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Abstract 
A novel two-dimensional (2D) coordination polymer with the formula 

Cr(pyrazine)2(OSO2CH3)2 has been synthesized and characterized. Powder X-ray 

diffraction data reveal that this material, which crystalizes in the Pnnm orthorhombic 

space group, is composed of rectangular grid layers with octahedral CrN4O2 nodes and 

pyrazine vertices. Since the redox-active pyrazine ligand can be reduced in the presence 

of transition metals, X-ray absorption spectroscopy and quantum chemical calculations 

were used to confirm the +II oxidation state of the Cr center. Magnetic susceptibility 

measurements indicate the presence of antiferromagnetic interactions between the 

chromium(II) centers through the neutral pyrazine and suggest an antiferromagnetic 

ordered state below TN ≈ 10 K, which was confirmed by heat-capacity measurements. 

 

*corresponding authors: Itziar Oyarzabal, Corine Mathonière, Rodolphe Clérac 

e-mail addresses: oyarzabal@crpp-bordeaux.cnrs.fr, corine.mathoniere@icmcb.cnrs.fr, 

clerac@crpp-bordeaux.cnrs.fr 

 

Dedication: Dedicated to Professor Spyros Perlepes on the occasion of his 65th birthday. 

Keywords: coordination polymers, pyrazine, magnetic order, X-ray spectroscopy 

 



 2 

1. Introduction 

Transition metal pyrazine-based coordination polymers have been extensively studied, 

with many examples of various dimensionalities already reported in the literature [1]. 

Specific attention has been given to {MII(pyrazine)2L2-nX-n}Y-2-n (n = 0, 1 or 2) and 

{MII(pyrazine)2Xn-}Y-2-n (n = 1 or 2) systems (M = metal ion, L = neutral coligand, X = 

anionic coligand, Y = counteranion), which all feature parallel sheets containing a 

periodic square or quasi-square array of metal ions linked by pyrazine ligands. The final 

dimensionality of these coordination compounds is conditioned by the denticity of the 

coligands (L or X); monodentate ligands lead to two-dimensional (2D) networks [2], 

while bidentate ligands result in three-dimensional (3D) systems [3]. In the latter case, 

the counterions (Y) are located inside the voids and ensure the neutrality of the system 

when necessary. From the point of view of the magnetic properties, the exchange 

interactions between the metal centers through the pyrazine ligands are usually weak, 

often giving rise to a 3D ordered antiferromagnetic ground state at low temperatures 

[2,3,4]. 

Very recently, our group reported the synthesis and characterization of an air-stable 2D 

coordination polymer based on chromium metal ions that belongs to this above-

mentioned family of compounds [5]. The reaction of CrCl2 with a large excess of pyrazine 

at 200 °C affords Cr(pyrazine)2Cl2 which incorporates CrIII metal ions and a singly 

reduced pyrazine scaffold, thanks to the redox non-innocence of the pyrazine ligand and 

the reducing ability of the chromium(II) used in the synthesis [6]. This unique electronic 

structure and the resulting strong degree of p-d conjugation in the CrIII/pyrazine layers 

induce an enormous Cr3+-radical exchange interaction (around –3000 K with the –2J 

convention) that stabilizes a 3D ferrimagnetic order at relatively high temperature (55 K). 

Concomitantly, the remarkable electronic delocalization within the chromium/pyrazine 

layer leads to a high electrical conductivity of 32 mS cm−1 at room temperature, which 

constitutes one of the highest conductivity values reported so far for coordination solids 

[7,8]. This unique material, in which a ferrimagnetic order and high electrical 

conductivity coexist [5], encouraged us to develop an intense research activity in order to 

modulate and eventually improve the physical properties of these 2D materials. With the 

aim to study the effect of the axial ligands on the magnetic and electronic properties of 

analogous chromium/pyrazine 2D systems, we report herein the synthesis and 
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characterization of Cr(pyrazine)2(OSO2CH3)2 for which the chloride coligands of 

Cr(pyrazine)2Cl2 have been replaced by methanesulfonate anions. 

 

2. Experimental section 
2.1. Materials and physical measurements 

All reactions were performed under a dry argon or nitrogen atmosphere using Schlenk or 

glovebox techniques. Acetonitrile was purified with an Innovative Technologies solvent-

purification system. All chemicals were purchased from Sigma-Aldrich (chromium 

powder, 99.5%, ~100 mesh and pyrazine, ≥ 99 %) or Alfa Aesar (methanesulfonic acid, 

≥ 98 %) and used as received. 

CHNS elemental analyses were performed by the Service d'Analyse Elémentaire of the 

University of Lorraine, Nancy. The FT-IR spectra were recorded in the range 600-

4000 cm−1 on a Thermo Scientific NicoletTM 6700 ATR (attenuated total reflection) 

spectrometer equipped with a Smart iTR diamond window (Figure S2). Raman 

spectroscopic characterization was carried out on a Horiba Jobin Yvon Xplora 

microscope equipped with a cooled Andor CCD detector (Figure S3). X-ray absorption 

(XAS) spectra were obtained at the ID12 beamline of the European Synchrotron 

Radiation Facility (ESRF). The fundamental harmonic of an Apple-II type undulator was 

used for the experiments at the Cr K-edge. All XAS spectra were recorded using total 

fluorescence yield detection mode and were subsequently corrected for reabsorption 

effects. Thermogravimetric analysis (TGA) of Cr(OSO2CH3)2(H2O)4 was carried out 

under an argon flow at a rate of 5 °C/min on a TA Q50 thermobalance (Figure S4). 

Magnetic measurements were performed on a Quantum Design SQUID magnetometer 

MPMS-XL operating between 1.8 and 300 K for applied dc fields ranging from −7 to 7 

T. An M vs H measurement was carried out at 100 K to confirm the absence of 

ferromagnetic impurities. The measurements were performed on a microcrystalline 

sample (12.90 mg) sealed in polypropylene bag (size and mass: 3 × 0.5 × 0.02 cm; 27.6 

mg). The magnetic data were corrected for the sample holder and intrinsic diamagnetic 

contributions of the sample. Heat capacity was measured on a manually pressed pellet of 

Cr(pyrazine)2(OSO2CH3)2 (7.0 mg) between 298 and 2 K by a thermal relaxation 

technique with a Quantum Design Physical Property Measurement System (PPMS-9) in 

zero-dc field. A blank including a small amount of Apiezon N grease (1.5 mg) used for 
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thermal contact was measured prior to sample mounting and subtracted from the 

measured total heat capacity. 

 

2.2. Synthesis of anhydrous Cr(OSO2CH3)2 

A mixture of chromium powder (2.0 g, 38 mmol) and methanesulfonic acid (6.0 g, 62 

mmol) in 7 mL of water was stirred under reflux overnight, to yield a bright blue solution. 

While still hot, the solution was filtered under argon to remove the unreacted Cr powder 

and allowed to cool to room temperature. The solvent was then removed under reduced 

pressure and the obtained powder was heated under dynamic vacuum at 180 °C for 7 

hours. Yield: 55%. Elemental analysis calc. for C2H6CrO6S2 (242.19 g mol−1) C: 9.92%, 

H: 2.50%, S: 26.48%; found C: 9.52%, H: 2.42%, S: 26.76%. FT-IR (�̅�, cm−1): 3034(w), 

2944(w), 1419(w), 1334(m), 1270(m), 1236(w), 1170(w), 1146(m), 1122(m), 1068(s), 

981(m), 785(s). 

 

2.3. Synthesis of Cr(pyrazine)2(OSO2CH3)2 

Anhydrous Cr(OSO2CH3)2 (0.20 g, 0.83 mmol) and pyrazine (1.0 g, 12.5 mmol) were 

placed inside a 30 mL Teflon-lined solvothermal reactor and allowed to react for 15 hours 

at 200 °C in an oven. The reactor was cooled to room temperature over about 2 hours and 

the brown microcrystalline product was washed with 20 mL of acetonitrile and dried in 

vacuo. Yield: 60-65%. Elemental analysis calc. for C10H14CrN4O6S2 (402.37 g mol−1) C: 

29.85%, H: 3.51%, N: 13.92%, S: 15.94%; found C: 29.59%, H: 3.49%, N: 13.90%, S: 

16.09%. FT-IR (�̅�, cm−1): 3108(w), 3019(w), 2930(w), 1490(w), 1421(s), 1343(w), 

1251(s), 1160(s), 1139(s), 1115(s), 1071(m), 1033(s), 837(m), 805(m), 775(s), 559(s). 

Raman (l = 785 nm) (𝑣	$ ,	cm−1): 671, 708, 785, 872, 1034, 1053, 1166, 1244, 1431, 1525. 

 

2.4. X-ray powder diffraction 

High-resolution X-ray powder diffraction measurements using the Debye-Scherrer 

geometry and transmission mode were performed with a horizontally mounted INEL 

cylindrical position sensitive detector (CPS-120) made of 4096 channels [9]. 

Monochromatic Cu-Kα1 (l = 1.54056 Å) radiation was selected by means of an 

asymmetrically focusing incident beam curved quartz monochromator. The generator 

power was set to 1.0 kW (40 kV and 25 mA). External calibration was performed by 
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means of cubic phase NAC (Na2Ca2Al2F14) mixed with silver behenate to convert the 

channels into angles by means of cubic spline fittings, providing an angular step of 0.029° 

(2q) between 0° and 120°. The powder sample was introduced at 297 K into a 0.5 mm 

diameter Lindemann glass capillary which was rotated around its longitudinal axes during 

data collection to prevent the effects of the preferred orientations. The acquisition time 

was 10 hours. Indexing of the X-ray powder diffraction pattern, Pawley refinement, 

structure solution by the rigid body direct space method using the Cu based isostructural 

compound as reference [10], and final Rietveld refinement were performed with the 

Materials Studio program [11]. Crystal data are summarized in Table S1 and the powder 

diffractogram can be found in the Supplementary Materials (Figure S1). 

 

2.5. Computational details 

Quintet, triplet and singlet states were computed for neutral molecular fragments, 

{Cr(pyrazine)4(OSO2CH3)2} and {Cr(pyrazine)4Cl2}, taken from the crystal structures 

(B3LYP/def2-TZVP) [12]. Exchange interactions between Cr(II) sites along the 

crystallographic a- and c-axes were calculated using the broken-symmetry approach 

[13,14]. Ab initio ligand field analysis and calculation of g- and D-tensors were done with 

the SOC-CASSCF(4,5)/def2-TZVP approach [15]. ORCA 4.0 was used for all 

calculations [16]. 

 

3. Results and discussion  

Transition metal methanesulfonate salts are usually prepared through reactions between 

the corresponding metal oxides, carbonates and/or chlorides and methanesulfonic acid 

[17]. These reactions give M(OSO2CH3)2(H2O)4 complexes, where four water molecules 

occupy the equatorial plane and two axial methanesulfonate groups complete the 

octahedral coordination sphere [18]. Thermogravimetric analysis has shown that 

dehydration of these compounds occurs in two steps, each of them corresponding to the 

loss of two water molecules. The anhydrous metal methanesulfonate salts are generally 

stable over a wide temperature range before decomposition [19]. 

The Cr methanesulfonate analogue was obtained by the reaction of metallic Cr and 

methanesulfonic acid and isolated for the first time. Although single-crystal X-ray 

crystallographic analysis was not possible due to sensitivity to air and moisture, a variety 
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of analytical techniques lead us to conclude that the formula of this methanesulfonate salt 

is indeed Cr(OSO2CH3)2(H2O)4. Infrared spectroscopy unambiguously reveals the 

presence of the sulfonate groups. The asymmetric and symmetric SO2 stretching 

vibrations appear in the 1270-1146 cm−1 region, and at 1068 cm−1, respectively, while the 

C-S stretching vibration manifests itself at 785 cm−1 (Figure S2). Dehydration of this 

compound occurs in two successive steps (Figure S4), each corresponding to the loss of 

two water molecules, as reported in the literature for other 3d methanesulfonate salts. The 

eventual loss of a total of four water molecules at 140 °C confirms their initial presence 

in Cr(OSO2CH3)2(H2O)4. 

The Cr(pyrazine)2(OSO2CH3)2 network was synthesized similarly to the Cr(pyrazine)2Cl2 

parent compound [5], by means of a solvothermal reaction of the dehydrated 

CrII/methanesulfonate salt and pyrazine (see experimental section). Importantly, the 

employment of anhydrous Cr(OSO2CH3)2 is crucial for the isolation of the final 2D 

compound as the reaction between the hydrated CrII methanesulfonate and an excess of 

pyrazine does not yield the desired product. 

 

3.1. Crystal structure description of Cr(pyrazine)2(OSO2CH3)2 

The crystal structure of Cr(pyrazine)2(OSO2CH3)2 (Figures 1 and 2) was solved from the 

Rietveld refinement of the X-ray powder diffraction data, which shows that it crystallizes 

in the orthorhombic Pnnm space group (see Supplementary Materials; Table S1 and 

Figure S1). The compound consists of stacked layers, each of them being composed of 

an infinite rectangular array of chromium metal ions (Cr···Cr distances of 8.086(2) Å and 

7.121(2) Å) bridged by bidentate pyrazine ligands. The coordination environment around 

the Cr centers is completed by two O atoms belonging to monodentate methanesulfonate 

anions (Figure 2). The 2D networks are spaced by 6.67 Å along the crystallographic b 

axis, and are arranged in such a way that the Cr centers of one layer are positioned above 

the middle of the rectangle created by the Cr centers in the adjacent layer. All Cr ions are 

six-coordinate with a distorted octahedral geometry. The Cr equatorial plane, lying in the 

ac crystallographic plane, contains two crystallographically independent pyrazine N 

atoms (N1 and N2), while the symmetry related O atoms (O1) from the methanesulfonate 

ligands occupy the apical coordination sites (Figure 2). The Cr-N1 bond length of 

2.162(1) Å is significantly shorter than the value of 2.631(2) Å between Cr-N2, while the 

Cr-O1 distance amounts to 1.996(6) Å. These metric parameters are consistent with a 
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Jahn-Teller distortion at the Cr site, thus suggesting that the chromium ion is in a +2-

oxidation state.  

 

 
 

Figure 1. Crystal structure of Cr(pyrazine)2(OSO2CH3)2: (left) side view of the layers 

stacking along the b direction and (right) top view of a layer composing the structure in 

the ac plane. Cr: dark green, N: blue, O: red, S: yellow, C: dark grey. 

 

 
 

Figure 2. Local coordination environment around the Cr centre in 

Cr(pyrazine)2(OSO2CH3)2. Cr: dark green, N: blue, O: red, S: yellow, C: dark grey. 

 

Similar bond distances were observed in the related Cu(pyrazine)2(OSO2CH3)2 layered 

structure [10], where a comparable distortion is observed for the CuII centers. Also 

supporting the presence of CrII centers in Cr(pyrazine)2(OSO2CH3)2, these results contrast 

considerably with the structural parameters found in the CrIII(pyrazine)2Cl2 analogue, in 

which (i) the 2D network is closer to a square lattice with similar Cr×××Cr distances of 
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6.90351(4) and 6.97713(4) Å and Cr–N bond lengths of 2.003(2) and 2.059(2) Å and (ii) 

a significant axial distortion is also observed but perpendicularly to the Cr/pyrazine layer 

along the Cl–Cr–Cl axis with a Cr–Cl bond length of 2.337(1) Å [5]. 

 

3.2. Electronic structure analysis 

DFT calculations capture a significant difference in the electronic structure of the 

molecular model fragment, {Cr(pyrazine)4(L)2}, depending on the axial ligand, L, 

chloride [5] versus methanesulfonate anions shown in Figure 2. In the case of chloride 

[5], the triplet (ST = 1) ground state is about 19 kcal mol-1 (9560 K) lower in energy than 

the quintet state and about 40 kcal mol-1 (20100 K) lower than the singlet one. Mulliken 

population analysis shows the presence of 3.18 and 2.74 unpaired electrons on the Cr site, 

indicating a {CrIII[(pyrazine)4]•Cl2} moiety with one unpaired electron smeared over the 

four pyrazine ligands for both the ST = 2 and ST = 1 states, as previously found [5]. In 

contrast, the axial methanesulfonate anions lead to an ST = 2 ground state, which is 22 kcal 

mol-1 (11100 K) lower than the triplet state and 70 kcal mol-1 (24500 K) lower than the 

singlet one. The Mulliken population is estimated at 4.03 unpaired electrons on the Cr 

site in agreement with the presence of a {CrII(pyrazine)4(OSO2CH3)2} moiety featuring a 

non-reduced pyrazine scaffold. 

 

 
Figure 3. Splitting of d-orbitals computed by ab initio ligand field theory for 

{CrII(pyrazine)4(OSO2CH3)2} and {CrIII[(pyrazine)4]•Cl2} fragments. 

 

Ab initio ligand field analysis shows that the overall splitting of the d-orbitals is 

significantly different and quite smaller in the presence of axial methanesulfonate ligands 
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in comparison to the chloride case (Figure 3), as expected for the lower oxidation state 

and the Jahn-Teller distortion in the methanesulfonate case. The 

{CrII(pyrazine)4(OSO2CH3)2} moiety has the ligand field z-axis placed along the 

elongated Cr-N2 bonds, leading to a pronounced splitting of the dx2-y2 and dz2 orbitals 

(Figures 3 and S7). 
 
3.3. Spectroscopic confirmation of the chromium oxidation state 

In the recently reported coordination polymer Cr(pyrazine)2Cl2 [5], the pyrazine ligands 

are partially reduced by the CrII metal ions, resulting in the oxidation of the chromium 

centers in the final material. To explore this possible redox phenomenon in 

Cr(pyrazine)2(OSO2CH3)2, X-ray absorption spectroscopy (XAS) measurements were 

performed at the Cr K-edge to confirm the +II-oxidation state of the chromium sites 

suggested by the X-ray structure analysis and DFT calculations (vide supra). XAS data 

were also collected for two reference compounds, trans-[CrIICl2(NCNH2)4] (Cr(II)) [20] 

and trans-[CrIII(pyridine)4Cl2](ClO4)·1/4H2O (Cr(III)) [5] in order to make a direct 

comparison of the XAS signature for Cr(pyrazine)2(OSO2CH3)2 and chromium-based 

complexes which have a well-established oxidation state. Systematically, the 

experimental data show intense rising edge features, corresponding to 1s → 4p 

transitions. The dipole-forbidden 1s → 3d transitions (Figure 4) are also observed at the 

pre-edge but with a much weaker intensity. As previously discussed in the literature 

[5,21], the first pre-edge transition is a fingerprint of the Cr oxidation state independently 

of the ligand field. A close examination of the XAS results reveals important similarities 

between Cr(pyrazine)2(OSO2CH3)2 and Cr(II), with the energy of the CrII pre-edge 

transition in Cr(II) being only 0.2 eV higher in energy than in the present 2D compound. 

Therefore, both the crystallographic and spectroscopic characterization demonstrate the 

presence of CrII centers in Cr(pyrazine)2(OSO2CH3)2. 
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Figure 4. Normalized X-ray absorption spectroscopy (XAS) data at the Cr K-edge for 

Cr(pyrazine)2(OSO2CH3)2 at 295 K and reference compounds: Cr(II) and Cr(III) 

recorded both at 2.1 K. Inset: Magnification of the Cr K pre-edge region. 

 

3.4. Magnetic properties 

The temperature dependence of the magnetic susceptibility of Cr(pyrazine)2(OSO2CH3)2 

was measured between 280 and 1.8 K under an applied dc field of 0.1 T (Figure 5). The 

molar magnetic susceptibility-temperature product, cT, is 2.9 cm3 K mol−1 at 280 K, in 

good agreement with the presence of a high-spin S = 2 CrII site (C = 3 cm3 K mol−1 with 

g = 2) as already concluded from theoretical, crystallographic and spectroscopic studies 

(vide supra). The cT product steadily decreases with decreasing temperature and reaches 

a value of 0.08 cm3 K mol−1 at 1.85 K. Such thermal behavior indicates the presence of 

predominant antiferromagnetic interactions between the magnetic chromium centers, 

which is also supported by a broad maximum of the c vs. T plot at 20 K (Figure 5). This 

magnetic feature is indeed commonly observed in pyrazine-based 2D quadratic-layered 

compounds in the presence of intra-layer antiferromagnetic interactions [2c]. The 

magnetic behavior of Cr(pyrazine)2(OSO2CH3)2 can also be discussed from the c−1 vs T 

plot (Figure S5) which shows a linear relationship in the 30-280 K temperature range 

consistent with a Curie-Weiss law (g = 2.11(5) and q = –40 K) and dominating 

antiferromagnetic interactions. 
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Figure 5. Temperature dependence of the magnetic susceptibility, c (equal to M/H per 

mole of Cr(pyrazine)2(OSO2CH3)2; top), and the cT product (bottom) at 0.1 T (black 

circles are the experimental points). The solid red, blue and green lines are the best fits of 

the experimental data between 15 and 280 K to the Lines, Fisher and 1D-QMC models, 

respectively, as discussed in the main text. Insets: (top) Temperature dependence of the 

magnetic susceptibility at different applied field between 0.1 and 7 T for temperatures 

below 30 K. (bottom) Field dependence of the magnetization up to 7 T at different 

temperatures between 1.85 K and 30 K. 

 

Considering the 2D arrangement of the magnetic chromium centers in this system, the 

susceptibility data were fitted to Lines’ model, which is usually applied to describe the 

paramagnetic phase of 2D isotropic or weakly anisotropic quadratic-layer 
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antiferromagnets (using the spin Hamiltonian: ℋ = –2J2DSSi·Sj and the expression 

obtained from high-temperature series expansion techniques) [22]. This model assumes 

that the magnetic couplings, Ja and Jc, in the two directions of the coordinating layer are 

equivalent and therefore, only an average J2D value is expected in the present case. The 

experimental data can be nicely reproduced by this approach down to 15 K (solid red 

lines in Figure 5), yielding g = 2.03(5) and an average intralayer coupling constant, J2D/kB 

= −1.73(5) K. As the Cr···Cr distances through the pyrazine ligands are indeed 

significantly different in the two crystallographic directions (8.086(2) Å versus 

7.121(2) Å along the a and c axes, respectively; vide supra), complementary Heisenberg 

S = 2 spin chain models developed by Fisher [23] and Quantum Monte Carlo (QMC) [24] 

methods were also considered. With these approaches, the magnetic interaction, Ja, 

between Cr centers along the a direction is neglected, but the theory/experiment 

agreement (solid blue and green lines in Figure 5) is as satisfactory as the Lines’ model 

above 15 K, yielding J1D/kB = −3.26(5) K (g = 2.04(5)) and J1D/kB = −3.11(5) K (g = 

2.03(5)) for the Fisher and QMC models, respectively. Of course, these 2D and 1D 

models, which involve different approximations, do not give the same theoretical value 

of the magnetic interaction through the pyrazine ligand. While the 2D model gives J2D, 

an average estimation of Ja and Jc, the 1D models overestimate the main interaction Jc in 

order to compensate for the absence of Ja in this approach. Therefore, J2D (−1.73 K) and 

J1D (≈ −3.2 K) should be considered as upper limits of the weakest and strongest 

couplings, most likely Ja and Jc, in Cr(pyrazine)2(OSO2CH3)2. Interestingly, DFT 

calculations preferentially support the above 1D models, showing that the exchange 

interaction along the a-axis should be much smaller than along the c-axis with the 

following calculated values: Ja/kB = −0.01 K and Jc/kB = −5 K. It is worth mentioning that 

CASSCF calculations allow also an estimation of the local CrII g-tensor [1.96, 1.99, 1.99], 

its magnetic anisotropy parameters D/kB = −3 K and E/D = 0.07 (using the following 

Hamiltonian: ℋA = DSCr,z2+E(SCr,x2-SCr,y2)). Due to the magnitude of the local anisotropy, 

its effects are not expected to influence the magnetic susceptibility above 15 K. 

Below 15 K, the magnetic susceptibility becomes significantly field dependent, as shown 

in the inset of the Figure 5 top part, and the magnetization does not reach the expected 4 

µB saturation value at 1.85 K and 7 T (inset of the Figure 5 bottom part). These features, 

as well as the non-strictly linear M vs H data, suggest a possible magnetic phase transition 

below 15 K toward a three-dimensional antiferromagnetic state. 
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Figure 6. Black circles: temperature dependence of the heat capacity, Cp, per mole of 

Cr(pyrazine)2(OSO2CH3)2 measured on a microcrystalline sample under zero-applied 

field. The red solid line corresponds to the empirical polynomial (at the 6th order) baseline 

used to determine the non-magnetic background of the heat capacity (Cbackground). Blue 

dots: Temperature dependence of the magnetic component (Cpm) of the heat capacity 

deduced from Cp – Cbackground. 

 

In order to probe a possible magnetic phase transition below 15 K, heat capacity 

measurements were performed on Cr(pyrazine)2(OSO2CH3)2. As shown in Figure 6, a 

reproducible broad feature is observed in the 5-15 K temperature range, confirming the 

presence of an ordered magnetic ground state. The broadness of this feature could result 

from the thermal excitations among S = 2 microspin states (Schottky anomaly) [25] and/or 

from large spin correlations always present in low dimensional systems above the 

transition temperature [26]. In order to further analyze these calorimetric measurements, 

the magnetic component (Cpm, Figure 6) of the heat capacity was separated from the 

baseline modeled to an empirical polynomial expression (red line in Figure 6). This non-

magnetic background, mainly composed of the lattice contribution, was then subtracted 

from the measured heat capacity data (Cp) and the resulting magnetic component of Cp 

(Cpm) was plotted as shown in Figure 6 (blue dots). A relatively broad magnetic peak with 

a maximum centered at 9.7 K is clearly detected. The integration of Cpm/T in the 2-30 K 

temperature range leads an associated magnetic entropy (Sm), which reaches a saturation 

value of 2.7 J K−1 mol−1 (Figure S5). This estimation is lower than the calculated entropy 

from the simple Rln(2S + 1) relation (13.4 J K−1 mol−1). This discrepancy is not surprising 
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considering the large entropy loss above the transition temperature due to the presence of 

short range correlations always present in low dimensional magnetic systems [26]. The 

combined heat capacity and magnetic measurements reveal unambiguously the 

occurrence of long-range antiferromagnetic order in Cr(pyrazine)2(OSO2CH3)2, with a 

Néel temperature around 10 K. 

 
4. Conclusions 

A novel Cr/pyrazine-based 2D coordination network has been synthesized by using 

Cr(OSO2CH3)2, a precursor salt reported here for the first time. The structure of this 

coordination polymer, as established from X-ray powder diffraction data, shows that this 

solid consists of neutral Cr(pyrazine)2(OSO2CH3)2 layers containing an array of 

chromium metal ions bridged by bidentate pyrazine ligands and coordinated to 

methanesulfonate anions in their apical positions. As also supported by quantum chemical 

calculations, crystallographic, spectroscopic and magnetic characterization demonstrate 

unequivocally the presence of high-spin CrII centers which contrast with the 

Cr(pyrazine)2Cl2 analogue which incorporates CrIII metal ions and a singly reduced 

pyrazine scaffold [5]. The redox process involving the oxidation of CrII in CrIII and the 

reduction of one pyrazine in Cr(pyrazine)2Cl2 is clearly disabled in 

Cr(pyrazine)2(OSO2CH3)2, likely due to the change of the redox potential at the Cr site 

induced by the substitution of chloride by methylsulfonate. The impact of the presence or 

absence of this redox process on the physical properties is colossal. While a high electrical 

conductivity (32 mS cm−1) and an ordered ferrimagnetic phase (< 55 K) are observed in 

Cr(pyrazine)2Cl2, the present material is an antiferromagnet below 10 K and exhibits a 

gigaohm resistivity. This work clearly highlights that the activation of the redox process 

in these 2D pyrazine coordination networks is the key parameter in the design of high TC 

magnets possessing high electrical conductivity. 

 

Appendix A. Supplementary data 

CCDC 1836082 contains the supplementary crystallographic data for 

Cr(pyrazine)2(OSO2CH3)2. These data can be obtained free of charge via 

http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge 

Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 

1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk. 
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