂ for free-monodromic perverse sheaves. As explained in §1.2, some
easy arguments from [BBM] show that these functors are fully faithful on tilting
objects. To conclude our study we need to identify their essential image. The main

step for this is to show that V̂ is monoidal. (Here the monoidal structure on tilting
objects is given by a “convolution” construction, and the monoidal structure on
modules over k[X∗(T )]∧ ⊗(k[X∗(T )]∧)W k[X∗(T )]∧ is given by tensor product over
k[X∗(T )]∧.) It is not very difficult, copying some arguments in [BY], to show that
there exists an isomorphism of bifunctors

(1.2) V̂(− ?̂−) ∼= V̂(−)⊗k[X∗(T )]∧ V̂(−).
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However, constructing a monoidal structure is a bit harder. In fact we con-
struct such a structure in the similar context of étale sheaves on the analogue
of G/B (or G/U) over an algebraically closed field of positive characteristic, using
a “Whittaker-type” construction. We then deduce the similar claim in the classical
topology over C using the general formalism explained in [BBD, §6.1].

With this at hand, we obtain a description of the monoidal triangulated category

(D̂U ((G/U)( T, k), ?̂) and its module category Db
U (G/B, k) in terms of coherent

sheaves on the formal neighborhood of the point (1, 1) in T∨k ×(T∨k )/W T∨k and on

the fiber of the quotient morphism T∨k → (T∨k )/W over the image of 1 respectively
(where T∨k is the split k-torus which is Langlands dual to T ); see Theorem 11.9.

Remark 1.1. To identify the essential image of V and V̂, we do not really need a
monoidal structure; an isomorphism as in (1.2) would be sufficient. The monoidal

structure on V̂ however provides a stronger statement.

1.7. Some remarks. We conclude this introduction with a few remarks.
As explained in §1.3, in the present paper we work with the group algebra

k[X∗(T )] and not with the symmetric algebra S(k ⊗Z X∗(T )). However one can
check (see e.g. [AR2, Proposition 5.5]) that if char(k) is very good for G then there
exists a W -equivariant algebra isomorphism between the completions of k[X∗(T )]
and S(k ⊗Z X∗(T )) with respect to their natural augmentation ideals. (In the
characteristic-0 setting there exists a canonical choice of identification, given by
the logarithm; in positive characteristic there exists no “preferred” isomorphism.)
Therefore, fixing such an isomorphism, under this assumption our results can also
be stated in terms of S(k ⊗Z X∗(T )). An important observation in [So2, BGS] is
that the identification between End(P ) and the coinvariant algebra allows one to
define a grading on End(P ), and then to define a “graded version” of O0. This
graded version can be realized geometrically via mixed perverse sheaves (either in
the sense of Deligne, see [BGS], or in a more elementary sense constructed using
semisimple complexes, see [AR1, AR3]). When char(k) is not very good, the al-
gebra k[X∗(T )]/〈k[X∗(T )]W+ 〉 does not admit an obvious grading; we do not know
how to interpret this, and the relation with the corresponding category of “mixed
perverse sheaves” constructed in [AR3]. (In very good characteristic, this category
indeed provides a “graded version” of PervU (G/B, k), as proved in [AR2, AR3].)

As explained already, in the case of characteristic-0 coefficients our results are
equivalent to those of Soergel in [So2]. They are also proved by geometric means
in this case in [BY]. In the case of very good characteristic, these methods were
extended in [AR2] (except for the consideration of the free-monodromic objects).
The method we follow here is completely general (in particular, new in bad charac-
teristic), more direct (since it does not involve Koszul duality) and more canonical
(since it does not rely on any choice of identification relating S(k ⊗Z X∗(T )) and
k[X∗(T )]).

In the complex coefficients setting, the category PervU (G/B,C) has a represen-
tation-theoretic interpretation, in terms of the category O0. It also admits a
representation-theoretic description in the case when char(k) is bigger than the
Coxeter number of G, in terms of Soergel’s modular category O [So3]. This fact
was first proved in [AR2, Theorem 2.4]; it can also be deduced more directly by
comparing the results of [So3] and those of the present paper.
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1.8. Contents. The paper starts with a detailed review of the construction of
Yun’s “completed category” (see [BY, Appendix A]) in Sections 2–5. More pre-
cisely, we adapt his constructions (performed initially for étale Q`-complexes) to
the setting of sheaves on complex algebraic varieties, with coefficients in an ar-
bitrary field. This adaptation does not require new ideas, but since the wording
in [BY] is quite dense we reproduce most proofs, and propose alternative arguments
in a few cases.

Starting from Section 6 we concentrate on the case of the flag variety. We start
by constructing the “associated graded” functor. Then in Section 7 we review

the construction of the convolution product on D̂U ((G/U)( T, k) (again, mainly
following Yun). In Section 8 we recall some algebraic results of Kostant–Kumar,
and we apply all of this to prove our “Endomorphismensatz” in Section 9. In
Section 10 we explain how to adapt our constructions in the setting of étale sheaves,

and in Section 11 we study the functors V and V̂. Finally, in Section 12 we take
the opportunity of this paper to correct the proof of a technical lemma in [AB].

1.9. Acknowledgements. Part of the work on this paper was done while the
second author was a member of the Freiburg Institute for Advanced Studies, as
part of the Research Focus “Cohomology in Algebraic Geometry and Representation
Theory” led by A. Huber–Klawitter, S. Kebekus and W. Soergel.

We thank Geordie Williamson for useful discussions on the subject of this paper
(in particular for suggesting to consider the K-theory of the flag variety), and
Pramod Achar for useful comments.

Part 1. Reminder on completed categories

We fix a field k.

2. Monodromy

2.1. Construction. We consider a complex algebraic torus A and an A-torsor
π : X → Y . We then denote by Db

c (X( A,k) the full triangulated subcategory of
Db
c (X,k) generated by the essential image of the functor π∗ : Db

c (Y, k)→ Db
c (X,k).

Fix some λ ∈ X∗(A). We then set

θλ :

{
C×X → X
(z, x) 7→ λ(exp(z)) · x .

We will also denote by pr : C×X → X the projection.
The following claims follow from the considerations in [Ve, §9].

Lemma 2.1. (1) For any F in Db
c (X( A,k), there exists a unique morphism

ιλF : θ∗λ(F )→ pr∗(F )

whose restriction to {0} ×X is idF . Moreover, ιλF is an isomorphism.
(2) If F ,G are in Db

c (X( A,k) and f : F → G is a morphism, then the
following diagram commutes:

θ∗λ(F )
ιλF //

θ∗λ(f)

��

pr∗(F )

pr∗(f)

��
θ∗λ(G )

ιλG // pr∗(G ).
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Sketch of proof. The essential ingredient of the proof is the (obvious) fact that the
functor pr∗ is fully faithful, so that its essential image is a triangulated subcat-
egory of Db

c (C × X,k). We see that for any G in Db
c (Y,k), the object θ∗λπ

∗(G )
belongs to this essential image; hence for any F in Db

c (X( A,k) the object θ∗λ(F )
is isomorphic to pr∗(F ′) for some F ′ in Db

c (X,k). Restricting to {0} × X we

obtain an isomorphism f : F
∼−→ F ′, and we can define ιλF as the composition

θ∗λ(F )
∼−→ pr∗(F ′)

pr∗(f−1)−−−−−−→ pr∗(F ). �

Using this lemma and restricting ιλF to {2iπ} ×X we obtain an automorphism
ϕλF of F . This automorphism satisfies the property that if F ,G are in Db

c (X( A,k)
and f : F → G is a morphism, then ϕλG ◦ f = f ◦ ϕλF .

For any F in Db
c (X( A,k), the automorphism ϕλF is unipotent. (In fact, this

automorphism is the identity if F belongs to the essential image of π∗, and the
category Db

c (X( A,k) is generated by such objects.) Moreover, if λ, µ ∈ X∗(A) we
have

ϕλ·µF = ϕλF ◦ ϕ
µ
F .

In other words, the assignment λ 7→ ϕλF defines a group morphism

(2.1) X∗(A)→ Aut(F ).

We now set

RA := k[X∗(A)].

The group morphism (2.1) induces a k-algebra morphism

ϕF : RA → End(F ).

Since each ϕF (λ) is unipotent, this morphism factors through an algebra morphism

ϕ∧F : R∧A → End(F ),

where R∧A is the completion of RA with respect to the maximal ideal mA given
by the kernel of the algebra map εA : RA → k sending each λ ∈ X∗(A) to 1.
This construction is functorial, in the sense that it makes Db

c (X( A,k) an R∧A-
linear category. (Here, the R∧A-action on HomDb

c (X(A,k)(F ,G ) is given by r · f =

f ◦ ϕ∧F (r) = ϕ∧G (r) ◦ f .)

Remark 2.2. Geometrically, we have RA = O(A∨k ), where A∨k is the k-torus such
that X∗(A∨k ) = X∗(A), and R∧A identifies with the algebra of functions on the

formal neighborhood of 1 in A∨k . Note that any choice of trivialization A
∼−→ (C×)r

provides isomorphisms

RA ∼= k[y±1
1 , · · · , y±1

r ] and R∧A
∼= k[[x1, · · · , xr]]

(where xi = yi − 1).

2.2. Basic properties. We denote by ε∧A : R∧A → k the continuous morphism
which extends εA.

Lemma 2.3. For any F in Db
c (X( A,k) and x ∈ R∧A we have

π!(ϕ
∧
F (x)) = ε∧A(x) · idπ!F .
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Proof. Let λ ∈ X∗(A), and let p : C× Y → Y be the projection. Then both of the
following squares are Cartesian:

C×X θλ //

idC×π
��

X

π

��
C× Y

p // Y,

C×X
pr //

idC×π
��

X

π

��
C× Y

p // Y.

By the base change theorem, we deduce canonical isomorphisms

(idC × π)!θ
∗
λ(F ) ∼= p∗π!(F ), (idC × π)!pr∗(F ) ∼= p∗π!(F ).

Under these isomorphisms the map (idC × π)!ι
λ
F identifies with an endomorphism

of p∗π!(F ). Now the functor p∗ is fully faithful, hence this morphism must be of
the form p∗(f) for f an endomorphism of π!F . Restricting to {0} × Y we see that
f = idπ!F . Hence the restriction of (idC × π)!ι

λ
F to {2iπ} × Y is also the identity.

But this morphism identifies with π!(ϕ
λ
F ), which completes the proof. �

We now consider a secondA-torsor π′ : X ′ → Y ′, and an A-equivariant morphism
f : X → X ′. The following claims follow easily from the definitions.

Lemma 2.4. (1) The functors f ! and f∗ induce functors

f !, f∗ : Db
c (X ′( A,k)→ Db

c (X( A,k).

Moreover, for any F in Db
c (X ′( A,k) and r ∈ R∧A we have

ϕ∧f !F (r) = f !(ϕ∧F (r)), ϕ∧f∗F (r) = f∗(ϕ∧F (r)).

(2) The functors f! and f∗ induce functors

f!, f∗ : Db
c (X( A,k)→ Db

c (X ′( A,k).

Moreover, for any F in Db
c (X( A,k) and r ∈ R∧A we have

ϕ∧f!F (r) = f!(ϕ
∧
F (r)), ϕ∧f∗F (r) = f∗(ϕ

∧
F (r)).

Finally, we consider a second torus A′, and an injective morphism φ : A′ → A.
Of course, in this setting we can consider X either as an A-torsor or as an A′-
torsor, and Db

c (X( A,k) is a full subcategory in Db
c (X( A′,k). In particular, for

F in Db
c (X( A,k) we can consider the morphism ϕ∧F both for the action of A (in

which case we will denote it ϕ∧F ,A) and for the action of A′ (in which case we will

denote it ϕ∧F ,A′). Once again, the following lemma immediately follows from the
definitions.

Lemma 2.5. For F in Db
c (X( A,k), the morphism ϕ∧F ,A′ is the composition of

ϕ∧F ,A with the morphism R∧A′ → R∧A induced by φ.

2.3. Monodromy and equivariance. For simplicity, in this subsection we as-
sume that A = C×. We denote by a, p : A × X → X the action and projection
maps, respectively. Recall that a perverse sheaf F in Db

c (X,k) is said to be A-
equivariant if a∗(F ) ∼= p∗(F ). (See [BR, Appendix A] for the equivalence with
other “classical” definitions.)

Lemma 2.6. Let F be a perverse sheaf in Db
c (X( A,k). Then F is A-equivariant

iff the morphism ϕ∧F factors through εA.
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Proof. If F is equivariant, then there exists an isomorphism a∗(F )
∼−→ p∗(F )

whose restriction to {1}×X is the identity. For λ ∈ X∗(A), pulling back under the
morphism C×X → A×X given by (z, x) 7→ (λ(exp(z)), x) we obtain the morphism
ιλF of Lemma 2.1, whose restriction to {2iπ} ×X is therefore the identity.

Conversely, assume that ϕ∧F factors through εA. Let λ : C× → A be the
tautological cocharacter, and let f : C × X → C × X be the map defined by
f(z, x) = (z+ 2iπ, x). Then f∗(ιλF ) is a morphism θ∗λ(F )→ pr∗(F ) whose restric-
tion to {0} × X is, by assumption, the identity of F . Therefore, by the unicity
claim in Lemma 2.1, we have f∗(ιλF ) = ιλF .

Now, we explain how to construct an isomorphism η : a∗(F )
∼−→ p∗(F ). Recall

(see [BBD, Corollaire 2.1.22]) that since we consider (shifts of) perverse sheaves,
such an isomorphism can be constructed locally; more concretely, if we set U1 =
CrR≥0 and U2 = CrR≤0, then to construct η it suffices to construct isomorphisms
on U1×X and U2×X, which coincide on (U1∩U2)×X. The map C×X → A×X
given by (z, x) 7→ (λ(exp(z)), x) restricts to homeomorphisms between {z ∈ C |
=(z) ∈ (0, 2π)} ×X and U1 ×X, and between {z ∈ C | =(z) ∈ (−π, π)} ×X and
U2×X. Therefore, we can obtain the isomorphisms on U1×X and U2×X by simply
restricting ιλF to these open subsets. The intersection U1 ∩ U2 has two connected
components: U+ = {z ∈ C | =(z) > 0} and U− = {z ∈ C | =(z) < 0}. Our
two isomorphisms coincide on U+ ×X by definition, and they coincide on U− ×X
because of the equality f∗(ιλF ) = ιλF justified above. Hence they indeed glue to an

isomorphism η : a∗(F )
∼−→ p∗(F ), which finishes the proof. �

Remark 2.7. (1) Our proof of Lemma 2.6 can easily be adapted to the case of
a general torus; we leave the details to interested readers.

(2) In [Ve], Verdier defines (by the exact same procedure) monodromy for a
more general class of objects in Db

c (X,k), called the monodromic com-
plexes, namely those complexes F such that the restriction of H i(F ) to
all A-orbits is locally constant for any i ∈ Z. As was suggested to one
of us by J. Bernstein, one can give an alternative definition of the cate-
gory Db

c (X( A,k) as the category of monodromic complexes F (in this
sense) such that the monodromy morphism ϕF : RA → End(F ) is unipo-
tent, i.e. factors through RA/m

n
A for some n. Indeed, it is clear that our

category Db
c (X( A,k) is included in the latter category. Now if F is mon-

odromic with unipotent monodromy, then F is an extension of its perverse
cohomology objects, which have the same property; hence we can assume
that F is perverse. Then one can consider the (finite) filtration

F ⊃
∑
x∈mA

Im(x) ⊃
∑
x∈m2

A

Im(x) ⊃ · · · .

Each subquotient in this filtration is a perverse sheaf with trivial mon-
odromy, hence belongs to the essential image of π∗ by (the general version
of) Lemma 2.6.

3. Completed category
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3.1. Definition. As in Section 2 we consider a complex torus A of rank r and an
A-torsor π : X → Y . We also assume we are given a finite algebraic stratification

Y =
⊔
s∈S

Ys

where each Ys is isomorphic to an affine space, and such that for any s ∈ S the
restriction πs : π−1(Ys)→ Ys is a trivial A-torsor. We set

π† := π![r], π† := π![−r] ∼= π∗[r].

Then (π†, π
†) is an adjoint pair, and π† is t-exact with respect to the perverse

t-structures.
We denote by Db

S(Y,k) the S-constructible derived category of k-sheaves on Y ,
and by Db

S(X( A,k) the full subcategory of Db
c (X,k) generated by the essential

image of the restriction of π† to Db
S(Y,k).

Definition 3.1. The category D̂S(X( A,k) is defined as the full subcategory of the
category of pro-objects1 in Db

S(X( A,k) consisting of the objects “ lim←− ”Fn which
are:

• π-constant, i.e. such that the pro-object “ lim←− ”π†(Fn) in Db
S(Y,k) is iso-

morphic to an object of Db
S(Y,k);

• uniformly bounded in degrees, i.e. isomorphic to a pro-object “ lim←− ”F ′n such

that each F ′n belongs to D
[a,b]
S (X( A,k) for some a, b ∈ Z (independent of

n).

The morphisms in this category can be described as

(3.1) HomD̂S(X(A,k)(“ lim←− ”Fn, “ lim←− ”Gn) = lim←−
n

lim−→
m

HomDb
S(X(A,k)(Fm,Gn).

According to [BY, Theorem A.3.2], the category D̂S(X( A,k) has a natural
triangulated structure, for which the distinguished triangles are the triangles iso-
morphic to those of the form

“ lim←− ”Fn

“ lim←− ”fn
−−−−−→ “ lim←− ”Gn

“ lim←− ”gn
−−−−−→ “ lim←− ”Hn

“ lim←− ”hn
−−−−−→ “ lim←− ”Fn[1]

obtained from projective systems of distinguished triangles

Fn
fn−→ Gn

gn−→Hn
hn−−→ Fn[1]

in Db
S(X( A,k). By definition the functor π† induces a functor

D̂S(X( A,k)→ Db
S(Y, k),

which will also be denoted π†. From the proof of [BY, Theorem A.3.2] we see that
this functor is triangulated.

Note also that the monodromy construction from Section 2 makes the category

D̂S(X( A,k) an R∧A-linear category. More precisely, for any object F = “ lim←− ”Fn

in D̂S(X( A,k), we have

End(F ) = lim←−
n

lim−→
m

HomDb
S(X(A,k)(Fm,Fn),

see (3.1). We have a natural algebra morphism RA → End(F ), sending r ∈ RA
to (ϕFn

(r))n. Since each ϕFn
factors through a quotient RA/m

N
A for some N

1All our pro-objects are tacitly parametrized by Z≥0 (with its standard order).
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(depending on n), this morphism extends to a morphism ϕ∧F : R∧A → End(F ). As

in §2.1, this construction provides an R∧A-linear structure on D̂S(X( A,k).
All the familiar functors (in particular, the pushforward and pullback functors

associated with morphisms of A-torsors) induce functors between the appropriate
completed categories, which will be denoted similarly; for details the reader might
consult [BY, Proposition A.3.3 and Corollary A.3.4].

Remark 3.2. As explained in [BY, Remark A.2.3], there exists a filtered triangulated

category D̂F
S (X( A,k) over D̂S(X( A,k) in the sense of [Be, Definition A.1(c)].

Namely, consider a filtered triangulated category DF
S (X( A,k) over Db

S(X( A,k)

(constructed e.g. following [Be, Example A.2]). Then one can take as D̂F
S (X( A,k)

the category of pro-objects “ lim←− ”Fn in DF
S (X( A,k) such that the filtrations on

the objects Fn are uniformly bounded, and such that “ lim←− ”grFi (Fn) belongs to

D̂S(X( A,k) for any i ∈ Z.

3.2. The free-monodromic local system. Let us consider the special case X =
A (with its natural action) and Y = pt. Let us choose as a generator of the
fundamental group π1(C×) the anti-clockwise loop γ : t ∈ [0, 1] 7→ exp(2iπt). Then
we obtain a group isomorphism

(3.2) X∗(A)
∼−→ π1(A)

by sending λ ∈ X∗(A) to the loop t 7→ λ(γ(t)). (Here, our fundamental groups are
taken with the neutral element as base point.) Of course the category of k-local
systems on A is equivalent to the category of finite-dimension k-representations
of π1(A). Via the isomorphism (3.2), we thus obtain an equivalence between the
category of k-local systems on A and that of finite-dimensional RA-modules. The
Serre subcategory consisting of local systems which are extensions of copies of the
constant local system kA then identifies with the category of finite-dimensional
RA-modules annihilated by a power of mA, or equivalently with the category of
finite-dimensional R∧A-modules annihilated by a power of m∧A := mAR

∧
A. The latter

category will be denoted Modnil(R∧A).
For any n ∈ Z≥0, we denote by LA,n the local system on A corresponding to the

RA-module RA/m
n+1
A . Then we have natural surjections LA,n+1 → LA,n, hence

we can define L̂A as the pro-object “ lim←− ”LA,n. It is clear that this pro-object is
uniformly bounded. It is easily seen that it is also π-constant; in fact the surjections
LA,n � LA,0 = kA induce an isomorphism

“ lim←− ”π!(LA,n)
∼−→H 2r(π!LA,0)[−2r] = k[−2r].

In particular, this shows that L̂A defines an object of D̂(A( A,k), which satisfies

(3.3) π†(L̂A) ∼= k[−r].

(The stratification of Y = pt we consider here is the obvious one.)

Remark 3.3. Choose a trivialization A
∼−→ (C×)r. Then we obtain an isomorphism

RA ∼= (RC×)⊗r, see Remark 2.2. For any n ≥ 0 we have

mn·rA ⊂ mnC×⊗(RC×)⊗(r−1) +RC×⊗mnC×⊗(RC×)⊗(r−2) + · · ·+(RC×)⊗(r−1)⊗mnC×
⊂ mnA,
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hence an isomorphism

(3.4) L̂A
∼−→ “ lim←− ”

(
L̂C×

)�r
.

The definition of L̂A given above is much more canonical, but the description as
the right-hand side in (3.4) is sometimes useful to reduce the proofs to the case
r = 1.

3.3. “Averaging” with the free-monodromic local system. In this subsec-
tion, for simplicity we assume that ` := char(k) is positive. We will prove a technical
lemma that will allow us later to prove that in the flag variety setting the convolu-
tion product admits a unit (see Lemma 7.6). A reader ready to accept (or ignore)
this question might skip this subsection.

We denote by a : A×X → X the action morphism.

Lemma 3.4. For any F in Db
S(X( A,k), there exists a canonical isomorphism

a!

(
L̂A � F

) ∼= F [−2r].

Proof. We first want to construct a morphism of functors a!

(
L̂A � −

)
→ id[−2r].

For this, by adjunction it suffices to construct a morphism of functors

(3.5)
(
L̂A �−

)
→ a![−2r].

For any s ≥ 0, we denote by [s] : A→ A the morphism sending z to z`
s

, and set
as := a ◦ ([s]× idX). Since any unipotent matrix M with coefficients in k satisfies
M `s = 1 for s� 0, we see that for F in Db

S(X( A,k), for s� 0 all the cohomology
objects of (as)

∗F are constant on the fibers of the projection to X. In fact, the
techniques of [Ve, §5] show that for any such F and for s � 0 there exists an

isomorphism fF
s : (as)

∗F
∼−→ p∗(F ) whose restriction to {1} ×X is the identity.

Moreover, these morphisms are essentially unique in the sense that given s, s′ such
that fF

s and fF
s′ are defined, for t� s, s′ we have

([t− s]× idX)∗fF
s = ([t− s′]× idX)∗fF

s′ ,

and functorial in the sense that if u : F → G is a morphism then for s � 0 the
diagram

(as)
∗F ∼

fF
s //

(as)
∗u

��

p∗F

p∗u

��
(as)

∗G ∼
fG
s // p∗G

commutes.
Now, fix F in Db

S(X( A,k). For s� 0, we have the morphism

(fF
s )−1 ∈ Hom

(
p∗(F ), (as)

∗F
)

= Hom
(
p∗(F ), (as)

!F [−2r]
)

∼= Hom
(
([s]× idX)!p

∗(F ), a!(F )[−2r]
)
.

The “essential unicity” claimed above implies that these morphisms define a canon-
ical element in

lim−→
s

Hom
(
([s]× idX)!p

∗(F ), a!(F )[−2r]
)

= Hom

((
“ lim←−

s

”[s]!k
)
� F , a!F [−2r]

)
.



12 ROMAN BEZRUKAVNIKOV AND SIMON RICHE

Now we observe that [s]!k = LA,`s , so that “ lim←−s ”[s]!k ∼= L̂A, and we deduce the

wished-for morphism (3.5). (The functoriality of our morphism follows from the
“functoriality” of the morphisms fF

s claimed above.)

To conclude the proof it remains to show that the morphism a!

(
L̂A �F

)
→ F

is an isomorphism for any F in Db
S(X( A,k). By the 5-lemma and the definition of

this category, it suffices to do so in case F = π†G for some G in Db
S(Y,k). In this

case, the morphism fF
t is defined for any t ≥ 0, and can be chosen as the obvious

isomorphism

(at)
∗F = (at)

∗π∗G [−r] = (π ◦ at)∗G [−r] = (π ◦ p)∗G [−r] = p∗F .

Then under the identification

a!

(
L̂A � F

)
= π†(pY )!(L̂A � G ) = π†

(
(π′)!(L̂A) � G

)
,

where pY : A × Y → Y and π′ : A → pt are the projections, our morphism is

induced by the isomorphism (π′)!(L̂A) ∼= k[−2r] from §3.2. This concludes the
proof. �

4. The case of the trivial torsor

In this section we study the category D̂S(X( A,k) in the special case X = A.

4.1. Description of D̂(A( A,k) in terms of pro-complexes of R∧A-modules.

As explained in §3.2, every object of Modnil(R∧A) defines a sheaf on A; this assign-

ment therefore defines a functor DbModnil(R∧A) → Db
c (A,k), which clearly takes

values in Db(A( A,k). We will denote by

ΦA : DbModnil(R∧A)→ Db(A( A,k)

the composition of this functor with the shift of complexes by r to the left (where
r is the rank of A). In this way, ΦA is t-exact if Db(A( A,k) is equipped with the
perverse t-structure.

Lemma 4.1. The functor ΦA is an equivalence of triangulated categories.

Proof. If we denote by k the R∧A-module R∧A/m
∧
A, then it is clear that ΦA(k) =

kA[r]. We claim that ΦA induces an isomorphism⊕
n∈Z

HomDbModnil(R∧A)(k,k[n])
∼−→
⊕
n∈Z

HomDb(A(A,k)(kA[r],kA[r + n]).

Here, the right-hand side identifies with H•(A;k).
Choosing a trivialization of A we reduce the claim to the case r = 1, i.e. A = Gm

(see Remark 2.2). In this case the left-hand side has dimension 2, with a basis
consisting of id : k→ k and the natural extension

k = m∧C×/(m
∧
C×)2 ↪→ R∧C×/(m

∧
C×)2 � R∧C×/m

∧
C× = k.

It is clear that ΦC× identifies this space with H•(C×;k), and the claim is proved.
Since the object k, resp. the object kA[r], generates the triangulated category

DbModnil(R∧A), resp. Db(A( A,k), this claim and Bĕılinson’s lemma imply that ΦA
indeed is an equivalence of categories. �
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The category Db
c (pt,k) identifies with DbVectfdk , where Vectfdk is the category of

finite-dimensional k-vector spaces. Under this identification, the functor π† corre-
sponds to the composition of ΦA with the restriction-of-scalars functor associated
with the natural surjection R∧A � k. By adjunction, we deduce an isomorphism

π† ◦ ΦA ∼= k
L
⊗R∧A (−).

In view of these identifications, the category D̂(A( A,k) is therefore equivalent to

the category D̂(R∧A) of pro-objects “ lim←− ”Mn in DbModnil(R∧A) which are uniformly
bounded and such that the object

“ lim←− ”k
L
⊗R∧A Mn

is isomorphic to an object of DbVectfdk . We use this equivalence to transport the

triangulated structure on D̂(A( A,k) to D̂(R∧A).

4.2. Some results on pro-complexes of R∧A-modules. We now consider

L̂A := “ lim←− ”R∧A/(m
∧
A)n+1,

a pro-object in the category DbModnil(R∧A).

Lemma 4.2. For any M in DbModnil(R∧A), there exists a canonical isomorphism

Hom(L̂A,M) ∼= H0(M)

(where morphisms are taken in the category of pro-objects in DbModnil(R∧A)).

Proof. By dévissage it is sufficient to prove this claim when M is concentrated in a
certain degree k, i.e. M = N [−k] for some N in Modnil(R∧A). By definition we have

Hom(L̂A, N [−k]) = lim−→
n

Ext−kR∧A
(R∧A/(m

∧
A)n+1, N).

Since the action of R∧A on N factors through R∧A/(m
∧
A)m for some m, one sees that

the right-hand side vanishes if k 6= 0, and identifies with N if k = 0. �

As a consequence of this lemma, one obtains in particular an isomorphism

(4.1) “ lim←− ”k
L
⊗R∧A R

∧
A/(m

∧
A)n+1 ∼= k

in the category of pro-objects in DbVectfdk . This shows that L̂A belongs to D̂(R∧A).
(Of course, this property also follows from the fact that this object is the image of

L̂A[r] under the equivalence considered in §4.1.)

Lemma 4.3. Let “ lim←− ”Mn be an object of D̂(R∧A), and assume that the object

“ lim←− ”k⊗LR∧A Mn belongs to D≤0Vectfdk . Then the obvious morphism

“ lim←− ”τ≤0Mn → “ lim←− ”Mn

is an isomorphism in the category of pro-objects in DbModnil(R∧A), where τ≤0 is
the usual truncation functor for complexes of R∧A-modules.
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Proof. By uniform boundedness, we can assume that each complex Mn belongs to
D≤dModnil(R∧A) for some d ∈ Z. If d ≤ 0 then there is nothing to prove. Hence we
assume that d > 0. We will prove that in this case the pro-object “ lim←− ”Hd(Mn)
is isomorphic to 0. Since filtrant direct limits are exact, this will show that for any
X in DbModnil(R∧A) the morphism

lim−→Hom(Mn, X)→ lim−→Hom(τ<dMn, X)

is an isomorphism, hence that the morphism of pro-objects

“ lim←− ”τ<dMn → “ lim←− ”Mn

is an isomorphism. Of course, this property is sufficient to conclude.
We observe that the pro-object

“ lim←− ”k⊗R∧A H
d(Mn) = “ lim←− ”Hd

(
k
L
⊗R∧A Mn

)
= Hd

(
“ lim←− ”k

L
⊗R∧A Mn

)
in the category Vectfdk vanishes. Hence for any fixed n, for m� n the map k⊗R∧A
Hd(Mm) → k ⊗R∧A Hd(Mn) vanishes, or in other words the map Hd(Mm) →
Hd(Mn) takes values in m∧A ·Hd(Mn). Since Hd(Mn) is annihilated by (m∧A)q for
some q, this implies that the map Hd(Mm)→ Hd(Mn) vanishes for m� 0. Clearly,
this implies that “ lim←− ”Hd(Mn) ∼= 0, and concludes the proof. �

Lemma 4.4. The object L̂A generates D̂(R∧A) as a triangulated category.

Proof. We will prove, by induction on the length of the shortest interval I ⊂ Z such

that “ lim←− ”k ⊗LR∧A Mn belongs to DIVectfdk , that any object “ lim←− ”Mn of D̂(R∧A)

belongs to the triangulated subcategory generated by L̂A.
First, assume that I = ∅. Then for any X in DbVectfdk we have

0 = lim−→
n

HomDbVectfdk
(k

L
⊗R∧A Mn, X) ∼= lim−→

n

HomDbModnil(R∧A)(Mn, X).

Since the essential image of DbVectfdk generates DbModnil(R∧A) as a triangulated
category, and since filtrant direct limits are exact, it follows that

lim−→
n

HomDbModnil(R∧A)(Mn, X) = 0

for any X in DbModnil(R∧A). By definition, this implies that “ lim←− ”Mn = 0, proving
the claim in this case.

Now, we assume that I 6= ∅. Shifting complexes if necessary, we can assume
that I = [−d, 0] for some d ∈ Z≥0. Using Lemma 4.3, we can then assume that

each Mn belongs to D≤0Modnil(R∧A). Set

V := H0

(
“ lim←− ”k

L
⊗R∧A Mn

)
= “ lim←− ”H0(k

L
⊗R∧A Mn) = “ lim←− ”k⊗R∧A H

0(Mn).

Then V is a finite-dimensional k-vector space, and idV defines an element in

Homk

(
V, “ lim←− ”k⊗R∧A H

0(Mn)
)

= lim←−Homk
(
V,k⊗R∧A H

0(Mn)
)
.

Consider the object

V := “ lim←− ”
(
R∧A/(m

∧
A)n+1 ⊗k V

)



A TOPOLOGICAL APPROACH TO SOERGEL THEORY 15

in D̂(R∧A). (Of course, V is isomorphic to a direct sum of copies of L̂A.) Then by
Lemma 4.2 we have

HomD̂(R∧A)(V, “ lim←− ”Mm) = lim←−
m

HomD̂(R∧A)(V,Mm) ∼= lim←−
m

Homk(V,H0(Mm)).

Now for any m we have a surjection

H0(Mm) � k⊗R∧A H
0(Mm),

which induces a surjection

Homk(V,H0(Mm)) � Homk
(
V,k⊗R∧A H

0(Mm)
)
.

Each vector space ker
(
Homk(V,H0(Mm)) → Homk(V,k ⊗R∧A H

0(Mm))
)

is finite-
dimensional; therefore the projective system formed by these spaces satisfies the
Mittag–Leffler condition. This implies that the map

(4.2) lim←−
m

Homk(V,H0(Mm))→ lim←−
m

Homk
(
V,k⊗R∧A H

0(Mn)
)

is surjective (see e.g. [KS1, Proposition 1.12.3]).
Let now f : V → “ lim←− ”Mn be a morphism whose image in the right-hand side

of (4.2) is idV . By definition (and in view of (4.1)), the morphism

k
L
⊗R∧A f : k

L
⊗R∧A V → k

L
⊗R∧A “ lim←− ”Mn

induces an isomorphism in degree-0 cohomology. Hence the cone C of f (in the

triangulated category D̂(R∧A)) is such that k⊗LR∧A C belongs to D[−d,−1]Vectfdk . By

induction, this objects belongs to the triangulated subcategory of D̂(R∧A) generated

by L̂A. Then the distinguished triangle

V → “ lim←− ”Mn → C
[1]−→

shows that “ lim←− ”Mn also belongs to this subcategory, which finishes the proof. �

4.3. Description of D̂(A( A,k) in terms of complexes of R∧A-modules. Re-
call that the algebra R∧A is isomorphic to an algebra of formal power series in r
indeterminates, see Remark 2.2. In particular this shows that this algebra is lo-
cal, Noetherian, and of finite global dimension. We will denote by Modfg(R∧A) the
category of finitely-generated R∧A-modules.

Proposition 4.5. There exists a natural equivalence of triangulated categories

DbModfg(R∧A)
∼−→ D̂(R∧A).

Proof. We consider the functor ϕ from DbModfg(R∧A) to the category of pro-objects

in DbModnil(R∧A) sending a complex M to

ϕ(M) := “ lim←− ”

(
R∧A/(m

∧
A)n+1

L
⊗R∧A M

)
.

Since R∧A is local, Noetherian, and of finite global dimension, any object in the

category DbModfg(R∧A) is isomorphic to a bounded complex of free R∧A-modules. It

is clear that the image of such a complex belongs to D̂(R∧A); hence ϕ takes values

in D̂(R∧A). Once this is established, it is clear that this functor is triangulated.
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By Lemma 4.2, for k ∈ Z we have

(4.3) HomD̂(R∧A)(L̂A, L̂A[k]) = lim←−
n

HomD̂(R∧A)(L̂A, R
∧
A/(m

∧
A)n+1[k])

∼=

{
R∧A if k = 0;

0 otherwise.

Hence ϕ induces an isomorphism

HomDbModfg(R∧A)(R
∧
A, R

∧
A[k])

∼−→ HomD̂(R∧A)(L̂A, L̂A[k]).

Since the object R∧A, resp. L̂A, generates DbModfg(R∧A), resp. D̂(R∧A), as a trian-
gulated category (see Lemma 4.4), this observation and Bĕılinson’s lemma imply
that ϕ is an equivalence of categories. �

Combining Proposition 4.5 and the considerations of §4.1, we finally obtain the
following result.

Corollary 4.6. There exists a canonical equivalence of triangulated categories

DbModfg(R∧A)
∼−→ D̂(A( A,k)

sending the free module R∧A to L̂A[r].

From (4.1) we see that the equivalence of Proposition 4.5 intertwines the functors
k ⊗LR∧A (−) on both sides. Therefore, under the equivalence of Corollary 4.6 the

functor k⊗LR∧A (−) on the left-hand side corresponds to the functor π† on the right-

hand side. (Here π : A → pt is the unique map, and we identify the categories

Db
c (pt,k) and DbVectfdk as in §4.1.)

5. The perverse t-structure

5.1. Recollement. We now come back to the setting of §3.1. If Z ⊂ Y is a locally
closed union of strata, and if we denote by h : π−1(Z) → X the embedding, in
view of the results recalled in §3.1 the functors h!, h∗, h

!, h∗ induce triangulated
functors

h!, h∗ : D̂S(π−1(Z)( A,k)→ D̂S(X( A,k),

h∗, h! : D̂S(X( A,k)→ D̂S(π−1(Z)( A,k)

which satisfy the usual adjunction and fully-faithfulness properties. (Here, following

standard conventions we write D̂S(π−1(Z)( A,k) for D̂T (π−1(Z)( A,k) where T =
{s ∈ S | Ys ⊂ Z}.) If πZ : π−1(Z) → Z is the restriction of π, and if h : Z → Y
is the embedding, then the arguments of the proof of [BY, Corollary A.3.4] show
that we have canonical isomorphisms

(5.1) (πZ)† ◦ h?
∼= h? ◦ π†, (πZ)† ◦ h? ∼= h

? ◦ π†

for ? ∈ {!, ∗}.
In particular, if Z is closed and if U := Y r Z is its open complement, and if

we denote the corresponding embeddings by i : π−1(Z)→ X and j : π−1(U)→ X,
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then we obtain a recollement diagram

D̂S(π−1(Z)( A,k) i∗ // D̂S(X( A,k) j∗ //

i!

jj

i∗

ss
D̂S(π−1(U)( A,k)

j∗

jj

j!
ss

in the sense of [BBD].

5.2. Definition of the perverse t-structure. Let us choose, for any s ∈ S,
an A-equivariant map ps : Xs → A, where Xs := π−1(Ys). (Such a map exists
by assumption.) Then the functor (ps)

∗[dim(Ys)] ∼= (ps)
![−dim(Ys)] induces an

equivalence of triangulated categories

D̂(A( A,k)
∼−→ D̂S(Xs( A,k).

Composing with the equivalence of Corollary 4.6 we deduce an equivalence of cat-
egories

(5.2) DbModfg(R∧A)
∼−→ D̂S(Xs( A,k).

The transport, via this equivalence, of the tautological t-structure onDbModfg(R∧A),
will be called the perverse t-structure, and will be denoted(

pD̂S(Xs( A,k)≤0, pD̂S(Xs( A,k)≥0
)
.

Using the recollement formalism from §5.1, by gluing these t-structures we obtain

a t-structure on D̂S(X( A,k), which we also call the perverse t-structure. More
precisely, for any s ∈ S we denote by js : Xs → X the embedding. Then the full

subcategory pD̂S(X( A,k)≤0 consists of the objects F such that j∗sF belongs to
pD̂S(Xs( A,k)≤0 for any s, and the full subcategory pD̂S(X( A,k)≥0 consists of

the objects F such that j!
sF belongs to pD̂S(Xs( A,k)≥0 for any s.

The heart of the perverse t-structure will be denoted P̂S(X( A,k), and an object

of D̂S(Xs( A,k) will be called perverse if it belongs to this heart.
The following (well known) claim will be needed for certain proofs below.

Lemma 5.1. Let M be in DbModfg(R∧A), and assume that k⊗LR∧AM is concentrated

in non-negative degrees. Then M is isomorphic to a complex of free R∧A-modules
with nonzero terms in non-negative degrees only.

Proof. Since R∧A is local and of finite global dimensional, M is isomorphic to a
bounded complex N• of free RA-modules. Let n be the smallest integer with
Nn 6= 0. If n < 0, then our assumption implies that the morphism k ⊗R∧A N

n →
k ⊗R∧A Nn+1. Then by the Nakayama lemma the map Nn → Nn+1 is a split

embedding, and choosing a (free) complement to its image in Nn+1 we see that
M isomorphic to a complex of free R∧A-modules concentrated in degrees ≥ n + 1.
Repeating this procedure if necessary, we obtain the desired claim. �

Lemma 5.2. Let F in D̂S(X( A,k).

(1) If π†F is perverse, then F is perverse.
(2) If π†F = 0, then F = 0.
(3) If F is perverse and pH 0(π†F ) = 0, then F = 0.
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Proof. (1) The shifted pullback functor associated with the projection Ys → pt

induces a (perverse) t-exact equivalence between DbVectfdk and Db
S(Ys,k). Under

this equivalence and (5.2), the functor (πs)† corresponds to the functor k⊗LR∧A (−)

(see the comments after Corollary 4.6). In view of the isomorphisms (5.1), this

reduces the lemma to the claim that if an object M of DbModfg(R∧A) satisfies
Hk(k⊗LR∧A M) = 0 for all k > 0, resp. for all k < 0, then we have Hk(M) = 0 for all

k > 0, resp. for all k < 0. This claim is a standard consequence of the Nakayama
lemma, resp. follows from Lemma 5.1.

(2)–(3) The proofs are similar to that of (1); details are left to the reader. �

5.3. Standard and costandard perverse sheaves. For any s ∈ S we denote
by is : Ys → Y the embedding, and consider the objects

∆s := (is)!kYs [dimYs], ∇s := (is)∗kYs [dimYs].

We will also set

L̂A,s := (ps)
∗L̂A,

and consider the objects

∆̂s := (js)!L̂A,s[dimXs], ∇̂s := (js)∗L̂A,s[dimXs]

in D̂S(X( A,k). In view of (5.1) and (3.3), we have canonical isomorphisms

(5.3) π†∆̂s
∼= ∆s, π†∇̂s ∼= ∇s.

We also have isomorphisms of R∧A-modules

(5.4) HomD̂S(X( A,k)

(
∆̂s, ∇̂t[k]

)
∼=

{
R∧A if s = t and k = 0;

0 otherwise.

Our map is is an affine morphism, so that the objects ∆s and ∇s are perverse

sheaves on Y . By Lemma 5.2(1) and (5.3), this implies that the objects ∆̂s and ∇̂s
are perverse too.

Lemma 5.3. (1) The triangulated category D̂S(X( A,k) is generated by the

objects ∆̂s for s ∈ S, as well as by the objects ∇̂s for s ∈ S.
(2) For any s ∈ S, the monodromy morphism ϕ∧

∆̂s
induces an isomorphism

R∧A
∼−→ HomD̂S(X( A,k)(∆̂s, ∆̂s).

Moreover, any nonzero endomorphism of ∆̂s is injective.

Proof. Property (1) follows from the equivalences (5.2), and the gluing formalism.
And in (2), the isomorphism follows from the equivalence (5.2) and the fact that
(js)! is fully faithful.

Now, let r ∈ R∧A r {0}, and consider the induced endomorphism ϕ∧
∆̂s

(r). Let

C be the cone of this morphism; then we need to show that C is concentrated in
non-positive perverse degrees, or in other words that for any t ∈ S the complex

j!
tC belongs to pD̂S(Xt( A,k)≥0. Fix t ∈ S, and denote by M the inverse image

of this complex under (5.2). The fact that ∆t is perverse and (5.3) imply that the
complex of vector space k⊗LR∧A M is concentrated in non-negative degrees. Hence,

by Lemma 5.1, M is isomorphic to a complex N of free R∧A-modules with N i = 0
for all i < 0. It is clear that the cone of the endomorphism of N induced by the



A TOPOLOGICAL APPROACH TO SOERGEL THEORY 19

action of r has cohomology only in non-negative degrees; therefore the same is true

for M , and finally j!
tC indeed belongs to pD̂S(Xt( A,k)≥0. �

Corollary 5.4. (1) For any F ,G in D̂S(X( A,k), the R∧A-module

HomD̂S(X( A,k)(F ,G )

is finitely generated.

(2) The category D̂S(X( A,k) is Krull–Schmidt.

Proof. (1) Lemma 5.3(1) reduces the claim to the special case F = ∆̂s, G = ∇̂t
for some s, t ∈ S, which is clear from (5.4).

(2) Since the triangulated category D̂S(X( A,k) admits a bounded t-structure, it
is Karoubian by [LC]. By (1) and [La, Example 23.3], the endomorphism ring of any

of its objects is semi-local. By [CYZ, Theorem A.1], this implies that D̂S(X( A,k)
is Krull–Schmidt. �

The standard objects also allow one to describe the perverse t-structure on the

category D̂S(X( A,k), as follows.

Lemma 5.5. The subcategory pD̂S(X( A,k)≤0 is generated under extensions by

the objects of the form ∆̂s[n] for s ∈ S and n ≥ 0.

Proof. This claim follows from the yoga of recollement, starting from the obser-
vation that the subcategory DbModfg(R∧A)≤0 is generated under extensions by the
objects of the form R∧A[n] with n ≥ 0. (Here we use the fact that R∧A is local, so
that any finitely generated projective module is free.) �

Remark 5.6. It is not true that the subcategory pD̂S(X( A,k)≥0 is generated under

extensions by the objects of the form ∇̂s[n] for s ∈ S and n ≤ 0. (This is already
false if Y = pt and r > 0.)

Corollary 5.7. The functor π† is right t-exact with respect to the perverse t-
structures.

Proof. This follows from Lemma 5.5 and (5.3). �

5.4. Tilting perverse sheaves. It is a standard fact (see e.g. [BGS]) that under
our assumptions the category PervS(Y,k) of S-constructible perverse sheaves on Y
is a highest weight category, with weight poset S (for the order induced by inclusions
of closures of strata), standard objects (∆s : s ∈ S), and costandard objects (∇s :
s ∈ S). Hence we can consider the tilting objects in this category, i.e. those which
admit both a filtration with subquotients of the form ∆s (s ∈ S) and a filtration
with subquotients of the form ∇s (s ∈ S). If F is a tilting object, the number of
occurences of ∆s, resp. ∇s, in a filtration of the first kind, resp. second kind, does
not depend on the choice of filtration, and equals the dimension of Hom(F ,∇s),
resp. Hom(∆s,F ). This number will be denoted (F : ∆s), resp. (F : ∇s). The
indecomposable tilting objects are parametrized (up to isomorphism) by S; the
object corresponding to s will be denoted Ts.

Similarly, an object F of D̂S(X( A,k) will be called tilting if it admits both a

filtration with subquotients of the form ∆̂s (s ∈ S) and a filtration with subquo-

tients of the form ∇̂s (s ∈ S). From (5.4) we see that the number of occurences of

∆̂s, resp. ∇̂s, in a filtration of the first kind, resp. second kind, does not depend on
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the choice of filtration, and equals the rank of Hom(F , ∇̂s), resp. Hom(∆̂s,F ), as

an R∧A-module. This number will be denoted (F : ∆̂s), resp. (F : ∇̂s).
It is clear from definitions and (5.3) that if F is a tilting object in D̂S(X( A,k),

then π†(F ) is a tilting perverse sheaf, and that moreover

(5.5) (π†(F ) : ∆s) = (F : ∆̂s), (π†(F ) : ∇s) = (F : ∇̂s).

Lemma 5.8. (1) If F belongs to D̂S(X( A,k), then F is a tilting perverse
sheaf iff π†(F ) is a tilting perverse sheaf.

(2) If F ,G are tilting perverse sheaves in D̂S(X( A,k), then we have

HomD̂S(X(A,k)(F ,G [k]) = 0 if k 6= 0,

the R∧A-module HomD̂S(X( A,k)(F ,G ) is free of finite rank, and the functor

π† induces an isomorphism

k⊗R∧A HomD̂S(X(A,k)(F ,G )
∼−→ HomDb

S(Y,k)(π†F , π†G ).

Proof. (1) Using recollement triangles, it is easy to show that F is a tilting perverse
sheaf iff for any s ∈ S the objects j∗sF and j!

sF are direct sums of copies of

L̂A,s[dimXs] (see [BBM] for this point of view in the case of usual tilting perverse
sheaves). In turn, this condition is equivalent to the requirement that the inverse
images of j∗sF and j!

sF under the equivalence (5.2) are isomorphic to a free R∧A-
module. It is well known that the latter condition is equivalent to the property
that the image under k ⊗LR∧A (−) of these objects is concentrated in degree 0. We

deduce that F is a tilting perverse sheaf iff for any s ∈ S the complexes (πs)†j
∗
sF

and (πs)†j
!
sF are concentrated in perverse degree 0 (see the proof of Lemma 5.2).

Since

(πs)†j
∗
sF
∼= i∗sπ†F and (πs)†j

!
sF
∼= i!sπ†F

by (5.1), we finally obtain that F is a tilting perverse sheaf iff the object G := π†F
is such that for any s ∈ S the complexes i∗sG and i!sG are concentrated in perverse
degree 0. This condition is equivalent to the fact that G is a tilting perverse sheaf,
see [BBM], which concludes the proof.

(2) By Lemma 2.3, the morphism

HomD̂S(X(A,k)(F ,G )→ HomDb
S(Y,k)(π†F , π†G )

induced by π† factors through the quotient k⊗R∧A HomD̂S(X( A,k)(F ,G ). Then the

desired properties follow from (5.4) and the 5-lemma. �

Remark 5.9. The arguments in the proof of Lemma 5.8(1) show more generally

that if F belongs to D̂S(X( A,k) and if π†(F ) is a perverse sheaf admitting a
standard filtration, then F is perverse and admits a filtration with subquotients of

the form ∆̂s for s ∈ S, with ∆̂s occuring as many times as ∆s occurs in π†(F ). Of
course, a similar claim holds for costandard filtrations.

We will denote by T̂S(X( A,k) the full subcategory of D̂S(X( A,k) whose ob-
jects are the tilting perverse sheaves. Lemma 5.8(2) has the following consequence.

Proposition 5.10. There exists an equivalence of triangulated categories

KbT̂S(X( A,k)
∼−→ D̂S(X( A,k).
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Proof. As explained in Remark 3.2, the category D̂S(X( A,k) admits a filtered ver-
sion. Hence, by [AMRW, Proposition 2.2] (see also [Be, §A.6]), there exists a trian-

gulated functor KbT̂S(X( A,k) → D̂S(X( A,k) whose restriction to T̂S(X( A,k)
is the natural embedding. The fact that this functor is an equivalence follows from
Bĕılinson’s lemma. �

5.5. Classification of tilting perverse sheaves. It follows from Corollary 5.4(2)

that the category T̂S(X( A,k) is Krull-Schmidt. To proceed further, we need to
classify its indecomposable objects.

The following classification result is proved in [BY, Lemma A.7.3]. Here we
provide a different proof, based on some ideas developed in [RSW] and [AR2, Ap-
pendix B]. (These ideas are themselves closely inspired by the methods of [BGS].)

Proposition 5.11. For any s ∈ S, there exists a unique (up to isomorphism) object

T̂s in D̂S(X( A,k) such that π†(T̂s) ∼= Ts. Moreover, T̂s is an indecomposable

tilting perverse sheaf, and the assignment s 7→ T̂s induces a bijection between S and

the set of isomorphism classes of indecomposable tilting objects in D̂S(X( A,k).

We begin with the following lemma, where we fix s ∈ S.

Lemma 5.12. For any open subset U ⊂ Ys which is a union of strata, there exists a

tilting perverse sheaf in D̂S(π−1(U)( A,k) whose restriction to Xs is L̂A,s[dimXs].

Proof. We proceed by induction on the number of strata in U , the initial case being
when U = Xs (which is of course obvious).

Consider now a general U as in the statement, and t ∈ S such that Yt ⊂ U and
Yt is closed in U . Then we set V := U r Yt, and assume (by induction) that we

have a suitable object T̂V in D̂S(π−1(V )( A,k). We then denote by j : V → U

the embedding, and consider the object j!T̂V . This object admits a filtration (in
the sense of triangulated categories) whose subquotients are standard objects in

D̂S(π−1(U)( A,k). In particular, it is perverse. We now consider the R∧A-module

E := Ext1
P̂S(π−1(U)( A,k)

(∆̂U
t , j!T̂V ) = HomD̂S(π−1(U)( A,k)(∆̂

U
t , j!T̂V [1])

(where ∆̂U
t is the standard object in D̂S(π−1(U)( A,k) associated with t). By

Corollary 5.4(1), E is finitely generated as an R∧A-module; therefore we can choose
a non-negative integer n and a surjection (R∧A)⊕n � E. This morphism defines an
element in

HomR∧A

(
(R∧A)⊕n, E

) ∼= E⊕n ∼= Ext1
P̂S(π−1(U)( A,k)

(
(∆̂U

t )⊕n, j!T̂V

)
,

and therefore an extension

(5.6) j!T̂V ↪→ T̂U � (∆̂U
t )⊕n

in P̂S(π−1(U)( A,k), for some object T̂U . It is clear that this object admits a filtra-

tion with subquotients of the form ∆̂u (u ∈ S) and has the appropriate restriction
to Xs. Hence to conclude the proof of the claim, in view of Remark 5.9 it suffices

to prove that if TU := (πU )†T̂U (where πU is the restriction of π to π−1(U)) then
TU admits a costandard filtration in the highest weight category PervS(U,k), or in
other words that

Ext1
PervS(U,k)(∆

U
u ,TU ) = 0.
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for any u ∈ S such that Yu ⊂ U . (Here, ∆U
u is the standard perverse sheaf in

PervS(U,k) associated with u.)
The case u 6= t is easy, and left to the reader. We then remark that applying the

functor (πU )† to (5.6) we obtain an exact sequence

(5.7) !TV ↪→ TU � (∆U
t )⊕n

in PervS(U,k), where  : V → U is the embedding and TV := (πV )†T̂V for πV :
π−1(V )→ V the restriction of π.

We now claim that there exists a canonical isomorphism

(5.8) k⊗R∧A E ∼= Ext1
PervS(U,k)(∆

U
u , !TV ).

In fact, using the natural exact sequence

ker ↪→ !TV � !∗TV , !∗TV ↪→ ∗TV � coker

and the fact that TV admits a standard filtration, it is easily checked that

ExtiPervS(U,k)(∆
U
u , !TV ) = 0 for i ≥ 2

(see [AR2, Proof of Proposition B.2] for details). If M is the inverse image of j!
tj!T̂V

under the equivalence (5.2), this means that the complex k⊗LR∧AM is concentrated

in degrees ≤ 1. This implies that M itself is concentrated in degrees ≤ 1, and that
we have a canonical isomorphism k⊗R∧A H

1(M) ∼= H1(k⊗LR∧AM). This isomorphism

is precisely (5.8).
Once (5.8) is established, we see that our surjection (R∧A)⊕n � E induces a

surjection k⊕n � Ext1
PervS(U,k)(∆

U
u , !TV ). Using this fact and considering the long

exact sequence obtained by applying the functor Hom(∆U
t ,−) to (5.7) we conclude

that Ext1
PervS(U,k)(∆

U
t ,TU ) = 0, which finishes the proof. �

Proof of Proposition 5.11. By Lemma 5.11, there exists a tilting object T̂s in the

category D̂S(X( A,k) which is supported on Xs and whose restriction to Xs is

L̂A,s. Of course, we can (and will) further require that this object is indecom-

posable. By Lemma 5.8, the object π†T̂s is then a tilting perverse sheaf, and its

endomorphism ring is a quotient of End(T̂s), hence is local; in other words, π†T̂s

is indecomposable. Since it is supported on Xs, and since its restriction to Xs is

kXs [dim(Xs)] it follows that π†(T̂s) ∼= Ts.

These arguments show more generally that if T̂ is any indecomposable tilting

object in D̂S(X( A,k), the object π†(T̂ ) is isomorphic to Tt for some t ∈ S. To

conclude the proof, it remains to prove that in this case we must have T̂ ∼= T̂t. By
Lemma 5.8(2), the functor π† induces an isomorphism

k⊗R∧A HomD̂S(X( A,k)(T̂ , T̂t)
∼−→ HomDb

S(Y,k)(π†T̂ , π†T̂t).

Hence there exists a morphism f : T̂ → T̂t such that π†(f) is an isomorphism.
Then the cone C of f satisfies π†(C ) = 0. By Lemma 5.2(2) this implies that
C = 0, hence that f is an isomorphism. �
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Part 2. The case of flag varieties

6. Study of tilting perverse objects

6.1. Notation. From now on we fix a complex connected reductive algebraic group
G, and choose a maximal torus and a Borel subgroup T ⊂ B ⊂ G. We will denote
by U the unipotent radical of B, and by W the Weyl group of (G,T ). The choice
of B determines a subset S ⊂W of simple reflections, and a choice of positive roots
(such that B is the negative Borel subgroup).

We will study further the previous constructions in the special case

X = G/U, Y = G/B

(with the action of A = T given by t · gU = gtU), π : X → Y is the natural
projection and the stratification is

Y =
⊔
w∈W

Yw with Yw := BwB/B.

The corresponding categories in this case will be denoted

Db
U (Y, k), D̂U (X( T, k).

(Here, Db
U (Y,k) is indeed equivalent to the U -equivariant constructible derived

category in the sense of Bernstein–Lunts, which explains the notation.)

Recall that to define the objects ∆̂w and ∇̂w we need to choose a T -equivariant
morphism Xw → T , where Xw = π−1(Yw). For this we choose a lift ẇ of w in
NG(T ), and consider the subgroup Uw−1 ⊂ U defined as in [Sp, Lemma 8.3.5]. Then

the map u 7→ uẇB induces an isomorphism Uw
∼−→ Yw, and the map (u, t) 7→ uẇtU

induces an isomorphism Uw × T
∼−→ Xw, see [Sp, Lemma 8.3.6]. We will choose pw

as the composition of the inverse isomorphism with the projection to the T factor.
The category Db

U (Y,k) admits a natural perverse t-structure; its heart will be
denoted

O := PervU (Y,k).

Similarly, the constructions of §5.2 provide a perverse t-structure on the category

D̂U (X( T, k), whose heart will be denoted

Ô := PervU (Y( T, k).

6.2. Right and left monodromy. By the general formalism of the completed

monodromic category (see §3.1), for any F in D̂U (X( T, k) we have an algebra
morphism

ϕ∧F : R∧T → End(F ).

Since this monodromy comes from the action of T by right multiplication, we will
denote it in this case by ϕ∧r,F .

Now, let a : G → G/U be the projection (a locally trivial fibration, with fibers
isomorphic to affine spaces). Then the functor a∗ : Db

c (Y,k) → Db
c (G,k) is fully-

faithful since a∗ ◦ a∗ ∼= id. The triangulated category Db
U (X,k) is generated by

the image of the forgetful functor Db
B(X,k)→ Db

c (X,k); therefore, if G belongs to
Db
U (X( T, k) then a∗(G ) belongs to the monodromic category Db

c (G( T, k) where
T acts on G via t · g = tg. Hence we can consider the morphism ϕ∧a∗(G ). Since a∗

is fully-faithful, this morphism can be interpreted as a morphism

ϕ∧l,G : R∧T → End(G )
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(where “l” stands for left). Passing to projective limits we deduce, for any F in

D̂U (X( T, k), an algebra morphism

ϕ∧l,F : R∧T → End(F ).

Combining these two constructions, we obtain an algebra morphism

ϕ∧lr,F : R∧T ⊗k R
∧
T → End(F )

sending r ⊗ r′ to ϕ∧l,F (r) ◦ ϕ∧r,F (r′) = ϕ∧r,F (r′) ◦ ϕ∧l,F (r).

Lemma 6.1. For any w ∈W , the morphism ϕ∧
r,∆̂w

, resp. ϕ∧
r,∇̂w

, is the composition

of ϕ∧
l,∆̂w

, resp. ϕ∧
l,∇̂w

, with the automorphism of R∧T induced by w.

Proof. We treat the case of ∆̂w; the case of ∇̂w is similar. More precisely we will
prove a similar claim for the monodromy endomorphisms of each object ∆n

w :=
(jw)!p

∗
w(LT,n)[dimXw].

By the base change theorem we have

a∗(∆n
w) ∼= (̃w)!(pw ◦ aw)∗LT,n[dimXw],

where ̃w : a−1(Xw) ↪→ G is the embedding and aw : a−1(Xw) → Xw is the
restriction of a. By Lemma 2.4, we deduce that for any r ∈ R∧T we have

(6.1) a∗
(
ϕ∧r,∆n

w
(r)
)

= ϕ∧r,a∗(∆n
w)(r) = (̃w)!(pw ◦ aw)∗ϕ∧LT,n

(r)[dimXw],

where in the first two terms we consider the monodromy operation with respect to
the action of T on G/U and G by multiplication on the right.

Now we consider the actions induced by multiplication on the left. It is not
difficult to check that

(pw ◦ aw)(t · x) = w−1(t)(pw ◦ aw)(x)

for any t ∈ T and x ∈ a−1(Xw). In other words, pw ◦ aw is T -equivariant when
T acts on a−1(Xw) by multiplication on the left, and on T via the natural action
twisted by w−1. From this, using the same arguments as above and Lemma 2.5,
we deduce that

(6.2) a∗
(
ϕ∧l,∆n

w
(r)
)

= (̃w)!(pw ◦ aw)∗ϕ∧LT,n
(w−1(r))[dimXw].

Comparing (6.1) and (6.2), and using the fact that a∗ is fully-faithful, we deduce
the desired claim. �

Similar considerations hold for objects in Db
U (Y,k). Below we will only consider

the case of perverse sheaves, so we restrict to this setting. Let b = π ◦ a : G → Y
be the natural projection, and let F in O. Then the object b∗(F ) belongs to
Db
c (G( T, k), where the T -action on G is induced by multiplication on the left.

Hence the monodromy construction from Section 2 provides a morphism R∧T →
End(b∗(F )). Now the functor b∗ is fully-faithful on perverse sheaves since b is
smooth with connected fibers (see [BBD, Proposition 4.2.5]); hence this morphism
can be considered as an algebra morphism

ϕ∧l,F : R∧T → End(F ).

It is clear that if F belongs to D̂U (X( T, k) and π†(F ) is perverse, the composition

R∧T
ϕ∧l,F−−−→ End(F )

π†−→ End(π†(F ))

coincides with ϕ∧l,π†(F).
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6.3. The associated graded functor. Let us now fix a total order � on W that
refines the Bruhat order. We then denote by j≺w the embedding of the closed

subvariety
⊔
y≺wXy in X. For any T̂ in T̂U (X( T, k), the adjunction morphism

T̂ → (j≺w)∗(j≺w)∗T̂

is surjective. If we denote its kernel by T̂�w, then the family of subobjects of T̂

given by (T̂�w)w∈W is an exhaustive filtration on T̂ indexed by W , endowed with

the order opposite to � (meaning that T̂�w ⊂ T̂�y if y � w). Moreover, if we set

grw(T̂ ) := T̂�w/T̂�w′ ,

where w′ is the successor of w for �, then grw(T̂ ) is a direct sum of copies of ∆̂w.

(Here by convention T̂�w′ = 0 if w has no successor, i.e. if w is the longest element

in W .) Since by adjunction we have HomD̂U (X( T,k)(∆̂y, ∆̂w) = 0 if y � w, we see

that if f : T̂ → T̂ ′ is a morphism in T̂U (X( T, k), then f(T̂�w) ⊂ T̂ ′�w for any

w ∈W . In other words, the assignment T̂ 7→ T̂�w is functorial. This allows us to
define the functor

gr :

{
T̂U (X( T, k) → P̂U (X( T, k)

T̂ 7→
⊕

w∈W grw(T̂ )
.

This functor is clearly additive.

Lemma 6.2. For any y, w ∈W with y 6= w, we have

HomD̂U (X( T,k)(∆̂y, ∆̂w) = 0.

Proof. Let f : ∆̂y → ∆̂w be a nonzero morphism. We denote by F the image of f ,

and write f = f1 ◦ f2 with f2 : ∆̂y → F the natural surjection and f1 : F → ∆̂w

the natural embedding. Then for any r ∈ R∧T we have a commutative diagram

∆̂y
f2 //

ϕ∧
r,∆̂y

(r)




ϕ∧

l,∆̂y
(r)

��

F
f1 //

ϕ∧r,F (r)

		
ϕ∧l,F (r)

��

∆̂w

ϕ∧
r,∆̂w

(r)




ϕ∧

l,∆̂w
(r)

��
∆̂w

f2 // F
f1 // ∆̂w

By Lemma 5.3, if r 6= 0 then ϕ∧
r,∆̂w

(r) is injective. Hence

(6.3) ϕ∧r,F (r) is injective (in particular, nonzero) if r 6= 0.

On the other hand, using Lemma 6.1 we see that

f1 ◦ ϕ∧r,F (r) = ϕ∧
r,∆̂w

(r) ◦ f1 = ϕ∧
l,∆̂w

(w(r)) ◦ f1 = f1 ◦ ϕ∧l,F (w(r)),

which implies that ϕ∧r,F (r) = ϕ∧l,F (w(r)) since f1 is injective, and that

ϕ∧r,F (r) ◦ f2 = f2 ◦ ϕ∧r,∆̂y
(r) = f2 ◦ ϕ∧l,∆̂y

(y(r)) = ϕ∧l,F (y(r)) ◦ f2,

which implies that ϕ∧r,F (r) = ϕ∧l,F (y(r)) since f2 is surjective. Comparing these

two equations, we deduce that ϕ∧r,F (r) = ϕ∧r,F (y−1w(r)), or in other words that

ϕ∧r,F (r − y−1w(r)) = 0,

for any r ∈ R∧T . In view of (6.3), this implies that r = y−1w(r) for any r ∈ R∧T ,
hence that y = w. �
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As a consequence we obtain the following claim.

Corollary 6.3. The functor gr is faithful.

Proof. Let T̂ , T̂ ′ be in T̂U (X( T, k), and let f : T̂ → T̂ ′ be a nonzero morphism.
Let w ∈ W be an element which is maximal with respect to the property that

f(T̂�w) 6= 0. Then f induces a nonzero morphism f̃w : grw(T̂ ) → T̂ ′. We have

f(T̂�w) ⊂ T̂ ′�w, hence f̃w factors through a nonzero morphism grw(T̂ ) → T̂ ′�w.
Lemma 6.2 implies that the natural morphism

Hom(grw(T̂ ), T̂ ′�w)→ Hom(grw(T̂ ), grw(T̂ ′))

is injective; hence grw(f) 6= 0, so that a fortiori gr(f) 6= 0. �

Note that, by functoriality of monodromy, for any r ∈ R∧T we have

(6.4) ϕ∧
l,gr(T̂ )

(r) = gr
(
ϕ∧

l,T̂
(r)
)
, ϕ∧

r,gr(T̂ )
(r) = gr

(
ϕ∧

r,T̂
(r)
)
.

6.4. Monodromy and coinvariants.

Proposition 6.4. For any T̂ in T̂U (X( T, k), the morphism ϕ∧
lr,T̂

factors through

an algebra morphism

R∧T ⊗(R∧T )W R∧T → End(T̂ ).

Proof. We have to prove that ϕ∧
l,T̂

(r) = ϕ∧
r,T̂

(r) for any r ∈ (R∧T )W . Since

the functor gr is faithful (see Corollary 6.3), for this it suffices to prove that
gr(ϕ∧

l,T̂
(r)) = gr(ϕ∧

r,T̂
(r)). This equality follows from (6.4) and Lemma 6.1, since

gr(T̂ ) is a direct sum of copies of objects ∆̂w. �

6.5. The case of T̂s. In this subsection we fix a simple reflection s, and denote
by α the associated simple root.

We consider the closure Ys = YstYe. This subvariety of Y is isomorphic to P1, in
such a way that Ye identifies with {0}. The structure of the category PervU (Ys,k) of
k-perverse sheaves on Ys constructible with respect to the stratification Ys = YstYe
is well known: this category admits 5 indecomposable objects (up to isomorphism):

• two simple objects ICe and ICs;
• two indecomposable objects of length 2, namely ∆s and ∇s, which fit into

nonsplit exact sequences

ICe ↪→ ∆s � ICs, ICs ↪→ ∇s � ICe;

• one indecomposable object of length 3, namely the tilting object Ts, which
fits into nonsplit exact sequences

∆s ↪→ Ts � ICe, ICe ↪→ Ts � ∇s.

We now fix a cocharacter λ : C× → T , and consider the full subcategory
PervC×,U (Ys,k) ⊂ PervU (Ys,k) consisting of perverse sheaves which are C×-equi-
variant for the action determined by z · xB = λ(z)xB.

Lemma 6.5. If the image of 〈λ, α〉 in k is nonzero, then Ts does not belong to
PervC×,U (Ys,k).
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Proof. Let B+ ⊂ G be the Borel subgroup opposite to B with respect to T , let U+

be its unipotent radical, and let U+
s ⊂ U+ be the root subgroup associated with

s. If we set Y ◦s := Ys r {sB}, then the map u 7→ u · B induces an isomorphism

U+
s
∼−→ Y ◦s . In particular, this open subset is C×-stable, with an action of C× via

the character 〈λ, α〉.
The object Ts is the unique nonsplit extension of ICe by ∆s in PervU (Ys,k);

hence to conclude it suffices to show that Ext1
PervC×,U (Ys,k)

(ICe,∆s) = 0 if the

image of 〈λ, α〉 in k is nonzero. Note that we have

Ext1
PervC×,U (Ys,k)

(ICe,∆s) = HomDb
C×,U

(Ys,k)(ICe,∆s[1])

where Db
C×,U (Ys,k) is the C×-equivariant constructible derived category in the

sense of Bernstein–Lunts. Let us consider the long exact sequence

HomDb
C×,U

(Ys,k)(ICe, ICe[1])→ HomDb
C×,U

(Ys,k)(ICe,∆s[1])

→ HomDb
C×,U

(Ys,k)(ICe, ICs[1])→ HomDb
C×,U

(Ys,k)(ICe, ICe[2])

obtained from the short exact sequence ICe ↪→ ∆s � ICs. Here the first, resp. four-
th, term identifies with the degree-1, resp. degree-2, C×-equivariant cohomology of
the point. In particular, this term vanishes, resp. is canonically isomorphic to k.
Now, we observe that restriction induces an isomorphism

HomDb
C×,U

(Ys,k)(ICe, ICs[1])
∼−→ HomDb

C×,U
(Y ◦s ,k)(kYe ,kY ◦s [2]).

The right-hand side is 1-dimensional, with a basis consisting of the adjunction
morphism associated with the embedding Ye ↪→ Y ◦s . Moreover, in view of the clas-
sical description of the C×-equivariant cohomology of the point recalled e.g. in [Lu,
§1.10], the map

HomDb
C×,U

(Ys,k)(ICe, ICs[1])→ HomDb
C×,U

(Ys,k)(ICe, ICe[2])

considered above identifies with the map k → k given by multiplication by 〈λ, α〉.
Our assumption is precisely that this map is injective; we deduce that the vector
space Ext1

PervC×,U (Ys,k)
(ICe,∆s) vanishes, as claimed. �

Corollary 6.6. Assume that there exists λ ∈ X∗(T ) such that the image of 〈λ, α〉
in k is nonzero. Then in the special case T̂ = T̂s, the morphism

R∧T ⊗(R∧T )W R∧T → End(T̂s)

of Proposition 6.4 is surjective.

Proof. By Nakayama’s lemma and Lemma 5.8(2), it suffices to prove that the mor-
phism

ϕ∧l,Ts : R∧T → End(Ts)

of §6.2 is surjective. Now we have dim(End(Ts)) = 2, hence for this it suffices to
prove that the image of ϕ∧l,Ts is not reduced to k · idTs . However, if λ ∈ X∗(T )

is such that 〈λ, α〉 = 1 (such cocharacters exist by our assumption on G) then by
Lemma 2.5, Lemma 2.6 and Lemma 6.5, the automorphism ϕ∧l,Ts(λ) is unipotent
but not equal to idTs ; therefore it does not belong to k · idTs , and the claim is
proved. �
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6.6. Properties of Tw0
. We finish this section with a reminder of some properties

of the category O which are well known (at least in the case char(k) = 0).
The following claim is fundamental. It is proved in [BBM, Lemma in §2.1] under

the assumption that char(k) = 0; but the arguments apply in full generality.

Lemma 6.7. For any w ∈ W , the socle of the object ∆w is ICe, and all the
composition factors of ∆w/soc(∆w) are of the form ICv with v 6= e. Dually, the
top of the object ∇w is ICe, and all the composition factors of the kernel of the
surjection ∇w → top(∇w) are of the form ICv with v 6= e.

This lemma has the following important consequence.

Corollary 6.8. If F is an object of O which admits a standard filtration, then its
socle is a direct sum of copies of ICe. In other words, any nonzero subobject of F
admits ICe as a composition factor. Dually, if F is an object of O which admits a
costandard filtration, then its top is a direct sum of copies of ICe. In other words,
any nonzero quotient of F admits ICe as a composition factor.

To finish this section we recall the main properties of the object Tw0
that we

will need in Section 9.

Lemma 6.9. (1) For any w ∈W we have (Tw0 : ∆w) = 1.
(2) The object Tw0

is both the projective cover and the injective hull of ICe in
O.

Proof. Both of these claims are consequences of Lemma 6.7. For details, see [AR2,
Lemma 5.25] for (1), and [AR2, Proposition 5.26] for (2). �

Lemma 6.10. Let s be a simple reflection, and let ıs : Ys → Y be the embedding.
Then we have ı∗s(Tw0

) ∼= Ts.

Proof. Since Tw0 is tilting (in particular, admits a standard filtration), the object
ı∗s(Tw0

) is perverse and admits a standard filtration. More precisely, in view of
Lemma 6.9(1) we have

(ı∗s(Tw0
) : ∆e) = (ı∗s(Tw0

) : ∆s) = 1.

By the description of the indecomposable objects of PervU (Ys,k) recalled in §6.5,
we deduce that ı∗s(Tw0

) is isomorphic to either Ts or ∆e ⊕∆s. However, we have

Hom(ı∗s(Tw0), ICs) = Hom(Tw0 , ICs) = 0

by adjunction and Lemma 6.9(2) respectively; hence this object cannot admit ∆s

as a direct summand. �

7. Convolution

7.1. Definition. Let us denote by

m : G×U X → X

the map defined by m([g : hU ]) = ghU . If F ,G belong to Db
U (X,k), there exists

a unique object F �̃ G in Db
U (G×U X,k) whose pullback under the quotient map

G×X → G×U X is a∗(F ) � G (where a is as in §6.2). We then set

F ?U G := m!(F �̃ G )[dimT ].

This construction defines a functor Db
U (X,k) × Db

U (X,k) → Db
U (X,k), which is

associative up to (canonical) isomorphism.
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Similarly, we denote by

m′ : G×U Y → Y

the map defined by m([g : hB]) = ghB. If F belongs to Db
U (X,k) and G belongs

to Db
U (Y,k), there exists a unique object F �̃ G in Db

U (G×U Y,k) whose pullback
under the quotient map G× Y → G×U Y is a∗(F ) � G . We then set

F ?U G := m′!(F �̃ G )[dimT ].

This construction defines a functor Db
U (X,k) × Db

U (Y,k) → Db
U (Y,k), which is

compatible with the product ?U on Db
U (X,k) in the obvious sense.

Remark 7.1. Since the quotient G/U is not proper, there exist two possible con-
ventions to define the convolution product on Db

U (X,k): one involving the functor
m!, and one involving the functor m∗. We insist that here we consider the version
with !-pushforward.

It is straightforward (using the base change theorem) to check that for F ,G in
Db
U (X,k) and G ′ in Db

U (Y, k) there exist canonical isomorphisms

π!(F ?U G ) ∼= F ?U π!(G ),(7.1)

π!(F ?U G ′) ∼= F ?U π!(G ′),(7.2)

π∗(F ?U G ′) ∼= F ?U π∗(G ′).(7.3)

Instead of the U -equivariant categories, one can also consider the B-equivariant
categories. In particular, very similar considerations lead to the definition of a
functor

(−) ?B (−) : Db
U (Y, k)×Db

B(Y,k)→ Db
U (Y, k).

(Here, because G/B is proper, there is no difference between the ∗- and !-versions
of convolution.)

We will denote by ForBU : Db
B(Y, k) → Db

U (Y,k) the natural forgetful functor.
The following fact is standard.

Lemma 7.2. For any F in Db
U (X,k) and G in Db

B(Y, k), there exists a canonical
isomorphism

F ?U ForBU (G ) ∼= π†(F ) ?B G .

7.2. Convolution and monodromy.

Lemma 7.3. For any F , G in Db
U (X( T, k), the object F ?U G belongs to the

subcategory Db
U (X( T, k). Moreover, for any x ∈ R∧T we have

ϕ∧l,F?UG (x) = ϕ∧l,F (x) ?U idG ,

ϕ∧r,F?UG (x) = idF ?U ϕ∧r,G (x),

ϕ∧r,F (x) ?U idG = idF ?U ϕ∧l,G (x).

Proof. The first claim is clear from (7.3). The proof of the first two isomorphisms
is easy, and left to the reader. To prove the third one, we write the map m as a
composition m = m1 ◦m2 where m1 : G×B X → X and m2 : G×U X → G×B X
are the obvious morphisms. Then we have

F ?U G = m!(F �̃ G )[dimT ] = (m1)!(m2)!(F �̃ G )[dimT ].
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We consider the action of T on G ×U X defined by t · [g : hU ] = [gt−1 : thU ].

Then F �̃G belongs to Db
c

(
(G×U X)( T, k

)
for this action, and the corresponding

monodromy morphism satisfies

ϕ∧
F�̃G

(λ) = ϕ∧F (λ−1) �̃ ϕ∧G (λ)

for any λ ∈ X∗(T ). (In fact this equality can be checked after pullback to G×G/U ,
where it follows from Lemma 2.5.) Now m2 is the quotient map for this T -action;
hence Lemma 2.3 implies that

(m2)!ϕ
∧
F�̃G

(λ) = id,

or in other words that

(m2)!

(
ϕ∧F (λ) �̃ idG

)
= (m2)!

(
idF �̃ ϕ∧G (λ)

)
.

Applying (m1)! we deduce the desired equality. �

7.3. Extension to the completed category. We now explain how to extend the
construction of the convolution product to the framework of the completed category

D̂U (X( T, k).

Lemma 7.4. Let “ lim←−n ”Fn be an object of D̂U (X( T, k). If G is in Db
U (X( T, k),

resp. if G ′ is in Db
U (Y, k), then the pro-object

“ lim←−
n

”Fn ?
U G , resp. “ lim←−

n

”Fn ?
U G ′,

is representable by an object of Db
U (X( T, k), resp. of Db

U (Y,k).

Sketch of proof. This property is proved along the lines of [BY, §4.3]; we sketch
the proof in the second case, and leave the details and the first case to the reader.
If G ′ is of the form ForBU (G ′′) for some G ′′ in Db

B(Y, k), then by Lemma 7.2 we
have Fn ?

U G ′ ∼= π†(Fn) ?B G ′′. Hence the claim follows from the assumption that
the pro-object “ lim←−n ”π†(Fn) is representable. The general case follows since the

objects of this form generateDb
U (Y,k) as a triangulated category, using the following

observation (which can be checked using the methods of [BY, Appendix A]): given

a projective system of distinguished triangles An → Bn → Cn
[1]−→ in Db

U (Y, k),
if the pro-objects “ lim←−n ”An and “ lim←−n ”Bn are representable, then “ lim←−n ”Cn is

representable too (and this object is isomorphic to a cone of the induced morphism
“ lim←−n ”An → “ lim←−n ”Bn). �

Using Lemma 7.4, we already see that the functor ?U : Db
U (X,k)×Db

U (Y,k)→
Db
U (Y,k) induces a functor

(7.4) ?̂ : D̂U (X( T, k)×Db
U (Y,k)→ Db

U (Y,k).

Now, let F = “ lim←−n ”Fn and G = “ lim←−m ”Gm be two objects of D̂U (X( T, k).

For any fixed m, by Lemma 7.4 the pro-object “ lim←−n ”Fn ?
U Gm is representable

by an object of Db
U (X( T, k). Therefore, we can consider the pro-object

F ?̂ G := “ lim←−
m

”“ lim←−
n

”Fn ?
U Gm.
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We claim that this pro-object belongs to D̂U (X( T, k). Indeed it is clearly uniformly
bounded. And using (7.1) we see that

“ lim←−
m

”π†

(
“ lim←−

n

”Fn ?
U Gm

)
∼= “ lim←−

m

”

(
“ lim←−

n

”Fn ?
U π†(Gm)

)

∼= “ lim←−
m

” (F ?̂ π†(Gm)) ∼= F ?̂

(
“ lim←−
m

”π†(Gm)

)
.

Since by assumption the pro-object “ lim←−m ”π†(Gm) is representable, this shows that

F ?̂ G is π-constant, which finishes the proof of our claim.

Remark 7.5. Let F and G be as above. Using similar arguments one can check
that, for any fixed n ≥ 0, the pro-object “ lim←−m ”Fn ?

U Gm is representable, so that

it makes sense to consider the pro-object

“ lim←−
n

”“ lim←−
m

”Fn ?
U Gm.

Using standard results on inverse limits (see e.g. [KS2, Proposition 2.1.7]) one can
show that this pro-object is canonically isomorphic to F ?̂ G .

This construction provides us with a functor

?̂ : D̂U (X( T, k)× D̂U (X( T, k)→ D̂U (X( T, k).

This functor is associative in the obvious sense, and compatible with (7.4) in the

sense that for F ,G in D̂U (X( T, k) and H in Db
U (Y, k) we have canonical isomor-

phisms

(F ?̂ G ) ?̂H ∼= F ?̂ (G ?̂H ),(7.5)

π†(F ?̂ G ) ∼= F ?̂ π†(G ).(7.6)

The object ∆̂e = ∇̂e is a unit for this product (at least in the case when char(k) >
0),2 as proved in the following lemma.

Lemma 7.6. Assume that char(k) > 0. Then for any F in D̂U (X( T, k), there
exist canonical isomorphisms

∆̂e ?̂F ∼= F ∼= F ?̂ ∆̂e.

Proof. For any G in Db
U (X( T, k), we have

∆̂e ?̂ G ∼= “ lim←−
n

”a!(LA,n ?
U G )[2r],

where a : T ×X → X is the action morphism defined by a(t, gU) = tgU . Now we
have canonical identifications

Db
U (G/U,k) ∼= Db

U×U (G,k) ∼= Db
U (U\G,k).

Under these identifications the full subcategory Db
U (X( T, k) ⊂ Db

U (G/U,k) co-
incides with the category Db

U (U\G( T, k) defined relative to the T -action on U\G
defined by t·Ug = Utg and the stratification of B\G by B-orbits. Hence Lemma 3.4

2This assumption is probably unnecessary. But since this is the setting we are mostly interested
in, we will not consider the possible extension of this claim to the characteristic-0 setting.
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provides a canonical isomorphism ∆̂e ?̂G ∼= G . Passing to (formal) projective limits

we deduce a similar isomorphism for any G in D̂U (X( T, k).

The proof of the isomorphism F ∼= F ?̂ ∆̂e follows from similar considerations
together with Remark 7.5. �

One can easily check that these constructions provide Db
U (X( T, k) with the

structure of a monoidal category (in the case when char(k) > 0).

7.4. Convolution of standard, costandard, and tilting objects.

Lemma 7.7. (1) For any w ∈W we have ∇̂w−1 ?̂ ∆̂w
∼= ∆̂e.

(2) If v, w ∈W and if `(vw) = `(v) + `(w), then we have

∆̂v ?̂ ∆̂w
∼= ∆̂vw, ∇̂v ?̂ ∇̂w ∼= ∇̂vw.

Proof. We prove the first isomorphism in (2); the other claims can be obtained
similarly. By (7.6) and (5.3) we have

π†(∆̂v ?̂ ∆̂w) ∼= ∆̂v ?̂ π†(∆̂w) ∼= ∆̂v ?̂∆w.

Since ∆w is a B-equivariant perverse sheaf, using Lemma 7.2 we deduce that

π†(∆̂v ?̂ ∆̂w) ∼= ∆v ?
B ∆w.

Now it is well known that the right-hand side is isomorphic to ∆vw, see e.g. [BBM,
§2.2] or [AR3, Proposition 4.4]. Then the claim follows from Remark 5.9. �

Lemma 7.8. Let s ∈ S. For any tilting perverse sheaf T̂ in D̂U (X( T, k), the

object T̂s ?̂ T̂ is a tilting perverse sheaf, and for any w ∈W we have

(T̂s ?̂ T̂ : ∆̂w) = (T̂ : ∆̂w) + (T̂ : ∆̂sw).

Proof. We will prove that for any w ∈ W the object T̂s ?̂ ∆̂w admits a standard

filtration, the multiplicity of ∆̂v being 1 if v ∈ {w, sw}, and 0 otherwise. Similar

arguments show that T̂s ?̂ ∇̂w admits a costandard filtration, and the desired claim

will follow. First, assume that sw > w. Then using the exact sequence ∆̂s ↪→ T̂s �
∆̂e (see §6.5) and applying (−) ?̂ ∆̂w we obtain a distinguished triangle

∆̂s ?̂ ∆̂w → T̂s ?̂ ∆̂w → ∆̂e ?̂ ∆̂w
[1]−→ .

Here Lemma 7.7(2) implies that the first term is isomorphic to ∆̂sw, and that the

third term is isomorphic to ∆̂w, which shows the desired property. If now sw < w,

we use the exact sequence ∆̂e ↪→ T̂s � ∇̂s to obtain a distinguished triangle

∆̂e ?̂ ∆̂w → T̂s ?̂ ∆̂w → ∇̂s ?̂ ∆̂w
[1]−→ .

We conclude as above, using also Lemma 7.7(1) to see that the third term is iso-

morphic to ∆̂sw. �

Remark 7.9. One can easily deduce from Lemma 7.8 that the tilting objects in Ô

are the direct sums of direct summands of objects of the form T̂s1 ?̂ · · · ?̂ T̂sr with
s1, · · · , sr ∈ S, and moreover that the convolution product of two tilting objects
is again a tilting object. Similarly, the tilting objects in O are the direct sums of

direct summands of objects of the form T̂s1 ?̂ · · · ?̂ T̂sr ?̂ ∆e with s1, · · · , sr ∈ S,

and T̂ ?̂T is tilting in O if T̂ is tilting in Ô and T is tilting in O. In particular,
this provides a “Bott–Samelson type” construction of these tilting objects.
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Proposition 7.10. For any v, w ∈W , we have

∆̂v ?̂ T̂w0
?̂ ∆̂w

∼= T̂w0
.

Proof. Of course, it is enough to prove that for v, w ∈W we have

∆̂v ?̂ T̂w0
∼= T̂w0

and T̂w0
?̂ ∆̂w

∼= T̂w0
.

And for this, in view of Proposition 5.11 it suffices to prove that

(7.7) π†
(
∆̂v ?̂ T̂w0

) ∼= Tw0
and π†

(
T̂w0

?̂ ∆̂w

) ∼= Tw0
.

We first prove the second isomorphism in (7.7). By (7.6) and (5.3) we have

π†
(
T̂w0

?̂ ∆̂w

) ∼= T̂w0
?̂ π†(∆̂w) ∼= T̂w0

?̂∆w.

Since ∆w is a B-equivariant perverse sheaf, using Lemma 7.2 we deduce that

T̂w0
?̂∆w

∼= Tw0
?B ∆w.

Hence to prove the second isomorphism in (7.7) we only have to prove that

(7.8) Tw0
?B ∆w

∼= Tw0
.

It is known that any object of the form ∇u ?B ∆v is perverse (see e.g. [AR3,
Proposition 4.6] or [ABG, Proposition 8.2.4] for similar claims). In particular, it
follows that Tw0

?B ∆w is perverse. And since ∆w ?
B ∇w−1

∼= ∆e, for any x ∈ W
and n ∈ Z we have

HomDb
U (Y,k)(Tw0

?B ∆w, ICx[n]) ∼= HomDb
U (Y,k)(Tw0

, ICx ?B ∇w−1 [n]).

Now since the realization functor DbO → Db
U (Y, k) is an equivalence of categories

(see e.g. [BGS, Corollary 3.3.2]), for y ∈W and m ∈ Z we have

HomDb
U (Y,k)(Tw0

, ICy[m]) ∼=

{
k if y = e and m = 0;

0 otherwise.

It is not difficult to see that if x 6= e and if G belongs to Db
B(Y,k) then all the

composition factors of the perverse cohomology objects of ICx ?B G are of the form
ICy with y 6= e; using also Lemma 6.7 we deduce that

HomDb
U (Y,k)(Tw0

, ICx ?B ∇w−1 [n]) ∼=

{
k if x = e and n = 0;

0 otherwise.

It follows that the perverse sheaf Tw0 ?
B ∆w is the projective cover of ICe, hence

that it is isomorphic to Tw0 by Lemma 6.9(2). This finally proves (7.8), hence also
of the second isomorphism in (7.7).

We now consider the first isomorphism in (7.7). If v = e then it follows from

Lemma 7.7 that ∆̂e ?̂ T̂w0
is a tilting perverse sheaf, and has the same standard

multiplicities as T̂w0 ; therefore it is isomorphic to T̂w0 . Now assume the claim is
known for v 6= w0, and choose s ∈ S such that vs > v. By the same arguments as
in the proof of Lemma 7.8 we have an exact sequence of perverse sheaves

∆̂vs ↪→ ∆̂v ?̂ T̂s � ∆̂v.

From Lemma 7.8 we deduce that T̂s ?̂Tw0
∼= (Tw0

)⊕2. Therefore, convolving with
Tw0

on the right and using induction we deduce a distinguished triangle

∆̂vs ?̂Tw0
→ (Tw0

)⊕2 → Tw0

[1]−→
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in Db
U (Y, k). As above the object ∆̂vs ?̂Tw0

is perverse; hence this triangle is a short
exact sequence in O. Since Tw0 is projective (see Lemma 6.9(2)) the surjection

(Tw0
)⊕2 � Tw0

must be split, and we finally obtain that ∆̂vs ?̂ Tw0
∼= Tw0

, as
desired. �

8. Variations on some results of Kostant–Kumar

From now on we assume that G is semisimple, of adjoint type. (Of course this
assumption is harmless if one is mainly interested in the category O.) We will
denote by Φ∨ the coroot system of (G,T ), and by Φ∨+ ⊂ Φ∨ the positive coroots.

8.1. The Pittie–Steinberg theorem. We set

d =
∏

α∨∈Φ∨+

(1− eα
∨

) ∈ RT ,

and denote by ρ∨ ∈ X∗(T ) the halfsum of the positive coroots.
The following result is an easy application of the Pittie–Steinberg theorem.

Theorem 8.1. The (R∧T )W -module R∧T is free of rank #W . More precisely, this
module admits a basis (ew)w∈W such that

(8.1) det
(
(w(ev))v,w∈W

)
=
(
(−1)|Φ

∨
+|e−ρ

∨
d
)|W |/2

.

Proof. By the Pittie–Steinberg theorem (see [St]) we know that under our assump-
tions Z[X∗(T )] is free over Z[X∗(T )]W , of rank #W . Moreover, from the proof
in [St] one sees that this module admits a basis such that (8.1) holds (see e.g. [KK,
Proof of Theorem 4.4]). Now there are canonical isomorphisms

k⊗Z Z[X∗(T )]
∼−→ k[X∗(T )], k⊗Z Z[X∗(T )]W

∼−→ k[X∗(T )]W .

(For the second one, we remark that Z[X∗(T )]W is a free Z-module, with a basis
consisting of the elements

∑
λ∈O e

λ where O runs over W -orbits in X∗(T ). Since

a similar fact holds for k[X∗(T )]W , we deduce that the natural morphism k ⊗Z
Z[X∗(T )]W → k[X∗(T )]W is indeed an isomorphism.) Hence RT is free over (RT )W ,
of rank #W , and admits a basis (ew)w∈W such that (8.1) holds.

Now we consider completions. Let a ∈ R∧T , and write a as the limit of a sequence
(an)n≥0 of elements of RT . For any n ≥ 0, there exist (unique) elements (pnw)w∈W
in (RT )W such that

(8.2) an =
∑
w∈W

pnw · ew.

We claim that each sequence (pnw)n≥0 converges to a certain pw ∈ R∧T ; then pw will
belong to (R∧T )W , and we will have a =

∑
w∈W pw · ew, which will prove that the

elements (ew)w∈W generate R∧T over (R∧T )W .
Consider the matrix M := (v(ew))v,w∈W , with rows and columns parametrized

by W . Then the equalities (8.2) imply that

(v(an))v∈W = M · (pnw)w∈W

in the space of vectors parametrized by W , and with values in the ring RT .
Now (8.1) shows that M is invertible in the space of matrices with coefficients
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in the fraction field of R∧T , and that d|W |/2 ·M−1 in fact has coefficients in R∧T .
Moreover, we have

(8.3) (d|W |/2 · pnw)w∈W = (d|W |/2 ·M−1) · (v(an))v∈W .

From this, we will deduce that each sequence (pnw)n≥0 is Cauchy, which will prove

our claim. In fact, by the Artin–Rees lemma (applied to the RT -modules d|W |/2 ·
RT ⊂ RT and the ideal mT ), there exists an integer c such that

mnT ∩ d|W |/2 ·RT ⊂ d|W |/2 ·mn−cT

for any n ≥ c. Now if k ≥ 0 is fixed, for n,m � 0 we have an − am ∈ mc+kT .

From (8.3) we deduce that d|W |/2 · (pnw−pmw ) belongs to mc+kT also, hence to d|W |/2 ·
mkT . Hence pnw − pmw belongs to mkT , which finishes the proof of the claim.

To conclude the proof, it remains to check that the elements (ew)w∈W are linearly
independent over (R∧T )W . However, if∑

w∈W
pw · ew = 0

for some elements pw in (R∧T )W , then as above we have M · (pw)w∈W = 0. Since
M is invertible (as a matrix with coefficients in the fraction field of R∧T ), it follows
that pw = 0 for any w ∈W . �

Let us note the following consequences of this theorem:

• the R∧T -module R∧T ⊗(R∧T )W R∧T is free of rank #W ;

• the k-vector space R∧T /(R
∧
T )W+ has dimension #W , where (R∧T )W+ is the

kernel of the map (R∧T )W ↪→ R∧T → k (where the second map is induced by
εT ).

8.2. Some R∧T -modules. In this subsection we recall some constructions due to
Kostant–Kumar [KK] (replacing everywhere the T∨-equivariant K-theory of the
point—where T∨ is the torus dual to T—by R∧T ).

We will denote by Q∧T the fraction field of R∧T . We then denote by QW the
smash product of Q∧T and W ; in other words QW is a Q∧T -vector space with a basis
(δw)w∈W , with the multiplication determined by

(aδw) · (bδv) = aw(b)δwv.

Of course, (δw)w∈W is also a basis for the action of Q∧T given by right multiplication
in QW . We will denote by ι the anti-involution of QW determined by

ι(a) = a, ι(δw) = δw−1

for a ∈ Q∧T and w ∈W .
Following [KK], for s ∈ S we set

ys := (δe + δs)
1

1− e−α∨s
=

1

1− e−α∨s
(δe − e−α

∨
s δs),

where α∨s is the simple coroot associated with s. The same computation as for [KK,
Proposition 2.4] shows that these elements satisfy the braid relations of W ; there-
fore, by Matsumoto’s lemma, for w ∈W we can set

yw := ys1 · ys2 · (· · · ) · ysr ,
where w = s1 · · · sr is any reduced expression. It is clear from definitions that the
matrix expressing these elements in the basis (δw)w∈W is upper triangular with
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respect to the Bruhat order; in particular (yw)w∈W is also a Q∧T -basis of QW . We
set

YW :=
⊕
w∈W

R∧T · yw,

a free R∧T -module of rank #W . As in [KK, Corollary 2.5], one sees that YW is a
subring in QW , and that (yw)w∈W is also a basis of YW as an R∧T -module for the
action induced by right multiplication.

We now consider

ΩW := HomQ∧T
(QW , Q

∧
T ),

where QW is regarded as a Q∧T -vector space for the action by right multiplication.
We will regard ΩW as a Q∧T -vector space via (a ·ψ)(b) = aψ(b) = ψ(ba) for a ∈ Q∧T
and b ∈ QW . We will sometimes identify this vector space with the vector space
Fun(W,Q∧T ) of functions from W to Q∧T , by sending the map ψ to the function
w 7→ ψ(δw).

The space ΩW admits an action of QW (by Q∧T -vector space automorphisms)
defined by

(y · ψ)(z) = ψ(ι(y) · z)
for y, z ∈ QW and ψ ∈ ΩW . (Note that the action of Q∧T · δe ⊂ QW does not
coincide with the action of Q∧T considered above.) Explicitly, we have

(8.4) (ys · ψ)(δw) =
ψ(δw)− e−w−1α∨s ψ(δsw)

1− e−w−1α∨s
.

We will be interested in the subspace

ΨW := {ψ ∈ ΩW | ∀y ∈ YW , ψ(ι(y)) ∈ R∧T }.
Of course, this subspace is stable under the action of R∧T ⊂ Q∧T . Since YW is
a subalgebra in QW , ΨW is also stable under the action of YW ⊂ QW . Since
(ι(yw))w∈W is a basis of ι(YW ) as a right R∧T -module, ΨW is free as an R∧T -module,
with a basis (ψw)w∈W determined by

ψw(ι(yv)) =

{
1 if v = w;

0 otherwise.

The following properties can be checked as in [KK, Proposition 2.22].

Lemma 8.2. (1) For any v, w ∈ W , the element ψv(δw) belongs to R∧T , and
vanishes unless v ≤ w.

(2) For any w ∈W we have

ψw(δw) =
∏

α∨∈Φ∨+
w(α∨)∈−Φ∨+

(1− eα
∨

).

(3) For w ∈W and s ∈ S, we have

ys · ψw =

{
ψw + ψsw if sw < w;

0 otherwise.

In particular, Point (1) in this lemma shows that under the identification of ΩW
with Fun(W,Q∧T ) considered above, ΨW is contained in the subset Fun(W,R∧T ) of
functions taking values in R∧T .
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8.3. An isomorphism of R∧T -modules. Our goal in this subsection is to relate
the algebra R∧T ⊗(R∧T )W R∧T with the objects introduced in §8.2. Our proofs are

based on “K-theoretic analogues” of some arguments from [AJS, Appendix D].
Below we will need the following lemma.

Lemma 8.3. Let f ∈ R∧T , and let α∨, β∨ be distinct positive coroots. If (1−eα∨) ·f
is divisible (in R∧T ) by 1− eβ∨ , then f is divisible by 1− eβ∨ .

Proof. Let us first prove the similar claim where R∧T is replaced by RT everywhere.
For this, we denote by T∨ the torus dual to T , and consider α∨ and β∨ as characters
of T∨. Since α∨ and β∨ are linearly independent, the group morphism

(α∨, β∨) : T∨ → (k×)2

is dominant, hence surjective. It follows that dim(ker(α∨)∩ker(β∨)) = dim(T∨)−2.

Hence (1− eα∨) is not a zero divisor in O(ker(β∨)) = RT /(1− eβ
∨

); in other words

if 1− eβ∨ divides (1− eα∨) · f for some f ∈ RT then its divides f .
The claim we have just proved can be translated into the fact that the “Koszul

complex”

0→ RT
f 7→((1−eβ

∨
)f,(1−eα

∨
)f)−−−−−−−−−−−−−−−−→ RT ⊕RT

(g,h)7→(1−eα
∨

)g−(1−eβ
∨

)h−−−−−−−−−−−−−−−−−−→ RT → 0

(with nonzero terms in degrees −2, −1 and 0) has no cohomology in degree −1.
Since R∧T is flat over RT , applying the functor R∧T we deduce that the complex

0→ R∧T
f 7→((1−eβ

∨
)f,(1−eα

∨
)f)−−−−−−−−−−−−−−−−→ R∧T ⊕R∧T

(g,h)7→(1−eα
∨

)g−(1−eβ
∨

)h−−−−−−−−−−−−−−−−−−→ R∧T → 0

has no cohomology in degree −1 either, which implies our lemma. �

Theorem 8.4. The morphism

τ : R∧T ⊗(R∧T )W R∧T → Fun(W,R∧T )

sending a⊗ b to the function w 7→ a · w−1(b) is injective. Its image consists of the
functions f such that

f(w) ≡ f(wsα∨) mod (1− eα
∨

)

for any w ∈W and any coroot α∨.

Proof. Consider the basis (ew)w∈W of R∧T as an (R∧T )W -module considered in Theo-
rem 8.1. Then (1⊗ew)w∈W is a basis of R∧T⊗(R∧T )W R

∧
T as an R∧T -module. Moreover,

τ(1⊗ ew) is the function v 7→ v−1(ew). In view of (8.1), these functions are linearly
independent in Fun(W,Q∧T ). Hence indeed our map is injective, and its image is
(freely) spanned by these functions as an R∧T -module.

Now, let us identify ΩW with a subset of Fun(W,R∧T ) (see Lemma 8.2). We claim
that ψw0

belongs to the image of τ . In fact, this is equivalent to the existence of
elements (pw)w∈W in R∧T such that

τ

(∑
w∈W

pw ⊗ ew

)
= ψw0

,

or in other words (using Lemma 8.2(1)–(2)) such that∑
w∈W

pwv(ew) =

{
d if v = w0;

0 otherwise.
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The arguments above show that there exist unique elements (pw)w∈W in Q∧T which
satisfy these equalities. As explained in [KK, Proof of Theorem 4.4], these elements
in fact belong to RT , hence in particular to R∧T .

Recall the action of QW on ΩW considered in §8.2. Using the formula (8.4) one
sees that for any a, b ∈ R∧T and s ∈ S we have

ys · τ(a⊗ b) = τ

(
a⊗ b− e−α∨s s(b)

1− e−α∨s

)
.

In particular, this shows that the image of τ is stable under the operators ys (s ∈ S).
Since (as we have seen above) this image contains ψw0

, by Lemma 8.2(3) it contains
all the elements ψw (w ∈W ), hence ΨW .

It is clear that any function f in the image of τ satisfies

f(w) ≡ f(wsα∨) mod (1− eα
∨

)

for any w ∈ W and any coroot α∨. To conclude the proof, it only remains to
prove that any function which satisfies these conditions is a linear combination of
the elements (ψw)w∈W . For this we choose a total order on W which extends the
Bruhat order, and argue by descending induction on the smallest element w ∈ W
such that f(w) 6= 0. Fix f , and let w be this smallest element. Then for any positive
coroot α∨ such that w(α∨) ∈ −Φ∨+ we have wsα∨ < w in the Bruhat order. Hence

f(wsα∨) = 0, which implies that f(w) is divible by 1− eα∨ . By Lemma 8.2(2) and
Lemma 8.3, we deduce that there exists a ∈ R∨T such that

f(w) = aψw(δw).

Then f−aψw vanishes on w and all the elements smaller than w (by definition of w
and Lemma 8.2(1)). By induction we deduce that f − aψw is a linear combination
of elements (ψv)v∈W , which concludes the proof. �

8.4. A different description of the algebra R∧T ⊗(R∧T )W R∧T . The results in this
subsection do not play any significant role below; we state them only for complete-
ness.

As in Remark 2.2, the algebra R∧T identifies with the algebra of functions on
the formal neighborhood FNT∨k ({1}) of the identity in the k-torus T∨k which is

Langlands dual to T (considered as a scheme). Hence R∧T ⊗(R∧T )W R∧T identifies
with the algebra of functions on the fiber product

FNT∨k ({1})×(FNT∨k
({1}))/W FNT∨k ({1}).

On the other hand, consider the formal neighborhood FNT∨k ×(T∨k )/WT
∨
k

({(1, 1)}) of

the base point in T∨k ×(T∨k )/W T∨k (again, considered as a scheme). By the universal
property of the fiber product, there exists a natural morphism of schemes

(8.5) FNT∨k ×(T∨k )/WT
∨
k

({(1, 1)})→ FNT∨k ({1})×(FNT∨k
({1}))/W FNT∨k ({1}).

Lemma 8.5. The morphism (8.5) is an isomorphism.

Proof. We have to prove that the natural algebra morphism

(8.6) R∧T ⊗(R∧T )W R∧T → O(T∨k ×(T∨k )/W T∨k )∧

is an isomorphism, where the right-hand side is the completion ofO(T∨k ×(T∨k )/WT
∨
k )

at its natural augmentation ideal J .
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Let I := ker(εT ) ⊂ RT ; then we have J = I ⊗(RT )W RT +RT ⊗(RT )W I. For any

n ∈ Z≥1 we have J2n ⊂ In ⊗(RT )W RT +RT ⊗(RT )W In. Hence for any w ∈W the

morphism RT ⊗(RT )W RT → RT /I
n sending a⊗ b to the class of a ·w−1(b) factors

through a morphism (RT ⊗(RT )W RT )/J2n → RT /I
n. From this observation it

follows that the morphism τ of Theorem 8.4 factors through (8.6), proving that the
latter morphism is injective.

On the other hand, from Theorem 8.1 we see that the natural morphism

R∧T ⊗(RT )W RT → R∧T ⊗(R∧T )W R∧T

is an isomorphism; hence R∧T ⊗(R∧T )W R∧T is the completion of RT ⊗(RT )W RT with
respect to the ideal I ⊗(RT )W RT . Since I ⊂ J , we have for any n a surjection

(RT ⊗(RT )W RT )/(I ⊗RWT RT )n � (RT ⊗(RT )W RT )/Jn.

Since these algebras are finite-dimensional, passing to inverse limits we deduce
that (8.6) is surjective, which finishes the proof. �

9. Endomorphismensatz

9.1. Statement and strategy of proof. Our goal in this section is to prove the
following theorem, which constitutes the main result of this article.

Theorem 9.1. In the case T̂ = T̂w0 , the monodromy morphism of Proposition 6.4
is an algebra isomorphism

R∧T ⊗(R∧T )W R∧T
∼−→ End(T̂w0).

Let us note the following consequence, which does not involve the completed
category.

Corollary 9.2. The morphism ϕ∧l,Tw0
of §6.2 induces an algebra isomorphism

RT /(RT )W+
∼−→ End(Tw0

),

where (RT )W+ is the kernel of the composition (RT )W ↪→ RT
εT−−→ k.

Proof. Theorem 9.1 and Lemma 5.8(2) imply that monodromy induces an algebra
isomorphism

R∧T /(R
∧
T )W+

∼−→ End(Tw0),

where (R∧T )W+ is the kernel of the composition (R∧T )W ↪→ R∧T → k (where the second
map is induced by εT ). Hence to conclude it suffices to prove that the morphism

RT /(RT )W+ → R∧T /(R
∧
T )W+

induced by the inclusion RT ↪→ R∧T is an isomorphism. However, this morphism is
easily seen to be injective. Since (by Theorem 8.1 and its proof) both sides have
dimension #W , the desired claim follows. �

In order to prove Theorem 9.1 we first remark that, by Lemma 6.9(1) and (5.5),
we have

grw(T̂w0) ∼= ∆̂w

for any w ∈W . We fix such isomorphisms, which provides an isomorphism

gr(T̂w0
) ∼=

⊕
w∈W

∆̂w.
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By Lemma 5.3(2), the right monodromy morphism induces an isomorphism

R∧T
∼−→ End(∆̂w)

for any w ∈ W . Taking also Lemma 6.2 into account, we deduce an algebra
isomorphism

(9.1) End
(
gr(T̂w0)

) ∼= ⊕
w∈W

R∧T .

We now consider the morphisms

(9.2) R∧T ⊗(R∧T )W R∧T
∼−→ R∧T ⊗(R∧T )W R∧T → End(T̂w0

)→
⊕
w∈W

R∧T ,

where:

• the first arrow is given by a⊗ b 7→ b⊗ a;
• the second arrow is the morphism from Proposition 6.4;
• the third arrow is induced by the functor gr, taking into account the iso-

morphism (9.1).

By (6.4) and Lemma 6.1, the composition of the morphisms in (9.2) is the morphism
τ of Theorem 8.4, if we identify

⊕
w∈W R∧T with Fun(W,R∧T ) in the obvious way.

In particular this composition is injective, which proves that the morphism

R∧T ⊗(R∧T )W R∧T → End(T̂w0)

from Theorem 9.1 is injective. We also deduce (using Theorem 8.4) that the image
of the third morphism in (9.2) contains the subset of vectors (aw)w∈W such that

(9.3) awsα∨ ≡ aw mod (1− eα
∨

)

for any coroot α∨. Below we will prove the following claim.

Proposition 9.3. If (ay)y∈W belongs to the image of the third morphism in (9.2),
then we have (9.3) for any w ∈W and any coroot α∨.

This proposition will complete the proof of Theorem 9.1. Indeed, from Corol-
lary 6.3 we know that the third arrow in (9.2) is injective. The discussion above
shows that its image coincides with the image of its composition with the second
arrow in (9.2). Hence this second arrow (i.e. the morphism from Theorem 9.1) is
surjective.

9.2. A special case. In this subsection we will prove that if (ay)y∈W belongs to
the image of third morphism in (9.2), then (9.3) holds when w = sα∨ and α∨ is
a simple coroot. We will denote by α the (simple) root associated with α∨. To
simplify notation, we set s := sα∨ .

We will denote by s the (closed) embedding of π−1(Ys) = Xs tXe in X.

Lemma 9.4. We have ∗s(T̂w0
) ∼= T̂s. Moreover, the morphism

grw(T̂w0
)→ grw(T̂s)

induced by the adjunction morphism T̂w0
→ (s)∗

∗
sT̂w0 = T̂s is an isomorphism if

w ∈ {e, s}, and 0 otherwise.



A TOPOLOGICAL APPROACH TO SOERGEL THEORY 41

Proof. Since T̂w0
is tilting (in particular, admits a standard filtration), it is clear

that the adjunction morphism T̂w0
→ (s)∗(s)

∗T̂w0
is surjective, and that the

induced morphism grw(T̂w0) → grw
(
(s)∗

∗
sT̂w0

)
is an isomorphism if w ∈ {e, s},

and zero otherwise. Hence it suffices to prove the isomorphism ∗s(T̂w0
) ∼= T̂s.

However, if we still denote by π the morphism π−1(Ys)→ Ys induced by π, we have

π†(
∗
sT̂w0

) ∼= ı∗sπ†(T̂w0
) = ı∗sTw0

where ıs : Ys → Y is the embedding (see (5.1)). By Lemma 6.10, it follows that

π†(
∗
sT̂w0

) ∼= Ts.

We deduce the desired isomorphism, in view of Proposition 5.11. �

Remark 9.5. The objects T̂w are not canonical; they can be chosen only up to
isomorphism. (This does not affect Theorem 9.1, since monodromy commutes with
any morphism, hence is invariant under conjugation in the obvious sense.) However,

the proof of Lemma 9.4 shows that once T̂w0 is chosen, the object T̂s (for any s ∈ S)

can be defined canonically as (s)∗
∗
sT̂w0

.

From Lemma 9.4 we deduce that the composition

End(T̂w0
)→

⊕
w∈W

R∧T
(aw)w∈W 7→(ae,as)−−−−−−−−−−−−→ R∧T ⊕R∧T

(where the first arrow is the third morphism in (9.2)) factors as the composition

(9.4) End(T̂w0
)
∗s−→ End(T̂s)

gr−→ R∧T ⊕R∧T .

Now by Corollary 6.6 the morphism

R∧T ⊗(R∧T )W R∧T → End(T̂s)

of Proposition 6.4 is surjective, and its composition with the second arrow in (9.4)
identifies with the morphism

a⊗ b 7→ (a · b, s(a) · b)

(see Lemma 6.1). Since ab ≡ s(a)b mod (1 − eα
∨

), this proves that if (ay)y∈W
belongs to the image of the third morphism in (9.2), then indeed we have ae ≡ as
mod (1− eα∨).

9.3. The general case. In this subsection we deduce Proposition 9.3 from the
special case considered in §9.2. The main idea will be the following: recall dia-
gram (9.2). We have natural actions of W ×W on the first, second, and fourth
terms in this diagram respectively defined by

ϑ
(1)
(w,v)(a⊗ b) = w(a)⊗ v(b), ϑ

(2)
(w,v)(a⊗ b) = v(a)⊗ w(b),(

ϑ
(4)
(w,v)(f)

)
(x) = w(f(v−1xw))

for w, v ∈ W , a, b ∈ R∧T , f ∈ Fun(W,R∧T ), x ∈ W . It is easily seen that the first
arrow and the composition of the second and third arrows are equivariant with

respect to these actions. We will now define an action of W ×W on End(T̂w0
) that

makes the whole diagram (9.2) equivariant. This will imply that the image of the
third morphism in this diagram is stable under this (W ×W )-action.
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For w, v ∈W we denote by ϑ
(3)
(w,v) the automorphism of End(T̂w0

) defined as the

composition

End(T̂w0
)
∼−→ End(∆̂v ?̂ T̂w0

?̂ ∆̂w−1)
∼−→ End(T̂w0

)

where the first arrow is induced by the functor ∆̂v ?̂ (−) ?̂ ∆̂w−1 and the second
arrow is induced by any choice of isomorphism as in Proposition 7.10.

Lemma 9.6. For any w, v ∈ W , the automorphism ϑ
(3)
(w,v) does not depend on the

choice of isomorphism as in Proposition 7.10. Moreover, these isomorphisms define

an action of W ×W on End(T̂w0
), and the second and third arrows in (9.2) are

equivariant with respect to this action and the ones defined above.

Proof. First, we claim that the second morphism in (9.2) intertwines the automor-

phisms ϑ
(2)
(w,v) and ϑ

(3)
(w,v). For this we remark that the image under this morphism

of a⊗ b is ϕ∧
l,T̂w0

(a) ◦ ϕ∧
r,T̂w0

(b). Now we have

id∆̂v
?̂
(
ϕ∧

l,T̂w0

(a) ◦ ϕ∧
r,T̂w0

(b)
)
?̂ id∆̂w−1

= ϕ∧
r,∆̂v

(a) ?̂ id
T̂w0

?̂ ϕ∧
l,∆̂w−1

(b)

= ϕ∧
l,∆̂v

(v(a)) ?̂ id
T̂w0

?̂ ϕ∧
r,∆̂w−1

(w(b))

= ϕ∧
l,∆̂v ?̂T̂w0

?̂∆̂w−1
(v(a)) ◦ ϕ∧

r,∆̂v ?̂T̂w0
?̂∆̂w−1

(w(a)),

where the first and third equalities follow from Lemma 7.3, and the second one from
Lemma 6.1. Now, by functoriality of monodromy, the conjugate of this automor-

phism with any choice of isomorphism ∆̂v ?̂ T̂w0
?̂ ∆̂w−1

∼−→ T̂w0
is ϕ∧

l,T̂w0

(v(a)) ◦
ϕ∧

r,T̂w0

(w(a)), which concludes the proof of our claim.

We have already remarked that all the R∧T -modules appearing in (9.2) are free of
rank #W (see in particular Lemma 5.8(2) and Theorem 8.1). Moreover, from the
proof of Theorem 8.4 we see that the image under the functor Q∧T ⊗R∧T − (where, as

in §8.2, Q∧T is the fraction field of R∧T ) of the composition of the three arrows in this
diagram is an isomorphism. Hence the same property holds for any of the maps
in this diagram. Since the composition of the second and third maps intertwines

ϑ
(2)
(w,v) and ϑ

(4)
(w,v), and since the second map intertwines ϑ

(2)
(w,v) and ϑ

(3)
(w,v), we deduce

that the third map intertwines ϑ
(3)
(w,v) and ϑ

(4)
(w,v). Since this map is injective, from

this property we see that ϑ
(3)
(w,v) does not depend on the choice of isomorphism as

in Proposition 7.10, and that these isomorphisms define an action of W ×W on

End(T̂w0
). �

Proof of Proposition 9.3. First, we assume that α∨ is a simple coroot. Then since

ϑ
(3)
(e,w−1)((ay)y∈W ) also belongs to the image of the third map in (9.2), then by the

special case considered in §9.2 we must have

aw ≡ awsα∨ mod (1− eα
∨

),

as desired.
Now we consider the general case. We choose v ∈ W such that β∨ := v(α∨) is

a simple coroot. To prove that aw ≡ awsα∨ mod (1− eα∨) we only have to prove
that

v(aw) ≡ v(awsα∨ ) mod (1− eβ
∨

).
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However, since wsα∨ = wv−1sβ∨v, this fact follows from the observation that

ϑ
(3)
(v,e)((ay)y∈W ) also belongs to the image of the third map in (9.2), and the case

of simple coroots treated above (applied with “w” replaced by wv−1). �

10. Variant: the étale setting

All the constructions we have considered so far have counterparts in the world
of étale sheaves, which we briefly review in this section. Here we need to assume
that k is a finite field, and will denote its characteristic by `.

10.1. Completed derived categories. We choose an algebraically closed field
F of characteristic p 6= `. Instead of considering a complex connected reductive
group, one can consider a connected reductive group G over F, a Borel subgroup
B ⊂ G and a maximal torus T ⊂ B. Then we denote by U the unipotent radical
of B, and we set X := G/U, Y := G/B. We will denote by Db,et

c (X,k) and
Db,et
c (Y,k) the bounded constructible derived categories of étale k-sheaves on X

and Y, respectively. Then one can define the subcategoryDb,et
U (Y,k) ⊂ Db,et

c (Y,k)
as the U-equivariant3 derived category of Y, and out of that define the associated

categories Db,et
U (X( T,k) and D̂et

U(X( T,k) exactly as above.
In this setting, the monodromy construction (see Section 2) is a bit more subtle,

but the required work has been done by Verdier [Ve]. Namely, we start by choosing
once and for all a topological generator (xn)n≥0 of the pro-finite group

lim←−
n

{x ∈ F | x`
n

= 1}

(where the transition maps are given by x 7→ x`). As in the proof of Lemma 3.4
we denote, for n ≥ 0, by [n] : T → T the morphism z 7→ z`

n

, and set an :=
a ◦ ([n] × idX), where a : T ×X → X is the action morphism. Then given F in

Db,et
U (X( T,k), for n� 0 there exists an isomorphism

fF
n : (an)∗F

∼−→ p∗F

whose restriction to {1} × X is the identity. Moreover, these isomorphisms are
essentially unique and functorial in the same sense as in the proof of Lemma 3.4;
see [Ve, Proposition 5.1]. Given λ ∈ X∗(T), restricting the isomorphism fF

n to
{λ(xn)} × X (for n � 0) provides a canonical automorphism of F , which by
definition is ϕλF . Starting with these automorphisms one obtains the morphism
ϕ∧F , which still satisfies the properties of §2.2.

Lemma 2.6 continues to hold in this setting, but its proof has to be adapted to the
new definition of monodromy. Note that when F is a perverse sheaf the morphisms
fF
n are unique when they exist; in other words they are determined by the condition

that their restriction to {1} ×X is the identity. So, if F is as in Lemma 2.6, there

exists n and an isomorphism fF
n : (an)∗F

∼−→ p∗F whose restriction to {1} ×X is
the identity. The fact that the monodromy is trivial means that its restriction to
{xn} ×X is the identity also. Hence the pullback of fF

n under the automorphism

of Gm×X sending (z, x) to (zxn, x) is also an isomorphism (an)∗F
∼−→ p∗F whose

3Recall that in the étale setting the U-equivariant and B-constructible derived categories are

different if p > 0, due to the existence of non-constant local systems on affine spaces. Here

Db,et
U (Y, k) is the full triangulated subcategory of Db,et

c (Y, k) generated by pushforwards of con-

stant local systems on strata.
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restriction to {1}×X is the identity; therefore this isomorphism coincides with fF
n .

Now the morphism [n] × idX is étale since p 6= `, and our observation amounts to
saying that the morphism fF

n satisfies the property that its pullbacks under both
projections (Gm ×X) ×(Gm×X) (Gm ×X) → Gm ×X (where the fiber product is
taken with respect to the morphism [n]×X on both sides) coincide. Since perverse
sheaves form a stack for the étale topology (see [BBD, §2.2.19]), it follows that

this morphism descends to an isomorphism a∗F
∼−→ p∗F ; in other words F is a

Gm-equivariant perverse sheaf.
Next, the étale fundamental group πet

1 (Gm) of Gm is more complicated than
π1(C×). However, the étale covers [n] : Gm → Gm define a surjective morphism

πet
1 (Gm) � lim←−

n

{x ∈ F | x`
n

= 1}.

Recall that we have fixed a topological generator of the right-hand side; this allows
us to identify this group with lim←−n Z/`

nZ. We have a natural isomorphism

X∗(T)⊗Z π
et
1 (Gm)

∼−→ πet
1 (T),

hence a natural surjection

πet
1 (T)→ X∗(T)⊗Z

(
lim←−
n

Z/`nZ

)
.

For n ≥ 0, one can then consider the quotient RT/m
`n

T , with its natural action of
X∗(T). This action factors through an action of X∗(T)⊗Z Z/`nZ, hence it defines

an action of X∗(T)⊗Z

(
lim←−n Z/`

nZ
)

. By pullback we deduce a finite-dimensional

continuous πet
1 (T)-module; the corresponding k-local system on T will be denoted

L et
T,n. Then we can define the pro-unipotent local system as

L̂ et
T = “ lim←−

n

”L et
T,n.

Using this object as a replacement for L̂T, all the constructions of Sections 4–5
carry over to the present context, with identical proofs.

10.2. Soergel’s Endomorphismensatz. Once the formalism of completed cate-
gories is in place, all the considerations of Sections 6–7 carry over also. This allows
one to extend the results of Section 9, in particular Theorem 9.1 and Corollary 9.2,
to the étale setting (assuming that G is semisimple, of adjoint type).

10.3. Whittaker derived category. The main point of introducing the étale
variant is that one can combine our considerations with the following “Whittaker-
type” construction. Here we have to assume that there exists a primitive p-th root
of unity in F; we will fix once and for all a choice of such a root.

Let U+ be the unipotent radical of the Borel subgroup of G opposite to B with
respect to T, and choose for any s an isomorphism between the root subgroup of G
associated with the simple root corresponding to s and the additive group Ga. (Here
we assume that the roots of B are the negative roots.) We deduce an isomorphism
U+/[U+,U+] ∼= (Ga)S . Composing with the addition map (Ga)S → Ga we deduce
a “non-degenerate” morphism χ : U+ → Ga. Our choice of primitive p-th root of
unity determines an Artin–Schreier local system on Gm, whose pullback to U+ will

be denoted Lχ. Then we can define the “Whittaker” derived category Db,et
Wh (Y,k)
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as the full subcategory of Db,et
c (Y,k) consisting of (U+,Lχ)-equivariant objects.

(See e.g. [AR2, Appendix A] for a reminder on the construction of this category.)

If j : U+B/B ↪→ Y is the (open) embedding then, for any F in Db,et
Wh (Y,k),

adjunction provides isomorphisms

j!j
∗F

∼−→ F
∼−→ j∗j

∗F .

Next, we can define the corresponding category Db,et
Wh (X( T,k) as the triangu-

lated subcategory generated by the objects of the form π†F with F in Db,et
Wh (Y,k),

and deduce a completed category D̂et
Wh(X( T,k). If ̂ : π−1(U+B/B) ↪→ X is the

embedding then, for any object F in D̂et
Wh(X( T,k), adjunction provides isomor-

phisms

̂!̂
∗F

∼−→ F
∼−→ ̂∗̂

∗F .

In particular, using the obvious projection π−1(U+B/B) = U+B/U ∼= U+×T→
T we obtain a canonical equivalence of triangulated categories

(10.1) DbModfg(R∧T)
∼−→ D̂et

Wh(X( T,k).

The image of the free rank-1 R∧T-module is the standard object ∆̂χ constructed
as in §5.3 (with respect to the orbit U+B/B ⊂ X). This object is canoni-

cally isomorphic to the corresponding costandard object ∇̂χ. Transporting the
tautological t-structure along the equivalence (10.1) we obtain a t-structure on

D̂et
Wh(X( T,k) which we will call the perverse t-structure, and whose heart will be

denoted P̂ et
Wh(X( T,k).

The categories Db,et
Wh (Y,k), Db,et

Wh (X( T,k) and D̂et
Wh(X( T,k) are related to the

categories Db,et
U (Y,k), Db,et

U (X( T,k) and D̂et
U(X( T,k) in several ways. First, the

convolution construction of Section 7 defines a right action of the monoidal cate-

gory
(
D̂et

U(X( T,k), ?̂
)

on D̂et
Wh(X( T,k); the corresponding bifunctor will again

be denoted ?̂. Next, we have “averaging” functors Db,et
U (Y,k) → Db,et

Wh (Y,k)

and Db,et
U (X( T,k) → Db,et

Wh (X( T,k), sending a complex F to (aU+)!(Lχ �
F )[dim U+], where aU+ : U+ ×Y → Y and aU+ : U+ ×X → X are the natural
morphisms. Standard arguments (see [BBM, BY]) show that (aU+)! can be re-
placed by (aU+)∗ in this formula without changing the functor up to isomorphism.
These functors will be denoted Avχ; then we have canonical isomorphisms

Avχ ◦ π† ∼= π† ◦ Avχ, Avχ ◦ π† ∼= π† ◦ Avχ.

In particular, we obtain an induced functor

Avχ : D̂et
U(X( T,k)→ D̂et

Wh(X( T,k).

By construction, this functor satisfies

Avχ(∆̂e) = ∆̂χ.

We also have averaging functors in the other direction, defined in terms of the
action morphisms aU : U ×Y → Y and aU : U ×X → X and the constant local
system on U. This time, the versions with ∗- and !-pushforwards are different, and
will be denoted AvU∗ and AvU! . Here also we have isomorphisms

AvU? ◦ π† ∼= π† ◦ AvU? , AvU? ◦ π† ∼= π† ◦ AvU?
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for ? ∈ {∗, !} (see the arguments in [BY, Proof of Corollary A.3.4] for the first
isomorphism in the case ? = ∗). Hence we deduce induced functors

AvU! : D̂et
Wh(X( T,k)→ D̂et

U(X( T,k), AvU∗ : D̂et
Wh(X( T,k)→ D̂et

U(X( T,k).

Standard arguments (see e.g. [BY, Lemma 4.4.5] or [AR2, Lemma 5.15]) show that

the pairs (AvU! ,Avχ) and (Avχ,Av
U
∗ ) form adjoint pairs of functors.

10.4. Geometric construction of T̂w0
. The Whittaker constructions of §10.3

allow us in particular to give a concrete and explicit description of the objects T̂w0

and Tw0 , as follows.

Lemma 10.1. There exist isomorphisms

Tw0
∼= AvU! ◦Avχ(∆e) ∼= AvU∗ ◦Avχ(∆e), T̂w0

∼= AvU! ◦Avχ(∆̂e) ∼= AvU∗ ◦Avχ(∆̂e).

Proof. Since the averaging functors commute with π†, in view of the characteriza-

tion of T̂w0
in Proposition 5.11 it is sufficient to prove the isomorphisms Tw0

∼=
AvU! ◦ Avχ(∆e) ∼= AvU∗ ◦ Avχ(∆e). This follows from standard arguments, showing

that AvU! ◦ Avχ(∆e) is the projective cover of ICe and that AvU∗ ◦ Avχ(∆e) is the
injective hull of ICe and then using Lemma 6.9(2); see [BY, Lemma 4.4.11] or [AR2,
Lemma 5.18] for details. �

Remark 10.2. As explained above, Lemma 10.1 provides a canonical representative

for the object T̂w0 (in the present étale setting). In view of Remark 9.5, the objects

T̂s with s ∈ S are then also canonically defined.

11. Soergel theory

In this section we use Theorem 9.1 and Corollary 9.2 to obtain a description

of tilting objects in O and Ô in terms of some kinds of Soergel bimodules. For
simplicity, we assume that k is a finite field. (This assumption does not play any
role in §§11.1–11.2.)

In §§11.1–11.2 we work either in the “classical” setting of Sections 6–9 or in the
étale setting of Section 10. (For simplicity we do not distinguish the two cases, and
use the notation of Sections 6–9.) Then in §11.3 we consider a construction that
is available only in the étale setting, and in §11.4 we explain how to extend these
results to the classical setting. Finally, in §11.5 we use these constructions to derive

an explicit description of the categories of tilting objects in O and Ô.

11.1. The functor V. We fix a representative T̂w0
, and set Tw0

:= π†(T̂w0
) (so

that Tw0 is as above the indecomposable tilting object in O associated with w0,
but now chosen in a slightly more specific way).

Thanks to Theorem 9.1 and Corollary 9.2 respectively, we have isomorphisms

R∧T ⊗(R∧T )W R∧T
∼−→ End(T̂w0

), RT /(RT )W+
∼−→ End(Tw0

),

so that we can consider the functors

V̂ : Ô → Mof(R∧T ⊗(R∧T )W R∧T )

V : O → Mof(RT /(RT )W+ )
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(where, for A a Noetherian ring, we denote by Mof(A) the abelian category of
finitely generated left A-modules) defined by

V̂(F̂ ) = Hom(T̂w0
, F̂ ), V(F ) = Hom(Tw0

,F ).

Here, the fact that V takes values in Mof(RT /(RT )W+ ) is obvious, while for V̂ the

corresponding property follows from Corollary 5.4(1). If T̂ is a tilting object in Ô,
then by Lemma 5.8(2) we have a canonical isomorphism

(11.1) k⊗R∧T V̂(T̂ ) ∼= V(π†T̂ ),

where the tensor product is taken with respect to the action of the right copy of
R∧T .

Remark 11.1. Lemma 8.5 shows that the category Mof(R∧T ⊗(R∧T )W R∧T ) can be
described more geometrically as the category of coherent sheaves on the formal
neighborhood of the point (1, 1) in T∨k ×(T∨k )W T∨k (considered as a scheme). Simi-

larly, the category Mof(RT /(RT )W+ ) is the category of coherent sheaves on the fiber
of the quotient morphism T∨k → (T∨k )/W over the image of 1. In these terms,
the monoidal structure on Mof(R∧T ⊗(R∧T )W R∧T ) considered in §11.3 below can be
described as a convolution product.

These functors are “fully faithful on tilting objects” in the following sense.

Proposition 11.2. For any tilting perverse sheaves T̂ , T̂ ′ in Ô, the functor V̂
induces an isomorphism

HomÔ(T̂ , T̂ ′)
∼−→ HomR∧T⊗(R∧

T
)W R∧T

(
V̂(T̂ ), V̂(T̂ ′)

)
.

Similarly, for any tilting perverse sheaves T , T ′ in O, the functor V induces an
isomorphism

HomO(T ,T ′)
∼−→ HomRT /(RT )W+

(
V(T ),V(T ′)

)
.

Proof. The second case is treated in [BBM, §2.1]. Here we prove both cases using
a closely related argument explained in [BY, §4.7].

We start with the case of the functor V. We remark that this functor admits
a left adjoint γ : Mof(RT /(RT )W+ ) → O defined by γ(M) = Tw0 ⊗RT /(RT )W+

M .

More concretely, if M is written as the cokernel of a map f : (RT /(RT )W+ )⊕n →
(RT /(RT )W+ )⊕m, then in view of the isomorphism RT /(RT )W+

∼−→ End(Tw0) the
map f defines a morphism (Tw0)⊕n → (Tw0)⊕m, whose cokernel is γ(M). From
this description and using the exactness of V (see Lemma 6.9(2)), we see that the
adjunction morphism id→ V ◦ γ is an isomorphism.

We now assume that T is a tilting perverse sheaf, and consider the adjunction
morphism

(11.2) γ(V(T ))→ T .

The image of this morphism under V is an isomorphism, since its composition with
the (invertible) adjunction morphism id→ V ◦ γ applied to V(T ) is idV(T ). Hence
its kernel and cokernel are killed by V; in other words, they do not admit ICe
as a composition factor. In view of Corollary 6.8, this shows that the cokernel of
this morphism vanishes, i.e. that (11.2) is surjective. Moreover, if T ′ is another
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tilting object in O, then the kernel of this morphism does not admit any nonzero
morphism to T ′, again by Corollary 6.8. Hence the induced morphism

Hom(T ,T ′)→ Hom(γ(V(T )),T ′)

is an isomorphism, which finishes the proof in this case.

Now we consider the case of V̂. As for V, this functor admits a left adjoint

γ̂ : Mof(R∧T ⊗(R∧T )W R∧T )→ Ô

defined by γ̂(M) = T̂w0 ⊗R∧T⊗(R∧
T

)W R∧T
M ; in more concrete terms if M is the

cokernel of a map (R∧T ⊗(R∧T )W R∧T )⊕n → (R∧T ⊗(R∧T )W R∧T )⊕m then γ̂(M) is the

cokernel of the corresponding map (T̂w0)⊕n → (T̂w0)⊕m. From this description
and the fact that the functor pH 0 ◦π† is right exact (see Corollary 5.7) we see that
for any M in Mof(R∧T ⊗(R∧T )W R∧T ) we have

pH 0(π†(γ̂(M))) ∼= γ
(
k⊗R∧T M

)
.

Moreover, if T̂ is a tilting object in Ô, under this identification and that in (11.1),
applying pH 0 ◦ π† to the adjunction morphism

(11.3) γ̂(V̂(T̂ ))→ T̂

we recover the adjunction morphism (11.2) for T = π†(T̂ ). Since the latter map is
known to be surjective, this shows that the cokernel of (11.3) is killed by pH 0 ◦ π†
hence, in view of Lemma 5.2(3), that this morphism is surjective.

Let now K̂ be the kernel of (11.3). To conclude the proof, it now suffices to

prove that HomÔ(K̂ , T̂ ′) = 0 for any tilting object T̂ ′ in Ô. For this it suffices

to prove that HomÔ(K̂ , ∆̂w) = 0 for any w ∈ W . And finally, by the description
of morphisms as in (3.1) and since each local system LA,n is an extension of copies
of the trivial local system, for this it suffices to prove that

HomÔ(K̂ , π†∆w) = 0

for any w ∈W .
By adjunction and right-exactness of π† (see Corollary 5.7), we have

HomÔ(K̂ , π†∆w) ∼= HomDb
U (Y,k)(π†K̂ ,∆w) ∼= HomO(pH 0(π†K̂ ),∆w).

Now the remarks above (and the observation that pH −1(π†T̂ ) = 0) show that
pH 0(π†K̂ ) is the kernel of the morphism (11.2) for T = π†(T̂ ). In particular this
object does not admit ICe as a composition factor; by Lemma 6.7 this implies that

HomO(pH 0(π†K̂ ),∆w) = 0, and finishes the proof. �

We also observe the following consequence of Proposition 11.2, following [BBM].

Corollary 11.3. For any projective perverse sheaves P, P ′ in O, the functor V
induces an isomorphism

HomO(P,P ′)
∼−→ HomRT /(RT )W+

(
V(P),V(P ′)

)
.

Proof. It is well known that the functor

(−) ?B ∆w0
: Db

U (Y, k)→ Db
U (Y,k)



A TOPOLOGICAL APPROACH TO SOERGEL THEORY 49

is an equivalence of triangulated categories which restricts to an equivalence be-
tween tilting and projective objects in O; see [BBM] or [AR2]. The inverse equiv-
alence is the functor

(−) ?B ∇w0
: Db

U (Y,k)→ Db
U (Y, k).

Therefore we have

V(P) = Hom(Tw0
,P) ∼= Hom(Tw0

?B ∇w0
,P ?B ∇w0

) ∼= V(P ?B ∇w0
)

since Tw0 ?
B∇w0

∼= Tw0 ; see (7.8). In other words, we have constructed an isomor-
phism between the restriction of V to the subcategory Proj(O) of projective objects
in O and the composition

Proj(O)
(−)?B∇w0−−−−−−−→

∼
Tilt(O)

V−→ Mof(RT /(RT )W+ ),

where Tilt(O) is the category of tilting objects in O. Hence the desired claim follows
from Proposition 11.2. �

11.2. Image of T̂s. Let us fix s ∈ S. Recall (see Remark 9.5) that since we have

chosen a representative for T̂w0
we have a canonical representative for T̂s. In the

following lemma, we denote by (R∧T )s the s-invariants in R∧T .

Lemma 11.4. There exists a canonical isomorphism

R∧T ⊗(R∧T )s R
∧
T
∼−→ V̂(T̂s).

Proof. Recall that T̂s = (s)∗
∗
sT̂w0

; hence by adjunction we have

V̂(T̂s) = Hom(T̂w0 , T̂s) ∼= End(T̂s).

By Proposition 6.4 (applied to the Levi subgroup of G containing T associated with
s) the morphism

R∧T ⊗k R
∧
T → End(T̂s)

induced by monodromy factors through a morphism R∧T ⊗(R∧T )s R
∧
T → End(T̂s),

and by Corollary 6.6 this morphism is surjective. Now under our assumptions R∧T
is free of rank 2 over (R∧T )s. (In fact, if δ∨ ∈ X∗(T ) is a cocharacter such that
〈δ∨, αs〉 = 1, then {1, δ∨} is a basis of this module.) Hence R∧T ⊗(R∧T )s R

∧
T is free of

rank 2 as an R∧T -module. Since End(T̂s) also has this property (see Lemma 5.8(2)),
this morphism must be an isomorphism. �

11.3. Monoidal structure – étale setting. In this subsection we consider the
setting of Section 10. In this case, in view of Lemma 10.1 we have a canonical

choice for the object T̂w0
; this is the choice we consider.

We will denote by

T̂ et
U (X( T,k)

the category of tilting perverse sheaves in D̂et
U(X( T,k). By Remark 7.9 this sub-

category is stable under the convolution product ?̂; moreover, it contains the unit

object ∆̂e (see Lemma 7.6); hence it has a natural structure of monoidal category.
In the following proposition, we consider the monoidal structure on the category

Mof(R∧T ⊗(R∧T)W R∧T) given by (M,N) 7→ M ⊗R∧T N , where the tensor product is

defined with respect to the action of the second copy of R∧T on M and the first copy
on N , and the action of R∧T ⊗(R∧T)W R∧T on M ⊗R∧T N is induced by the action of

the first copy of R∧T on M and the second copy of R∧T on N .
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Proposition 11.5. The functor V̂ : T̂ et
U (X( T,k) → Mof(R∧T ⊗(R∧T)W R∧T) has a

canonical monoidal structure.

Proof. Recall from §10.3 the category D̂et
Wh(X( T,k), the object ∆̂χ, the equiva-

lence
Υ : DbModfg(R∧T)

∼−→ D̂et
Wh(X( T,k)

from (10.1), and the functor Avχ : D̂et
U(X( T,k) → D̂et

Wh(X( T,k). We also have

a right action of the monoidal category D̂et
U(X( T,k) on D̂et

Wh(X( T,k), denoted
again ?̂.

Let us denote by T̂ et
Wh(X( T,k) the full subcategory of D̂et

Wh(X( T,k) whose

objects are the direct sums of copies of ∆̂χ, or equivalently the image under Υ of

the category of free R∧T-modules. We claim that, for T̂ in T̂ et
U (X( T,k), the functor

(11.4) (−) ?̂ T̂ : D̂et
Wh(X( T,k)→ D̂et

Wh(X( T,k)

stabilizes the subcategory T̂ et
Wh(X( T,k). In fact, to prove this it suffices to prove

that ∆̂χ ?̂ T̂ belongs to T̂ et
Wh(X( T,k). But we have ∆̂χ ?̂ T̂ ∼= Avχ(T̂ ), and

H•(Υ−1(Avχ(T̂ ))) ∼= Hom•
D̂et

Wh(X( T,k)
(∆̂χ,Avχ(T̂ ))

∼= Hom•
D̂et

U(X( T,k)
(AvU! (∆̂χ), T̂ ) ∼= Hom•

D̂et
U(X( T,k)

(T̂w0 , T̂ )

where the second isomorphism uses adjunction, and the third one uses Lemma 10.1.
Now the right-hand side is concentrated in degree 0, and free over R∧T by Lem-

ma 5.8(2). Hence Avχ(T̂ ) is indeed a direct sum of copies of ∆̂χ.
The claim we have just proved shows in particular that the functor (11.4) is right

exact for the perverse t-structure. Hence the functor

Mof(R∧T)
Υ−→
∼
P̂ et

Wh(X( T,k)
pH 0(−?̂T̂ )−−−−−−−→ P̂ et

Wh(X( T,k)
Υ−1

−−−→
∼

Mof(R∧T)

is right exact, and therefore representable by the R∧T-bimodule

Υ−1
(
pH 0

(
Υ(R∧T) ?̂ T̂

))
= V̂(T̂ ).

In the case T̂ = ∆̂e, since the functor (−) ?̂ ∆̂χ is canonically isomorphic to

the identity functor, we must have a canonical isomorphism V̂(∆̂e) ∼= R∧T (which

can of course also been seen directly). And, if T̂ , T̂ ′ belong to T̂ et
U (X( T,k), since

the functor constructed as above from T̂ ?̂ T̂ ′ is canonically isomorphic to the

composition of the functors associated with T̂ and with T̂ ′ respectively, we obtain
a canonical isomorphism

V̂(T̂ ?̂ T̂ ′) ∼= V̂(T̂ )⊗R∧T V̂(T̂ ′).

It is easy to check that these isomorphisms are compatible with the associativity
and unit constraints, hence define a monoidal structure on V. �

11.4. Monoidal structure – classical setting. In this subsection we consider the
“classical” setting of Sections 6–9. Here we do not have (at present) a counterpart
of the Whittaker category; but an analogue of Proposition 11.5 can be obtained
from general principles. For this we have to assume that k contains a primitive p-th
root of unity for some prime number p 6= `; we fix a choice of p and of a primitive
root.
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Proposition 11.6. There exists a choice of object T̂w0
such that the functor V̂ :

T̂U (X( T, k)→ Mof(R∧T ⊗(R∧T )W R∧T ) admits a monoidal structure.

Proof. We follow the procedure of [BBD, §6.1] to deduce the result in the classical
topology (over C) from its étale counterpart (over an algebraically closed field of
characteristic p).

Let GZ be split connected reductive group over Z such that Spec(C)×Spec(Z) GZ
is isomorphic to G, and let BZ be a Borel subgroup of GZ and TZ ⊂ BZ be a
(split) maximal torus; then we can assume that B = Spec(C) ×Spec(Z) BZ and
T = Spec(C) ×Spec(Z) TZ. Let also UZ be the unipotent radical of BZ, so that
U = Spec(C) ×Spec(Z) UZ; then we can set XZ := GZ/UZ, YZ := GZ/BZ, which
provides versions of X and Y over Z. We set XC := Spec(C) ×Spec(Z) XZ, YC :=
Spec(C)×Spec(Z)YZ; of course these varieties coincide with X and Y , but we change
notation to emphasize the fact that we now consider them as schemes (with the
Zariski topology) rather than topological spaces (with the classical topology). If
UC = Spec(C) ×Spec(Z) UZ and TC = Spec(C) ×Spec(Z) TZ, we can consider the

categories Db,et
UC

(YC,k) and Db,et
UC

(XC( TC,k) defined using étale sheaves (but now
over a complex scheme) as in Section 10. The general results recalled in [BBD,
§6.1.2] provide canonical equivalences of categories

Db,et
UC

(YC,k) ∼= Db
U (Y,k), Db,et

UC
(XC( TC,k) ∼= Db

U (X( T, k)

which commute (in the obvious sense) with pullback and pushforward functors.
Now, choose an algebraically closed field F whose characteristic is p, and be a

strictly henselian discrete valuation ring R ⊂ C whose residue field is F. Then we
can consider the base changes of GZ, BZ, etc. to R or F, which we will denote
by the same letter with a subscript R or F. We can then consider the versions
of the categories considered above for XR and YR instead of XC and YC; the
results explained in [BBD, §§6.1.8–6.1.9] (see also [Mi, Corollary VI.4.20 and Re-
mark VI.4.21]) guarantee that pullback along the natural morphisms

YC // YR YFoo and XC // XR XFoo

induce equivalences of triangulated categories

Db,et
UC

(YC,k) Db,et
UR

(YR,k)
∼oo ∼ // Db,et

UF
(YF,k)

and

Db,et
UC

(XC( TC,k) Db,et
UR

(XR( TR,k)
∼oo ∼ // Db,et

UF
(XF( TF,k).

Combining these two constructions we obtain an equivalence of categories

(11.5) T̂U (X( T, k)
∼−→ T̂ et

UF
(XF( TF,k)

which is easily seen to be monoidal. Let us denote by T̂ et
w0

the object of the

category T̂ et
UF

(XF( TF,k) considered in §11.3; then Proposition 11.5 provides us

with a coalgebra structure on T̂ et
w0

(in the monoidal category (T̂ et
UF

(XF( TF,k), ?̂)).

If we choose the object T̂w0
as the inverse image of T̂ et

w0
under (11.5), then the

coalgebra structure on T̂ et
w0

induces a coalgebra structure on T̂w0
. Given such

a structure, it is not difficult (see e.g. [BY, Proposition 4.6.4 and its proof]) to

construct a monoidal structure on the associated functor V̂. �
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Remark 11.7. One can obtain a result weaker than Proposition 11.6 without using

the comparison with étale sheaves. Namely, choose an identification (ie)∗i
∗
eT̂w0

∼=
∆̂e. Then by adjunction we deduce a morphism ξ : T̂w0 → ∆̂e, which itself induces
a morphism

ξ ?̂ ξ : T̂w0
?̂ T̂w0

→ ∆̂e ?̂ ∆̂e = ∆̂e.

One can show (following e.g. the ideas in [BY, Proof of Proposition 4.6.4]) that

there exists a morphism η : T̂w0
→ T̂w0

?̂ T̂w0
which makes the diagram

T̂w0

η //

ξ $$

T̂w0 ?̂ T̂w0

ξ?̂ξxx
∆̂e

commutative, and that moreover for any such η the morphism of bifunctors

V̂(−)⊗R∧T V̂(−)→ V̂(− ?̂−)

sending f ⊗ g to (f ?̂ g) ◦ η is an isomorphism of functors. However, to make sure
that this isomorphism induces a monoidal structure, we would have to choose η
such that (η ?̂ id) ◦ η = (id ?̂ η) ◦ η. We do not know how to ensure this.

11.5. Soergel theory. In this subsection we work either in the classical or in the
étale setting (but use the notation from Sections 6–9).

With Proposition 11.2, Lemma 11.4 and Proposition 11.5 (or Proposition 11.6)

at hand, one can obtain a very explicit description of the categories T̂U (X( T, k)
and Tilt(O), as follows.

Theorem 11.8. (1) The functor V̂ induces an equivalence of monoidal cate-

gories between T̂U (X( T, k) and the full subcategory SMof(R∧T ⊗(R∧T )W R∧T )

of Mof(R∧T ⊗(R∧T )W R∧T ) generated under direct sums, direct summands, and

tensor products, by the objects R∧T and R∧T ⊗(R∧T )s R
∧
T with s ∈ S.

(2) The functor V induces an equivalence of categories between Tilt(O) and the
full subcategory SMof(R∧T ) of Mof(R∧T ) generated under direct sums, direct
summands, and application of functors R∧T ⊗(R∧T )s − (with s ∈ S) by the
trivial module k.

(3) These equivalences are compatible in the sense that the diagram

T̂U (X( T, k)
V̂
∼

//

π†

��

SMof(R∧T ⊗(R∧T )W R∧T )

−⊗R∧
T
k

��
Tilt(O)

V
∼

// SMof(R∧T )

commutes (up to canonical isomorphism) and that the convolution action

of T̂U (X( T, k) on Tilt(O) identifies with the action induced by the action
of Mof(R∧T ⊗(R∧T )W R∧T ) on Mof(R∧T ) by tensor product over R∧T .

Proof. The theorem follows from the results quoted above and Remark 7.9. �

One can also state similar results for triangulated categories.
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Theorem 11.9. There exist canonical equivalences of monoidal triangulated cate-
gories

KbSMof(R∧T ⊗(R∧T )W R∧T )
∼−→ D̂U (X( T, k),

KbSMof(R∧T )
∼−→ Db

U (Y,k).

These equivalences are compatible in a sense similar to that in Theorem 11.8.

Proof. The first equivalence follows from Proposition 5.10 and Theorem 11.8(1).
(The fact that the equivalence of Proposition 5.10 is monoidal in our setting follows
from standard arguments, see [Be, Lemma A.7.1] or [AMRW, Proposition 2.3].) The
second equivalence, and their compatibilities, follow from similar arguments. �

Remark 11.10. Using Theorem 11.8 and the known structure of the additive cate-

gories T̂U (X( T, k) and Tilt(O) one obtains some sort of “multiplicative variant” of
the theory of Soergel modules and bimodules (see [So4]) in our present setting. It
might be interesting to understand if such a theory can be developed algebraically,
and in bigger generality.

Finally, following [BBM], from our results we deduce the following description
of the category O. Here, for w = (s1, · · · , sr) a sequence of elements of S, we set

B(w) = R∧T ⊗(R∧T )s1 · · · ⊗(R∧T )sr−1 R∧T ⊗(R∧T )sr k.

Theorem 11.11. Choose, for any w ∈ W , a reduced expression w for w. Then
there exists an equivalence of categories between O and the category Mof(A), where

A =

(
EndR∧T

(⊕
w∈W

B(w)
))op

.

Proof. For v = (s1, · · · , sr) a sequence of elements of S, we set

T (v) = T̂s1 ?̂ · · · ?̂ T̂sr ?̂∆e.

Then by Corollary 11.3 and its proof, the object

P :=
⊕
w∈W

T (w) ?B ∆w0

is a projective generator of O, and we have End(P) ∼= Aop. Then the claim follows
from general and well known result, see e.g. [Ba, Exercise on p. 55]. �

12. Erratum to [AB]

In this section we use the above results to correct an error found in the proof
of [AB, Lemma 5]4 and generalize that statement to arbitrary coefficients. The
new proof below follows the strategy suggested in [AB, Remark 3]. The statement
of [AB, Lemma 5] involves an affine flag variety but it readily reduces to Lemma 12.1
below restricted to the special case of characteristic zero coefficients.

As in Section 10 we consider a connected reductive algebraic group G over an
algebraically closed field F of characteristic p 6= `, and choose a Borel subgroup B ⊂
G and a maximal torus T ⊂ B. Fixing the same data as in §10.3 we can consider the
standard perverse sheaf ∆χ := Avχ(∆e). (Note that the natural morphism ∆χ →

4Namely, it is claimed in this proof that the complex denoted “C” is concentrated in positive
perverse degrees. But the arguments given there only imply that its negative perverse cohomology

objects vanish.
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∇χ := Avχ(∇e) is an isomorphism.) In §10.3 we have considered the averaging

functors AvU! and AvU∗ . We can similarly define the functors

AvB! := (aB)!

(
kB �−

)
[dim B], AvB∗ := (aB)∗

(
kB �−

)
[dim B],

from Db,et
Wh (Y,k) to the B-equivariant derived category Db,et

B (Y,k), where aB :
B×Y → Y is the action morphism.

In the following lemma, we denote by Φ ⊂ X∗(T) the root system of (G,T),
and by ZΦ the lattice generated by Φ.

Lemma 12.1. The B-equivariant complex AvB∗ (∆χ) is concentrated in perverse
degrees ≥ −dim(T). Moreover, if X∗(T)/ZΦ has no torsion then we have

pH − dimT
(
AvB∗ (∆χ)

) ∼= ∆w0
.

Proof. Using Verdier duality, this statement is equivalent to the fact that AvB! (∆χ)
is concentrated in perverse degrees ≤ dim(T), and that if X∗(T)/ZΦ has no torsion

then we have pH dimT
(
AvB! (∆χ)

) ∼= ∇w0 . This is the statement we will actually
prove.

We have
AvB!

∼= !IndB
U ◦ Av

U
! ,

where !IndB
U : Db,et

U (Y,k)→ Db,et
B (Y,k) is the functor sending F to

(a′B)!(kB/U �̃F )[dim(B/U)].

(Here, a′B : B×UY → Y is the natural map, and �̃ is the twisted external product.)
Using Lemma 10.1, we deduce that

AvB! (∆χ) ∼= !IndB
U(Tw0

).

It is clear that for any B-equivariant perverse sheaf F on Y, the complex !IndB
U(F )

is concentrated in perverse degrees between 0 and dim(T). Hence the same claim
holds for any extension of such perverse sheaves, i.e. for any U-equivariant perverse
sheaf; thus the first claim is proved. Now the functor !IndB

U is left adjoint to

ForBU[dim(B/U)], where ForBU : Db,et
B (Y,k)→ Db,et

U (Y,k) is the forgetful functor.
Using this fact, it is not difficult to check that for any U-equivariant perverse sheaf
F on Y, the perverse sheaf

pH dimT
(

!IndB
U(F )

)
is characterized as the largest B-equivariant quotient of F .

To conclude the proof, it remains to prove that if X∗(T)/ZΦ has no torsion
then ∇w0

is the largest B-equivariant quotient of Tw0
. Now Tw0

has a costandard
filtration, whose last term is ∇w0 ; therefore there exists a surjection Tw0 � ∇w0

(which is unique up to scalar). Since ∇w0 is B-equivariant, we deduce that this
map factors as a composition

Tw0
� pH dimT

(
!IndB

U(Tw0
)
)
� ∇w0

.

The kernel of the second map here is the image of the kernel of our surjection
Tw0

� ∇w0
. Since the latter admits a costandard filtration, in view of Lemma 6.8,

if the former is nonzero then it admits ICe as a composition factor; in other words
the vector space

Hom
(
Tw0 ,

pH dimT(!IndB
U(Tw0))

)
has dimension at least 2.
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On the other hand, we have a surjection

Hom(Tw0
,Tw0

) � Hom
(
Tw0

, pH dimT(!IndB
U(Tw0

))
)
.

Our assumption on G means that the quotient morphism G � G/Z(G) (where
Z(G) is the center of G) induces a surjection X∗(T) � X∗(T/Z(G)). Applying
Corollary 9.2 to G/Z(G) we obtain that monodromy induces a surjection

RT � Hom(Tw0
,Tw0

).

Since pH dimT(!IndB
U(Tw0

)) is B-equivariant, the composition

RT � Hom(Tw0
,Tw0

) � Hom
(
Tw0

, pH dimT(!IndB
U(Tw0

))
)

factors through εT, proving that the rightmost term has dimension at most 1. This
condition prevents the kernel of the surjection pH dimT

(
!IndB

U(Tw0
)
)
� ∇w0

to be
nonzero, which concludes the proof. �

Remark 12.2. (1) Using the remarks in §1.7, one can show that another setting
in which the second claim in Lemma 12.1 holds is when ` is very good for
G and X∗(T)/ZΦ has no `-torsion (hence, in particular, when ` = 0).

(2) Replacing the proof of [AB, Lemma 5] by the proof given above, one can
check that all the results of [AB, §2] (hence, in particular, [AB, Proposi-
tion 2]) extend in a straightforward way to positive-characteristic coeffi-
cients.
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