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ABSTRACT

We present a new method to estimate shear measurement bias in image simulations that significantly improves the precision with
respect to current techniques. Our method is based on measuring the shear response for individual images. We generated sheared
versions of the same image to measure how the galaxy shape changes with the small applied shear. This shear response is the
multiplicative shear bias for each image. In addition, we also measured the individual additive bias. Using the same noise realizations
for each sheared version allows us to compute the shear response at very high precision. The estimated shear bias of a sample of
galaxies is then the average of the individual measurements. The precision of this method leads to an improvement with respect to
previous methods concerned with the precision of estimates of multiplicative bias since our method is not affected by noise from
shape measurements, which until now has been the dominant uncertainty. As a consequence, the method does not require shape-noise
suppression for a precise estimation of shear multiplicative bias. Our method can be readily used for numerous applications such as
shear measurement validation and calibration, reducing the number of necessary simulated images by a few orders of magnitude to
achieve the same precision.

Key words. gravitational lensing: weak – methods: data analysis – methods: observational – methods: statistical –
cosmology: observations – dark matter

1. Introduction
Upcoming weak-lensing surveys have the goal of measuring
cosmology with unprecedentedly high precision. Their very
high statistical power requires systematic errors to be very
well understood and calibrated. One of the main sources of
systematic error for weak gravitational lensing is the bias in
the measurement of the galaxy shear, which carries the cos-
mological information about the galaxy’s large-scale structure
and its evolution. For upcoming experiments such as Euclid
(Laureijs et al. 2011), the Large Synoptic Survey Telescope
(LSST, LSST Science Collaboration 2009), or the Wide Field
Infrared Survey Telescope (WFIRST, Spergel et al. 2013), we
need to calibrate shear biases to sub-percent precision. Tradi-
tional calibration methods create large suites of galaxy image
simulations and estimate the shear bias for a given shape mea-
surement method, point spread function (PSF), galaxy popula-
tion, noise level, and other factors. Shear bias estimation to date
has been dominated by the intrinsic ellipticity dispersion of the
simulated galaxies. To reach the desired precision requires a sim-
ulation volume that exceeds the actual observational data that
are to be calibrated, with billions of simulated galaxies. This
has a dramatic impact on the computation load of generating
both the simulations and shape measurement methods, and there-
fore on limiting the complexity, storage, and re-usability (e.g.
Hoekstra et al. 2017).

Existing methods to reduce the number of simulations made
use of rotated galaxies with the same shear such that their
mean intrinsic ellipticity cancels out differences. The first pro-
posed method was the so-called ring test (Nakajima & Bernstein

2007), using galaxies evenly distributed in their orientation of
intrinsic ellipticity with constant modulus, and with constant
shear. Massey et al. (2007) reduced the number of objects to a
pair of orthogonally oriented galaxies. Both approaches result
in a zero net intrinsic ellipticity. This reduces the error of the
estimated shear, but does not entirely cancel out the contribution
from the measured shapes. Stochasticity in the measurement, for
example due to pixel noise and the PSF, will perturb the exact
shape-noise cancellation. In addition, systematic biases break the
input ellipticity symmetry. Sources of these systematic effects
are ellipticity bias (the response of the measurement to intrin-
sic ellipticity) when it depends on the orientation of the galaxy
with respect to the coordinate system, the PSF, or the shear, and
also selection effects, including non-equal galaxy weights. The
selection-induced shear bias calibration for the Hype Suprime-
Cam (HSC) survey was performed without shape-noise suppres-
sion (Mandelbaum et al. 2018).

In the case of simulating fields with non-constant shear, noise
suppression can be achieved by simulating the intrinsic shape-
noise distribution of galaxies as a pure B-mode field. Using
an estimate of the E-mode power spectrum or real-space E-
mode correlation is then insensitive to the intrinsic shape noise
(Kitching et al. 2011). However, simulating a realistic intrin-
sic ellipticity distribution inevitably leads to a power leakage
from B to E (Mandelbaum et al. 2014). In addition, measure-
ment stochasticity and biases, causing imperfect noise cancella-
tion as described above, also apply in the case of variable shear.

In this paper we propose a new method to estimate the shear
bias from simulations that is insensitive to the shear estimator
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noise coming from both the intrinsic and the measured elliptic-
ity dispersion. This reduces the number of required simulated
galaxies by three orders of magnitude. Even though we estimate
a bias for each galaxy individually, for calibration purposes we
only use the mean bias averaged over a sample of galaxies. This
avoids unstable ratios of two noisy quantities.

Our method is inspired by the metacalibration technique
(Sheldon & Huff 2017; Huff & Mandelbaum 2017), where the
shear bias is estimated as the shape estimator response to a small
shear applied directly to the individual images. This technique
is used to calibrate shear bias on real data without the need to
create simulations (Zuntz et al. 2018). However, it requires us
to perform operations on the images such as PSF de- and re-
convolution, and subtraction and addition of noise components.
Our method is not a calibration technique, but a shear bias esti-
mation. As it is simulation-based, we do not need to de-convolve
and de-noise observed images with an estimated PSF, which is
notoriously difficult. We can apply any shear to the simulated
image before the PSF convolution step. The challenge for shear
calibration using our method, as with all simulation-based tech-
niques, is to closely match the properties of the simulations to
the observed data in order to minimize the important biases due
to selection effect (see e.g. (Fenech Conti et al. 2017)).

This paper is organized as follows. In Sect. 2 we define the
basic required concepts. Section 3 introduces our new shear bias
estimation method and contrasts it with existing ones. In Sect. 4
we analytically compute the precision of our method and com-
pare it to existing shear bias estimation techniques. In Sect. 5 we
describe the galaxy image simulations, which we use in Sect. 6 to
test our analytical descriptions, and to compare our method with
existing ones. We discuss potential applications of our method
in Sect. 7, and give a summary in Sect. 8.

2. Definitions

2.1. Shear bias

We define multiplicative and additive shear bias for a population
of galaxies. Let gα be the shear of a given galaxy and eobs

α its
observed ellipticity, where α = 1, 2 stands for the two compo-
nents of the complex shear and ellipticity. If the mean intrinsic
ellipticity 〈eI

α〉 of the galaxy sample is zero, we can estimate the
mean reduced shear gobs

α as the average of the observed elliptici-
ties1,

gobs
α ≡ 〈e

obs
α 〉 = cα + (1 + mα)〈gα〉. (1)

This estimator is biased in general, and cα,mα are the ensemble-
average additive and multiplicative shear biases (Huterer et al.
2006; Heymans et al. 2006). Here and in the following, we
ignore non-linear contributions to the bias. We also neglect
higher-order terms, for example the term g∗eI in the denominator
of the shear estimator introduced in Seitz & Schneider (1997).
Further we set the convergence κ = 0 such that the (observable)
reduced shear g = γ/(1 − κ) equals the shear γ.

Alternatively, we can describe a shear bias for individual
galaxies as the response of the observed ellipticity to a small
shear distortion (Huff & Mandelbaum 2017; Sheldon & Huff
2017):

Rαβ =
∂eobs

α

∂gβ
· (2)

1 The following commonly used equation ignores the 2 × 2-tensor
nature of m. We will use the full expression for the shear response
defined below.

The shear response R is a 2 × 2 matrix whose diagonal (off-
diagonal) terms represent the response of the ellipticity measure-
ments to shear changes of the same (opposite) component. An
additive shear bias for individual galaxies is defined as

aα = eobs
α − Rααgα − eI

α, (3)

where eI
α is the intrinsic ellipticity. We note that eI

α can be
defined if we use an analytic expression for the galaxy pro-
file, but complex galaxy morphologies do not necessarily have
a unique “true” ellipticity, in which case we cannot measure
aα using Eq. (3). We can however estimate the additive bias if
〈eI
α〉 = 0 over the population, which can be fulfilled under cer-

tain symmetry assumptions without the need to define intrinsic
ellipticity, as we describe later in Sect. 3.1.

A perfect shape estimation corresponds to R being the unit
matrix and aα = 0. If the shape measurement conserves the spin-
2 property of ellipticity and shear, Rαβ needs to be a combina-
tion of a scalar and a spin-4 tensor. If we neglect the latter, the
response collapses to a single non-zero number R11 = R22, with
R12 = R21 = 0.

2.2. Shear calibration

A simulation-based calibration of measured shear estimates typ-
ically measures ensemble biases mα, cα from a large number
of image simulations with different galaxy properties and shear
gα via Eq. (1). A calibrated shear estimate is then obtained
by correcting the observed ellipticities by the ensemble biases,
(eobs
α − cα)/(1 + mα), provided the simulated galaxy population

matches the data in all relevant properties.
When measuring the individual responses using Eqs. (2)

and (3), an unbiased shear estimator is given as 〈R〉−1〈eobs −

〈a〉〉 ≈ 〈R〉−1〈Rγ〉 (see Sheldon & Huff 2017). Below we present
our method to compute R for each simulated galaxy without
being sensitive to shape noise.

3. Shear bias measurement methods

3.1. Our method: Shear bias estimation reducing
measurement noise

We measure the shear response using Eq. (2) for individual sim-
ulated galaxy images as follows. For each simulated galaxy with
given properties, intrinsic ellipticity eI and given shear g (which
can but need not be zero), we create additional, sheared ver-
sions of the same galaxy. The galaxy is analytically sheared
before PSF convolution and noise addition, so that the differ-
ences between the images only come from the shear. We then
approximate the shear response by finite differences, following
(Huff & Mandelbaum 2017),

Rαβ ≈
eobs,+
α − eobs,−

α

2∆gβ
, (4)

where eobs,±
α is the measured ellipticity of the image with addi-

tional small shear ±∆gα. With three sheared images we can esti-
mate all components of R for each galaxy. To determine the
shear response averaged over a sample of galaxies, we only
require two appropriately chosen shear values (see Sect. 5 and
Appendix A for more details).

To further reduce the stochasticity of our response estimator,
we use the same noise realization for all image copies for each
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Fig. 1. Scheme of shear response estimation for a single galaxy for R11.

galaxy. This guarantees that the contribution from the intrin-
sic ellipticity exactly cancels out for our bias estimator. Then,
the intrinsic ellipticity can be considered as just another prop-
erty of the galaxy (like the flux or radius) and as such affects
the shear bias in a deterministic way, but does not contribute
to the statistical uncertainty. Therefore, we can obtain a much
more precise bias estimation compared to methods that aver-
age over observed galaxy ellipticities. This will be quantified in
Sect. 4.

When randomizing the noise for each image, we obtain the
same mean but noisier response values. Keeping the same noise
realization of our images is not an artificial noise reduction in
the bias estimate, it only helps us to obtain a noise-free numeri-
cal derivative. The noise properties will be sufficiently well sam-
pled by the different simulated galaxies. The additive shear bias
for each galaxy is measured using Eq. (3) on the original, non-
sheared image.

In Fig. 1 we show an example of the estimated component
of the response, R11, for one galaxy image. The finite-difference
estimate is insensitive to the shear value as long as it is small,
|∆gα| . 0.05 for α = 1, 2. More details about the robustness of
our new estimator are presented in Appendix A.

From the measurements of individual galaxy shear biases,
we estimate the ensemble multiplicative and additive bias of a
galaxy population as the average of the individual estimates,
respectively 〈Rαα〉 and 〈aα〉. As mentioned before, we do not
need to define eI

α as far as 〈eI
α〉 = 0 since then 〈aα〉 = 〈eobs

α 〉.
This is true for the usual cases of study with randomly oriented
galaxies (assuming eI transforms under rotations like a spin-2
quantity) when the shape estimators have no preferred direction
(which is something expected for most of the estimators). This
can be a weighted average if galaxies have different weights. We
ignore the non-diagonal terms of R, as we have found that their
contribution averages out to zero if the shear values are symmet-
rical around zero (see Appendix A). In the following two sub-
sections, we review two commonly used calibration methods to
estimate the shear bias.

3.2. Linear fit estimation

The most common method to estimate the shear bias in
the literature is to perform a linear fit of Eq. (1) to
simulated sheared galaxy images (e.g. Heymans et al. 2006;
Miller et al. 2013; Zuntz et al. 2013; Mandelbaum et al. 2015,
2018; Fenech Conti et al. 2017; Huff & Mandelbaum 2017;
Hoekstra et al. 2017; Pujol et al. 2017; Zuntz et al. 2018). For
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Fig. 2. Scheme of the estimation of biases m1 and c1 from the linear fit
of the distribution of eobs

1 as a function of g1. In the top panel, the white
dashed line shows the linear fit of the distribution, represented by the
colour map. In the bottom panel, the blue points and error bars show the
mean 〈eobs

1 〉 of the galaxies with the same shear. The black dashed line
shows the weighted linear fit of the blue points.

each galaxy population (e.g. for each bin of given galaxy prop-
erties) we obtain the additive and multiplicative biases cα and
mα from a linear fit of the measured ellipticities as a function of
simulated input shear, as illustrated in the top panel of Fig. 2.
The error of the parameter estimation can then be obtained by
jackknife resampling and obtaining the distribution of best-fit
parameters for each resample.

Alternatively, the straight line can be fitted to the average
measured ellipticities for each input shear, 〈eobs

α 〉, as shown in the
bottom panel of Fig. 2. Both fitting schemes provide consistent
values and error bars for the shear bias parameters.

3.3. Linear fit estimation with shape-noise suppression

The precision of the linear fitting technique to measure shear
bias is limited by shape noise stemming from the intrinsic ellip-
ticity distribution. Reducing this noise requires the use of a very
large number of galaxy images. An alternative method to reduce
the shape-noise contribution is to force the mean ellipticity to
cancel out, by simulating orthogonal pairs of galaxy images
(Massey et al. 2007; Mandelbaum et al. 2014), As described in
(Massey et al. 2007), the estimated shear of a pair of orthogonal
objects is

gobs
α =

eobs
α,A + eobs

α,B

2
, (5)
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where eobs
α,A and eobs

α,B are the observed ellipticities of respectively
two orthogonal galaxies, whose intrinsic ellipticities cancel each
other out exactly, eI

α,A = −eI
α,B for both α = 1, 2.

The shear bias is then estimated from a linear fit of gobs
α as a

function of gα. This estimator is an improvement over the sim-
ple linear fit reviewed in the previous section, with reduced con-
tribution from shape noise. However, the observed ellipticities
in the absence of shear do not cancel each other out in gen-
eral, due to various effects. First, the stochasticity of the two
(assumed to be independent) ellipticity measurements means
that eobs

α,A + eobs
α,B is a random variable with non-zero dispersion.

We model this dispersion in Sect. 4.3. Second, ellipticity bias can
be different between the orthogonal pairs. Ellipticity bias can be
defined from a linear fit between observed and true ellipticities
(see Eq. (1) from Pujol et al. 2017) when a true ellipticity can be
defined, and it depends on the galaxies’ orientation, either with
respect to the pixel coordinate system or to the PSF (Pujol et al.
2017). This can cause the estimated shear of orthogonal pairs to
be biased with respect to gα (Kacprzak et al. 2012; Pujol et al.
2017). Third, selection effects can break the symmetry if one of
the two galaxies is missed. This selection can occur at the detec-
tion level or the shape measurement stage, both of which can fail
for one of the two objects. This could be due to a dependence on
the relative orientation of the galaxy with respect to the PSF, or
random noise fluctuations in particular in the low-SNR range.
Fourth, when accounting for galaxy weights, the ellipticity can-
cellation is broken.

A generalization of this method consists in simulating sets of
n galaxies on a ring with constant |eI|, rotated uniformly such that
their mean intrinsic ellipticity is zero (Nakajima & Bernstein
2007). The case with n = 2 corresponds to the case of orthogo-
nal pairs discussed above. In Sect. 4.3 we show that increasing
n beyond n = 2 does not reduce the shape-noise contribution to
the shear bias estimator.

4. Error estimation

In this section we study and compare the precision of the differ-
ent shear bias estimators. In this section, a latin index of shear,
ellipticity, bias, and so on indicates a galaxy number from a pop-
ulation. The figures shown in this section are obtained from the
simulated images described in Sect. 5, and only serve for a visu-
alization of our method. Their quantitative analysis is left for
Sect. 6.

4.1. Our method: Shear bias estimation reducing
measurement noise

Each galaxy i with properties Pi has a shear response Ri esti-
mated as described in Sect. 3.1, from different sheared versions
of the original simulated galaxy image with the same noise real-
ization. The response Ri depends deterministically on Pi, given
by the input parameters of the simulated image, the PSF, and
stochastically on the random processes of the image realization.
The latter in our case is a simple Gaussian pixel noise realiza-
tion, but we can include other effects such as Poisson noise and
cosmic rays. The effects on R from this stochasticity can be
measured by repeatedly estimating Ri for fixed Pi with differ-
ent noise realizations. This provides us with samples from the
probability density function (PDF) of Ri(Pi). This PDF defines
the uncertainty σN,α for both components of the estimated shear
response due to stochastic effects.
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Fig. 3. Stochasticity of the measurement of R due to noise. The upper
and lower panel show the distribution of R11 (blue histogram) and
R22 (in green) for two different galaxies, respectively, shown as inlaid
postage stamps, with different properties.

In Fig. 3 we show two examples of this stochasticity com-
ing from noise. We have measured R 10 000 times for 10 000
different noise realizations for the two galaxies shown in the
figure (see Sect. 5 for details on the simulated images and shape
measurement). As before, for each realization we do not change
the noise for the original and the four sheared versions of the
image. The mean responses 〈Ri〉 depend on the galaxy prop-
erties Pi. In general, the response is further from 1 for small
galaxies (the top panel) and closer for large galaxies (bottom
panel), and the two response components can be different as in
the top panel. These results are consistent with the bias results
from (Pujol et al. 2017).

The dispersion for each component σN,α of the response
depends on the noise level and on the properties P of the object.
The dispersion is generally larger for smaller objects. For our
shear estimation method, we only measure Rαα once per galaxy,
which means that each shear response Rααi(Pi) has a stochastic-
ity of σN,αi.

Quantifying σN,α allows us to estimate the number of galax-
ies we need to simulate such that the stochasticity is smaller than
the uncertainty we want to obtain. To meet an allowed shear
bias uncertainty of σreq,α, assuming that all galaxies have the
same stochasticity σN,α (alternatively one can use the mean, or
a worst-case value), we would need at least Nmin ∼ σ

2
N,α/σ

2
req,α

image simulations not to be dominated by pixel noise.
In the following, for the calculation of the precision of our

estimator, we do not try to disentangle the contributions from
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noise and galaxy properties. Our bias estimator mα for a sam-
ple of N equally weighted galaxies (the application of different
weights is discussed in Sect. 7.2) is the average of the individual
shear responses,

1 + mα = 〈Rαα〉 =

∑N
i=1 Rααi(Pi)

N
· (6)

The uncertainty of the estimated response is

σm,α =
σR,α
√

N
, (7)

where σR,α is the standard deviation of the distribution of Rαα.
Analogously, the additive bias is estimated as

cα = 〈aα〉 =

∑N
i=1 aαi(Pi)

N
, (8)

with uncertainty

σc,α =
σa,α
√

N
, (9)

where now σa,α corresponds to the dispersion of the additive
bias over the galaxy population. Figure 4 shows the distributions
of the R11 and a1 for our sample of simulated images (see in
Sect. 5). Only the multiplicative bias is insensitive to the elliptic-
ity distribution or uncertainty. The additive bias estimated using
Eq. (9) is still affected by shape noise.

4.2. Linear fit estimation

The observed ellipticity of a galaxy i with properties Pi can be
defined as

eobs
αi = Rααi(Pi)gαi + aαi(Pi) + S αi, (10)

where gαi is the shear and S αi is the stochasticity around the lin-
ear regression of the measurement for galaxy i that will be dom-
inated by the intrinsic ellipticity eI

αi. We write the dependence of
observed to intrinsic ellipticity as S αi = f (eI

αi) with some generic
function f . In general, f is not the identity that would represent a
perfect measurement. Because ellipticity is typically larger than
shear, this relation is likely to be non-linear. When comparing
the predictions with results from data, we only make the weak
assumption that S α is dominated by eI

α.
For the linear fit to Eq. (10) we use a set of values of gα and

eI
α, whose distributions have dispersions σg,α and σe,α, respec-

tively. In Fig. 5 we show these distributions measured on our
simulated images, which we describe in more detail in Sect. 5.

The best values of (1 + mα) and cα obtained from a linear
regression fit from Eq. (10) are given by (Kenney & Keeping
1962) as

1 + mα =
〈(eobs

α − 〈e
obs
α 〉)(gα − 〈gα〉)〉
〈g2
α〉

; (11)

cα = 〈eobs
α 〉 − mα〈gα〉. (12)

Assuming 〈gα〉 = 0, these relations become

1 + mα =
〈(eobs

α − cα)gα〉
σ2
g,α

; (13)

cα = 〈eobs
α 〉. (14)
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Fig. 4. Distribution of R11 (top) and a1 (bottom) for the 2 million simu-
lated galaxies. The second component of the biases shows similar dis-
tributions.

We assume that Rαα and gα are not correlated, which is a very
good approximation since the shear bias is linear with gα. Then,
with

〈(eobs
α − cα)gα〉 = 〈Rααg

2
α + S αgα〉 = 〈Rαα〉σ

2
g,α + 〈S αgα〉, (15)

we find

1 + mα = 〈Rαα〉 +
〈S αgα〉

σ2
g,α

· (16)

The estimated mα is consistent with our method if 〈S αgα〉 = 0. A
correlation between these two quantities would effectively mod-
ify the slope of the distribution of Eq. (10), resulting in a biased
estimate of mα. For our method this condition does not need to
be fulfilled.

We can estimate the error σm,α on mα via simple Gaussian
error propagation assuming that the uncertainties in Rααi and S αi
are uncorrelated. This assumption would be violated if the shape
estimator has a shear bias that depends on ellipticity.

We test our assumptions and approximations in Sect. 6,
where we compare the numerical predictions with measurements
from simulated images. The sensitivity of the bias with respect
to these two quantities is(
∂mα

∂Rααi

)2

=
1

N2 ;
(
∂mα

∂S ααi

)2

=
g2
ααi

N2〈g2
α〉

2 · (17)

A2, page 5 of 12

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201833740&pdf_id=4


A&A 621, A2 (2019)

1.0 0.5 0.0 0.5 1.0
eI
1

0.0

0.5

1.0

1.5

2.0

2.5

fr
e
q
u
e
n
cy

σe, 1 = 0.24

0.04 0.02 0.00 0.02 0.04
g1

0
5

10
15
20
25
30
35
40

fr
e
q
u
e
n
cy

σg, 1 = 0.03

Fig. 5. Distributions of eI
1 and g1 used for the two million simulated

galaxies. The second component shows similar distributions.

Replacing for simplicity the individual galaxies’ dispersions
σR,αi and σS ,αi by the mean values, we get

σm,α =

√√√ N∑
i=1

( ∂mα

∂Rααi

)2

σ2
R,α +

(
∂mα

∂S αi

)2

σ2
S ,α

 (18)

=
1
√

N

√
σ2

R,α +
σ2

S ,α

σ2
g,α

· (19)

Compared to Eq. (7) this expressions shows the additional term
σ2

S ,α/σ
2
g,α. In most scenarios this is indeed the dominant term for

the bias dispersion, which is the main reason why the linear fit
achieves a much lower precision in bias estimation compared to
our method.

The uncertainty on the additive bias comes directly from the
dispersion in the stochasticity,

σc,α =
σS ,α
√

N
· (20)

4.3. Linear fit with shape-noise suppression

Here we estimate the uncertainty of the shape-noise suppression
estimator (Eq. (5)), which we write in a similar way to Eq. (10)
as

gobs
αi = Rααi(Pi)gαi + aαi(Pi) + S αi. (21)

The difference to Eq. (10) is that the index i now denotes a pair
of orthogonal galaxies. The stochasticity depends on the sum of

the observed ellipticities of the orthogonal pair,

S αi =
f (eI

αi,A) + f (eI
αi,B)

2
· (22)

In the scenario of a perfect shape estimator, the sum vanishes
exactly. However, a shape estimator typically has a non-zero
ellipticity bias,

f (eI
αi,X) = (1 + bαi,X)eI

αi,X , (23)

for X = A, B, and gα = 0. If the ellipticity bias depends on the
galaxy orientation, or the relative orientation between galaxy and
PSF or shear, the two bias values bα,A and bα,B are in general not
equal, and we find

S αi =
bαi,A − bαi,B

2
eI
αi , 0. (24)

We have measured |bαi,A − bαi,B| and found it can be up to 2%
when one of the pairs is aligned with the shear.

The shear bias uncertainties σm,α and σc,α are computed via
Eqs. (19) and (20) derived in the previous section, but with σS ,α
given by the dispersion of Eq. (24). This is a clear improvement,
since the pre-factor |bαi,A − bαi,B| can be expected to be smaller
than unity. In addition, if the noise realization is different for
each of the objects A and B, this measurement is stochastic even
if 〈bαi,A〉 = 〈bαi,B〉. This stochasticity contributes to σm,α and
σc,α, which we denote with σeobs,α. In the general ring estima-
tor case where we simulate n rotated copies of each galaxy to
suppress shape noise, with

∑n
j=1 eI

j = 0, we can write

S αi =

n∑
j=1

eobs
αi j . (25)

Keeping the total number of galaxies used in the linear fit con-
stant, which is now N/n, we get

σm,α =

√
n
√

N

√
σ2

R,α +
σ2

eobs,α

nσ2
g,α

=
1
√

N

√
nσ2

R,α +
σ2

eobs,α

σ2
g,α

, (26)

and

σc,α =
σeobs,α
√

N
· (27)

We can see that forcing shape-noise suppression gives a more
precise m than the simple linear fit as far as σeobs,α . σe,α. We
also see that σc,α does not depend on the number of galaxies
used for the shape-noise suppression, but σm,α increases with n.
However, in our derivation we neglected the higher-order contri-
butions in the shear estimator (Eq. (1)), which decrease with n. In
this paper we do not quantify the optimal n that minimizes both
contributions, since the second term in Eq. (26) dominates over
these other two quantities. In conclusion, n does not significantly
affect σm,α.

5. Simulations

For this analysis we used the public software package Galsim
(Rowe et al. 2015) to generate isolated images of two million
galaxies, corresponding to the Control-Space-Constant branch
of the GREAT3 challenge (Mandelbaum et al. 2014, 2015). The
images are organised into 200 fields, each field with a unique
PSF and shear (both constant for each field). The galaxy light
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distribution follows either a single Sérsic profile or a de Vau-
couleurs bulge plus exponential disk.

Each galaxy is simulated twice, the second one being
rotated by 90 degrees with respect to the first one to achieve
shape-noise suppression. For more details about the simulated
images, we refer the reader to (Pujol et al. 2017) as well as
(Mandelbaum et al. 2014). This set of simulations are used for
the linear fit methods, with (Sect. 3.3) and without (Sect. 3.2)
shape-noise suppression. For the latter, we average the observed
ellipticity of all galaxies for a given shear g, not specifically
accounting for the orthogonal pairs when calculating the error
bars (so we do not keep the galaxy pairs in the same jackknife
subsamples). This results in a mean ellipticity in each bin close
to zero, but does not reduce the scatter due to the intrinsic shape
noise.

For our estimations of R as described in Sect. 3.1, we simu-
late the two million galaxies three times, with two sheared values
drawn from the cases g = (±0.02, 0), g = (0,±0.02). The two
values chosen have to be different in both components in order
to be able to estimate R11,22. Since both components of g change
for each of the shear versions, the estimation of Rαα is affected
by the non-diagonal terms as follows:

∆eobs
α = Rα1∆g1 + Rα2∆g2. (28)

Our estimation of 〈Rαα〉 is unbiased as far as 〈∆gβ〉 = 0, for
β , α, over the entire sample. This is the case since we choose
the sign of the shear changes at random. We can also measure
the non-diagonal terms of R by using three images with shear
values from g = (0,±0.02), g = (±0.02, 0), and g = (0, 0) (see
Appendix A for more details).

Galaxy shapes are obtained with the method from
Kaiser et al. (1995; KSB), using the publicly available code
shapelens (Viola et al. 2011). This method estimates the ellip-
ticity of the objects from the surface brightness moments

Qαβ =

∫
d2xI(x)W(x)xαxβ∫

d2xI(x)W(x)
, (29)

defining the ellipticity as

e = e1 + ie2 =
Q11 − Q22 − 2iQ12

Q11 + Q22
· (30)

The implementation details of the shape measurement algorithm
are not very relevant for this paper, and we refer the reader to
(Pujol et al. 2017) where we used the same methodology.

6. Results

In the top panel of Fig. 6 we compare the shear bias obtained
with our method to the linear fit technique. As an example of
galaxy property we use the input disk flux Fd of the simulated
bulge+disk galaxies. We show that both methods give consis-
tent results when using all two million galaxies. However, our
method estimates the biases with a significantly better precision.
The location of the points on the x-axis corresponds to the cen-
tre of the Fd bins. In addition to a small shift that we apply for
an easier visual comparison, the bin centres for our method in
the lower panel are modified, since the galaxies are now a ran-
dom subsample. It is remarkable that when using all two million
galaxies, the curves of m1 and m2 for our method are almost
identical.

We quantify the precision of the different shear bias estima-
tion methods in Fig. 7. as a function of the number of simulated
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Fig. 6. Multiplicative shear bias as a function of the disk flux Fd, mea-
sured with our method (black lines) and (in orange) from the linear fit
to Eq. (1). Solid (dashed) lines correspond to m1 (m2). The top panel
shows the results using the same number of object for both methods. In
the bottom panel, only 1/1300 objects have been used for our method.

galaxies Nsim. We create different random subsets of galaxies
with size Nsim, and measure for each subset the shear bias for
the three methods as described in Sect. 3. We compute the rms
for each subset by jackknife resampling of the input galaxies for
all methods, using 50 subsamples (other numbers of subsamples
have given the same results).

We compare these uncertainties as measured from the simu-
lations to the numerical predictions derived in Sect. 4. For the lat-
ter, we measure the parameters σR,α, σa,α, σS ,α, σeobs,α, and σg,α
directly from the simulations, as illustrated in Figs. 4 and 5. The
amplitude and N−1/2

sim -dependence of the uncertainty measured
from the data shows excellent agreement with the analytical cal-
culations for all three methods. This suggests that the assump-
tions we made to derive these expressions are valid for the sys-
tem and regime studied here. For the linear fit predictions, we
set σS ,α = σI

e,α, assuming that stochasticity S α is entirely deter-
mined by the intrinsic ellipticity. For the linear fit with shape-
noise suppression, we measure σeout,α directly from the distribu-
tion of the sum of observed ellipticities of the orthogonal pairs,
(eobs

A,α + eobs
B,α)/2.

Our method has a much higher precision on the multiplica-
tive shear bias estimation. Compared to the linear fit, σm,α for
our method is smaller by a factor of 35.9. This means that for
this study our method requires 35.92/n′ ∼ 1300/n′ times fewer
simulated images to obtain the same precision, where n′ is the
number of sheared versions used for each object. In Fig. 7 we
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Fig. 7. rms of the multiplicative (top panel) and additive (bottom panel)
shear bias. We compare our method (red/orange lines) to the linear fit
with (green) and without (cyan/blue) shape-noise suppression. The solid
lines are measurements from the numerical simulations. Dashed lines
show the analytical predictions derived in Sect. 4.

show our method with n′ = 2, where we used shear values sym-
metrically distributed around zero, but similar results have been
found for n′ = 4.

We demonstrate the high precision of our method in the bot-
tom panel of Fig. 6, where we estimate the shear bias as in the
top panel, but now for our method with only a fraction of 1/1300
of the objects, chosen at random. The results are consistent in
both mean and error bars, demonstrating that our method reaches
the precision of existing methods with three orders of magnitude
fewer simulations. We note that some of the noise in the data
points for our method comes from the more sparsely sampled
galaxy properties in each bin. In the case of Euclid, with a global
requirement of σm,α < 2×10−3 one needs at least 2×107 images
for the linear fit method, but only ∼104 for our method according
to this study.

The ratio of the rms between the two methods is approx-
imately σe,α/(σR,ασg,α) > 1. The quantities σe,α and σg,α in
the simulation need to be chosen to match expectations from
cosmology and galaxy morphology. Given some basic survey
characteristics such as redshift and wavelength coverage, and
the survey selection function, these fundamental quantities are
fixed. The dispersion σR,α, however, strongly depends on instru-
mental effects such as the PSF size and on the shape estimator.
In this study we used a KSB method to measure the shapes on
GREAT3-CSC-like images, and we expect σR,α to change when
using other simulations and shape estimators. This provides a

strong motivation to choose or develop a shape measurement
method that minimizes this dispersion, and therefore minimizes
the number of required simulations for calibration.

Applying the shape-noise suppression with orthogonal pairs
improves the precision with respect to the simple linear fit by a
factor of ∼2.8 for the measurements of both the multiplicative
and additive bias. This improvement reduces by a factor of ∼8
the number of simulated images required for the same level of
precision. We note, however, that each galaxy needs to be sim-
ulated twice for the shape-noise suppression. This is consistent
with the factor of ∼9 found in Fenech Conti et al. (2017), where
they used n = 4 for the shape-noise suppression.

Comparing our method to the linear fit with shape-noise sup-
pression, we obtain an improvement of a factor of 12.8 for the
multiplicative shear bias. This implies that for the same level
of precision, we can reduce the number of simulated images
required by a factor of 12.82/n′ ∼ 164/n′.

When comparing the additive bias precision, our method
shows a factor of 2.26 improvement with respect to the linear
fit, and a factor 0.56 with respect to the shape-noise suppression.
Shape-noise suppression performs better because the additive
bias is the average ellipticity over all simulated images, while
for our method only 1/n′ images are used. In principle we could
estimate cα with n′ = 1 (e.g. using only the original image). This
would, however, unfairly not count the n′ > 1 images we have to
simulate to measure mα. We conclude that a similar precision is
obtained for both our method and shape-noise suppression when
estimating additive shear bias.

7. Discussion and applications

The method presented here is a clear improvement on the preci-
sion of the shear bias estimation in simulations with respect to
the standard linear fit of Eq. (1). It is also more precise compared
to the linear fit with shape-noise suppression via pairs of orthog-
onally aligned galaxies. In the following we discuss potentially
useful applications to improve shear bias analyses with simu-
lated images.

7.1. Shear bias validation and calibration

One of the interests of measuring shear bias in simulations is
to validate or calibrate the performance of a shear estimation
algorithm. In the case upcoming surveys such as Euclid, LSST,
or WFIRST the requirements concerning the knowledge of the
additive and multiplicative bias imply the generation of a very
large volume of simulations, which is computationally very chal-
lenging. Our method allows the saving of significant compu-
tational efforts to reach these requirements. In our case study,
we require 2–3 orders of magnitude fewer images to reach the
same precision as common approaches, although the exact fac-
tor depends on the shear estimator algorithms and the image and
survey specifications.

7.2. Selection biases and weights

Shear bias from selection effects has been found to be of the
same order of magnitude as those induced by the shape mea-
surement process (Fenech Conti et al. 2017; Mandelbaum et al.
2018). Such biases arise when the galaxy selection function
depends on the shear. This is for example the case when detec-
tion or shape measurement fails for galaxies that are very ellipti-
cal, or aligned with the PSF. Such selection effects also arise by
imposed, necessary cuts on galaxy properties such as the signal
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to noise ratio (SNR) or size, which can favour certain shear val-
ues. The resulting shape catalogue then samples the underlying
shear field in a non-representative way, which induces biases on
the estimated shear if uncorrected.

Our method does not require shape-noise suppression via
tuples of galaxies, and is therefore particularly useful when
selection effects and weights are to be simulated and studied.
Weights can be applied to the simulated galaxies following an
arbitrary distribution, to study the impact on shear bias. When
weights are given to the galaxies, the shear bias estimators
become

mα =

∑N
i=0 wiRαα∑N

i=0 wi
, (31)

cα =

∑N
i=0 wiaα∑N

i=0 wi
, (32)

where wi represents the weight of the ith galaxy and N is the total
number of galaxies.

Selection effects that are correlated with the shear can be
studied as proposed by (Sheldon & Huff 2017): we calculate the
mean response from Eq. (4) by first averaging the ellipticities of
both sheared samples before taking the difference and dividing
by the small shear,

〈
Rαβ

〉
≈

〈
eobs,+
α

〉
−

〈
eobs,−
α

〉
2∆gβ

· (33)

Now, the two galaxy samples giving rise to the mean observed
ellipticities

〈
eobs,+
α

〉
and

〈
eobs,−
α

〉
, respectively, are not only

different because of their shear. In addition, a given selec-
tion criterium (e.g. a minimum SNR) is applied to the two
sheared samples. If the applied shears modify the selection, this
results in different mean sample ellipticities, and the selection-
induced shear bias translates into the shear response (given by
Eq. (33)).

This shear bias estimator, however, does not account for
selection effects that affected the shear response estimation of
the originally selected galaxies. It can happen that the shear
response estimation fails because, although the original galaxy
is well detected and measured, this is not the case for the sheared
version of the image. These selection effects are undesired, since
they create additional, spurious selection biases. Such differen-
tial detections or shape measurement successes or failures is
rare however, since the shear is very small and thus the images
are very similar. Such occurrences can be further reduced: if
an image sheared by a value g cannot be measured, for exam-
ple because its increased observed ellipticity pushed it under the
SNR threshold, the opposite shear −g (e.g. making the galaxy
rounder) should not affect the measurement success. In the case
of n′ = 2 images per original galaxy, we are free to choose the
sign of the shear as long as the average shear is zero, largely
avoiding such selection-induced measurement failures. If the
problem only comes from the detection process, another solu-
tion can be applying the detection process to the original images
and assume the same detection for the sheared versions of the
images.

7.3. Shot noise

In the methodology described the shear response is estimated
from sheared versions of images keeping the noise realizations
fixed. This can be generalized to different random or stochastic

effects such as cosmic rays or Gaussian noise. However, shot
noise is a random process that depends on the flux of the image.
Because of this, sheared versions of the same galaxy cannot have
exactly the same shot noise realization. Our case is not affected
by this, since noise is purely Gaussian, and we can expect other
cases to be also insensitive to shot noise, but this is not always
the case.

Exploring alternatives to treat shot noise with our method is
beyond the scope of this paper, but we propose several options.
First, in some cases approximating shot noise with a Gaussian
noise can be enough for the required precision of the analysis,
which again can be treated as described in this paper. Second,
we can keep the random shot noise realization of the original
image and rescale it with the changes in the flux produced in
the sheared versions. A study should be done to test possible
systematics coming from this approach. Finally, we can change
the shot noise realization for each of the sheared image versions,
but keep the other random processes fixed. This will degrade the
precision of the method depending on the contribution of shot
noise with respect to the other processes, but it should converge
to the same results. In the worst case scenario where the shear
response depends completely on shot noise, the precision of the
method would be the same as for the method with orthogonal
pair shape-noise suppression.

7.4. Individual shear responses

Studying the shear response as a function of galaxy properties
for individual galaxies without the need to bin or average can
have advantages. For calibration, the shear bias as a function of
galaxy properties is typically modelled as a smooth function,
either parametric, for example by fitting an analytical, multi-
variate function, or non-parametric, such as by interpolating the
(smoothed) measured bias values.

For linear fit methods to estimate shear bias we need to
compute such a function from data binned into galaxy proper-
ties. Then the average shear biases are measured for each bin.
However, these average values depend on the galaxy population
inside the bin, whose shear responses might not only depend on
the binned properties, but also on the properties that have not
been used in the binning. As a consequence, our measured shear
bias dependencies are sensitive to the property distribution of the
galaxy population used. Individual shear responses and biases of
simulated galaxies can further serve to learn shear calibration
as a complex non-linear function of galaxy and image proper-
ties (e.g. using machine learning techniques), where no binning
is needed and we can use a larger set of properties so that the
function can be less dependent on the population used.

7.5. Variable shear and response on shear statistics

Switching from constant to variable shear is possible by impos-
ing a shear field on our simulation. This is potentially inter-
esting to study the scale dependences of shear bias that could
come from spatially varying effects such as the PSF variation.
Similarly to the constant shear case, the shear bias is derived
by computing the shear response to a small shear power spec-
trum perturbation. For example, with the shear drawn from a
Gaussian random field with a certain power spectrum C`, the
small shear values applied to each galaxy with an intrinsic shear
g can be arbitrary, for example they can be proportional to g
(see discussion in Sect. 7.6). Going a step further, the same
methodology can be applied to derive the influence of shear bias
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on any shear statistics: the shear two-point correlation function,
the shear power spectrum, peak counts, mass maps, higher-order
statistics, and so on. As an example we hereafter illustrate this
with the shear two-point correlation function ξ±.

First, as described above, we apply a shear field to the sim-
ulated galaxies, where each Fourier-space shear coefficient γ̂` is
drawn from a normal distribution with zero mean and variance
C`. Next, we perturb the shear field by drawing new coefficients
γ̂` ∼ N(0,C` + δC`), where we change the power spectrum by a
small amount, δC`. From the original and perturbed shear field,
we compute the statistics of our choice, for example the correla-
tion functions ξ± and ξ+

± , respectively. The difference between
both divided by the perturbation is then the response due to
the multiplicative shear bias on the correlation function, which
would give us information about the spatially varying shear
bias.

7.6. Non-isolated images

This analysis has been done using isolated galaxy images. To
create more realistic simulations with blended galaxy images
leads to the problem that the shape of many galaxies is mea-
sured in the presence of one or more nearby galaxies at different
redshift and therefore different shear, if the simulation presents a
realistic cosmic shear field as described in the previous section.
The same issue arises if shapes of blended galaxies are esti-
mated jointly. The presence of nearby isophotes of other objects
is known to affect the shear bias (Hoekstra et al. 2015, 2017).

A common procedure to study these effects is by simulat-
ing many combinations of blended objects and close neighbours,
and measuring the impact on the shear bias statistics over differ-
ent populations. We claim that we can more efficiently account
for these effects, since our shape-noise insensitive method does
not require us to sample the large space of the distribution of N
ellipticities and shears p(e1, . . . , eN , g1, . . . gN). One of the ques-
tions to address in this situation is how to produce the different
sheared versions of the same images. Here we discuss two pos-
sibilities:

– We change the shear of only one of the galaxies (the target)
from the N-tuple of blended images. The inconvenience is
that we need to generate N times more images compared to
isolated galaxies.

– Alternatively, we can shear every member i of the N-tuple.
This shear could be a small additive shear, ∆g = const, as
applied to isolated images in this paper. Or it could be a
function of g, such as a multiplicative factor, ∆gi = Cgi with
C � 1 = const. In this case we would preserve the propor-
tions between shears for galaxies at different redshifts. This
function of g can be chosen taking into account the statistics
or cosmological analysis that we want to do, as discussed in
Sect. 7.5.

We leave a comparison of these two approaches, and estima-
tion of shear bias for blended objects in general, to future work,
which is beyond the scope of this paper.

7.7. Future simulation challenges

Adopting future versions of simulation challenges such as
the GRavitational lEnsing Accuracy Testing (GREAT) series
(Bridle et al. 2009; Kitching et al. 2011; Mandelbaum et al.
2014) into our method of shear bias estimation can result
in a significant decrease of required image simulations. For
GREAT3 the total data volume that had to be downloaded by the

participants was 6.5 terabyte (10 000 simulated galaxies ×200
fields ×20 branches). Reducing this number could result in a
more accessible and faster to process challenge.

To use our method, for each galaxy two additional sheared
versions of the same galaxy would need to be simulated with the
same noise realization. The challenge organisers would estimate
the shear response for each original galaxy via Eq. (2), and apply
some metric on the distribution, such as the mean, to evaluate the
submissions.

To guarantee the blind aspect of the challenge, all codes
have to be run on the organisers’ server without direct access
to the simulation by the participants. (For testing, smaller train-
ing sets of simulations could be provided to the teams for down-
load.) Alternatively, the shear values applied to each galaxy have
to be random and kept hidden from the users. We note that it
would be trivial for participants to identify the sheared versions
of each original galaxy since the noise is the same for the sheared
versions, even if the image order was randomized. To take the
example of GREAT3, a similar challenge using our bias esti-
mator could reduce the 10 000 × 200 simulated galaxies for one
branch to a few thousand. If a variable shear field is to be used
in the challenge, with a metric operating on the shear correla-
tion function or power spectrum, a similar method as described
in Sect. 7.5 can be employed to measure the response to a small
and variable shear.

8. Summary

In this paper we present a new method to estimate shear bias
from image simulations. Our estimator of the multiplicative
shear bias is not affected by shape noise and reduces the noise
contribution from the measured shape, removing the dominant
uncertainty in bias estimation. Previous methods constrain the
multiplicative and additive bias from a linear fit of the observed
average ellipticity as a function of shear. The uncertainty of
this parameter estimation is dominated by the intrinsic ellipticity
distribution. Shape-noise suppression techniques using matched
sets of galaxies with net zero intrinsic ellipticity improve the pre-
cision of the measurements, but are affected by selection effects,
weights, and ellipticity bias that can break the shape-noise sup-
pression.

Our method consists in measuring the shear response and
additive bias of individual galaxy images. To that end, we simu-
late different sheared versions of the same galaxy, and measure
the shear response of the image from the numerical derivative of
the measured ellipticity with respect to the shear. We also mea-
sure the additive bias for the individual images. For each galaxy
the sheared version has the same noise realization, allowing us
to determine the individual responses at a very high precision.
Then, the multiplicative and additive bias of a sample of galaxy
images is obtained from the average shear response and addi-
tive bias, respectively. This method improves the precision of the
estimation of shear bias significantly because it is not affected
by shape noise or by the stochastic uncertainty of the measured
ellipticity.

Using numerical simulations as well as analytical predic-
tions, we quantified the uncertainty of the shear bias estimation
for our method as well as for linear fits. For the multiplicative
shear bias, our method provides a significant decrease in the
shear bias error of a factor of ∼36 compared to the linear fit, and a
factor of ∼12 if the latter is used in combination with shape-noise
suppression. The additive bias uncertainty improves by about 2.3
over the linear fit, and under-performs only compared to shape-
noise suppression, by a factor ∼0.5.
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This implies that we can reduce the number of simulated
images by a factor of ∼1300 and ∼150, respectively, to measure
the shear multiplicative bias with the same precision. Our method
has the further advantage that it does not need to impose shape-
noise suppression, and hence it can easily be applied for analyses
where selection biases or weights play an important role.

Our method has many applications as discussed in the pre-
vious section. In particular for shear bias calibration, we require
much fewer simulated images to reach a required uncertainty,
allowing us to study more extensively the bias dependence as
function of galaxy property, PSF characteristics, or noise. It also
relieves us of the potentially very severe restrictions on comput-
ing time for both simulation and shape measurement, allowing
us to simulate galaxies with higher complexity, and using com-
putationally expensive shape measurement techniques. Further,
it permits us to study the shear bias as a function of galaxy prop-
erties that usually have to be averaged over, for example galaxy
orientation. We have also outlined ways forward for more com-
plex simulation scenarios, such as variable shear, blended galaxy
images, and selection biases, which in principle pose no obsta-
cles for our method.
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Fig. A.1. Illustration of the shear response estimations with different
shear values used for ten image examples. Each colour represents a dif-
ferent image, and the points show the observed ellipticities obtained
with different shear values. The solid lines show RA

11 for each case.
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Fig. A.2. Distribution of the differences obtained for RA
11 and RC

11 for our
simulated images. Similar results are found for R22.

Appendix A: Robustness of Method 1

In this section we investigate whether a least-squares fit to more
than two shear values is more accurate than the use of Eq. (4).
To measure R for each individual galaxy, we have generated
copies of the same images with the different shears specified
in Sect. 3.1. In reality, galaxies can have other values of shear,
where both shear components can be different from 0 at the same
time. Fixing the other component to 0 can be a simplification of
the estimation of R. For this reason, here we measure the impact
of different estimations of R using different shear values. In par-
ticular, we compare the following estimators:

– RA
11: we obtain R11 from the fit using the shear values g =

(±0.02, 0).
– RB

11: we obtain R11 from the fit using the shear values g =
(±0.02, 0) and g = [0, 0].

– RC
11: we obtain R11 from the fit using the shear values g =

(±0.02, 0) and a random value of g, with both components
random.

– RD
11: we obtain R11 from the fit using the shear values g =

(±0.02, 0), g = [0, 0] and the random g.
– RE

11: we obtain R11 from the fit using all the previous values
and also g = (0 ± 0.02).

If the non-diagonal terms of R are non-zero, RA
11 and RB

11 should
behave differently from the rest. In Fig. A.1 we show ten cases of R
estimations, where each case is represented with a different colour.
The solid lines correspond to the fits of RA

11 (so they connect the
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Fig. A.3. Top panel: differences between RA
11 and RC

11 as a function of
the random g1 applied. Bottom panel: resulting average responses from
the different estimations as a function of the disk flux for galaxies with
a bulge and a disk. Similar results are found for R22.

points atg1 =−0.02 with those atg1 = 0.02). We can see that all the
points, even the random ones, tend to be well adjusted to the fitting
line, although not always. These cases are an indication of non-
diagonal terms of the shear response R, causing changes in eobs

1
when changing g2. In this section we focus on the first component
of shear and response, but the same holds for the second.

We have found that the differences between RA
11 and RB

11 are
negligible. This means that the method is very precise, and the
relation is very well described with a linear relation. There is no
need to have more than two shear values to estimate R precisely.
When the second component is non-zero, sometimes it can affect
the ellipticity measurement, in which case RC,D,E

11 is different from
RA,B

11 . In Fig. A.2 we see the differences between RA
11 and RC

11. The
differences between RD

11 and RE
11 are very similar. We see that in

most of the cases the differences are negligible, uncorrelated with
RA

11 , and they average out because of symmetry. We have found
that, when the second component of the shear affects eout, it does
it in a symmetric way so that positive g2 give opposite effects to
negative g2. For a random distribution of g2, the differences can-
cel out. In the top panel of Fig. A.3 we show that the differences
between the different estimations are consistent with 0 and inde-
pendent of the random g applied. In the bottom panel we show that
the mean response as a function of the disk flux of the galaxies is
consistent for all the estimators. This is actually the case as a func-
tion of all the properties studied, which means that the method is
very precise and that the non-diagonal terms of the shear response
do not affect the shear response estimation. As a consequence, our
method does not depend on the different shear values used for the
fit as far as the shear values used are symmetric or homogeneous.
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