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Patrick Chabrand1,2 and Sébastien Parratte1,2

Abstract

Background: The aim of this in vitro study was to assess the accuracy of three-dimensional patient-specific cutting
guides for open wedge high tibial osteotomy (OWHTO) to provide the planned correction in both frontal and
sagittal planes.

Methods: Ten cadaveric tibias underwent OWHTO performed using a patient-specific cutting guide based on 3D
preoperative planning. An initial CT scan of the tibias was performed, and after segmentation, 3D geometrical models
of the pre-OWHTO tibias were obtained. Reference planes were defined, and OWHTO virtually planned to then design
patient-specific cutting guides. OWHTO were performed using the patient-specific cutting guides. The patient-specific
cutting guide controls the cut and the correction of the OWHTO in both planes. 3D models of post-OWHTO tibias
were created after a postoperative CT scan. Geometrical post-OWHTO 3D models were superimposed on pre-OWHTO
3D models. Mechanical medial proximal tibial angle (mMPTA) in the frontal plane and posterior tibial slope (PTS) in the
sagittal plane were compared between planned-OWHTO and post-OWHTO 3D reconstructions relative to the pre-
OWHTO reference planes and axis. Pearson’s and Lin’s correlation tests were performed to assess precision and
accuracy of patient-specific cutting guides.

Results: The mean difference between post-OWHTO and planned-OWHTO was 0.2° (max 0.5°, SD 0.3°) in the frontal
plane and − 0.1° (max 0.8°, SD 0.5°) in the sagittal plane. Statistically significant correlations were found between the
planned-OWHTO and post-OWHTO configurations for the mMPTA (p < 0.0001) and PTS (p < 0.0001) measurements,
and the bias correction factor was 0.99 in both planes.

Conclusions: 3D patient-specific cutting guides for OWHTO-based 3D virtual planning is a reliable and accurate
method of achieving multiplanar correction in both frontal and sagittal planes.

Keywords: Knee surgery, Osteoarthrosis, Medial gonarthrosis, Osteotomy, Open wedge high tibial osteotomy, Patient-
specific, Accuracy, Tibial slope correction

Background
Open wedge high tibial osteotomy (OWHTO) has been
described as an efficient conservative surgical treatment
preserving the bone stock for patients with moderate
medial gonarthrosis and lower leg malalignment [1, 2].

The objective of the OWHTO is to correct lower leg
malalignment in both the frontal and sagittal tibial
planes to limit the overload of the medial compartment.
Accurate correction is essential to its success as under
correction leads to persistent pain and over correction
to functional limitations [3, 4].
Different methods and instrumentations have been de-

veloped to help the surgeon to achieve the planned cor-
rection [3, 5–7].
Conventional methods use standard instrumentation

to open the osteotomy [5, 6]. Frontal correction can then
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be managed intraoperatively by measuring the opening
angle or opening gap and comparing it to the preoperative
plan [8–10], or by using a radiopaque cable under fluoros-
copy to control lower limb alignment [9, 11–13]. The con-
trol of the correction for both the frontal and the sagittal
planes at the same time with standard instrumentations
remains challenging [14–16]. Computer-assisted surgery
(CAS) for OWHTO was validated experimentally in vitro
by Hankemeier et al. [7] and subsequently used in clinical
studies [3, 17–21]. CAS allows real-time control of the
correction. All these studies reported better accuracy and
reliability for CAS than for conventional or cable
methods, but with increased surgical time and a control of
the global alignment of the limb but not of tibia only and
not the posterior tibial slope (PTS).
While frontal plane correction is most often described

for osteotomy management, PTS management in the
sagittal plane is essential to preserve biomechanics
[22–24]. Song et al. [19] reported that PTS is unchanged
if the anterior opening is equal to 67% of the medial open-
ing. However, this evaluation is complex to perform dur-
ing surgery, and patient-specific instruments may help the
surgeon to manage both the sagittal and the frontal plane
correction during surgery [25, 26].
Using an experimental setup, three-dimensional patient-

specific cutting guides were reported to be more accurate
than free-hand technique to perform an osteotomy cut
and drill in a synthetic bone [27]. The use of patient-spe-
cific cutting guides for OWHTO was also reported
recently in three studies realized on small series of
patients [25, 26, 28]. All three clinical studies reported
good accuracy and reliability of the procedure. Planning
procedures for OWHTO were carried out either on 2D
long-leg radiographs [28] or from a 3D model [25, 26].
Pérez-Mañanes et al. used CT images to obtain the 3D tib-
ial surface and to position two K-wires to lead the cut, and
the correction was planned using two additional wedges.
To avoid the disappointing clinical results observed with

patient-specific instrumentation for total knee arthro-
plasty, we wanted to evaluate in vitro this new technique.
After developing a specific patient-specific guide to con-
trol both the cut and the correction adapted for a specific
OWHTO plate, it was our aim to evaluate the accuracy of
the system in an in vitro CT scan-controlled study. Our
hypothesis was that the patient-specific cutting guide for
OWHTO can provide an accurate correction in both the
frontal and sagittal planes.

Methods
Study design
In this in vitro study, ten frozen cadaveric specimens’
tibias (eight females and two males aged from 70 to 99,
average age 88, 5 right sides) were obtained from our
Department of Anatomy at the Aix-Marseille University

School of Medicine (Table 1). The subjects were all pre-
served in Winckler liquid [29, 30]. All soft tissues were
removed, except the patellar tendon insertion.

OWHTO preoperative planning
All specimens were scanned using a standardized CT scan
protocol (Discovery 710, GE Medical System, CERIMED,
Marseille, France). The following acquisition parameters
were used both prior and after the HTO: 120 kV, 400 mA,
and 0.625-mm-thick slices. DICOM images were
imported into Mimics 17.0 software (Materialise®, Leuven,
Belgium), and 3D geometrical models of the tibias were
created (Pre-OWHTO configurations, Fig. 1).
Anatomical landmarks, anatomical reference planes,

and the mechanical axis of the tibia were defined on the
3D models according to Lee et al. [31]. Preoperative
mechanical medial proximal tibial angle (mMPTA) and
medial PTS were measured (Fig. 2). mMPTA measures
the varus deformation of the tibia. PTS measures the
sagittal orientation of the proximal tibia. For each speci-
men, a correction for proximal tibial bony deformity,
when present, was determined in both the frontal and
the sagittal planes. For specimens with optimal tibial
mechanical alignment, a random correction was applied.
Each preoperative 3D tibia model was imported to a spe-
cially designed 3D planning tool for OWHTO. A cutting
plane was positioned, and OWHTO was simulated with
respect to the frontal and sagittal plane corrections pre-
viously determined (planned-OWHTO configurations,
Fig. 1). The Activmotion-2 plate (Newclip Technics®,
Haute-Goulaine, France) was positioned on the anterome-
dial surface of the tibia following the manufacturer’s recom-
mendations. The plate contains four locking screws above
and four locking screws below the osteotomy cut. Then, a
patient-specific cutting guide was designed for each tibia
based on the OWHTO simulation. Patient-specific cutting

Table 1 Specimen description

Specimen Gender Age Side Pre-OWHTO
mMPTA (°)

Pre-OWHTO
PTS (°)

G068 F 99 R 89.6 7.9

G131 F 78 R 88.5 2.1

G059 F 95 L 84.2 5.3

G141 F 99 L 88.0 2.4

G115 M 88 R 86.9 4.7

G111 F 89 R 88.5 2.9

G119 M 90 R 88.1 4.5

G113 F 84 L 89.5 7.6

G136 F 90 L 90.3 4.2

G117 F 70 L 83.6 9.8

Demographic data, pre-OWHTO measurements
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guides took into account the tibial anatomy, the position of
the cutting plane, the amount of correction planned in all
planes, and the plate location. All patient-specific cutting
guides were 3D printed.

OWHTO
Specimens were thawed overnight. All OWHTO were
performed by one surgeon (MM) using the patient-spe-
cific cutting guides [26]. Then, the same CT scan proto-
col was used to assess the tibias after OWHTO.
Post-OWHTO 3D geometrical models were created

with Mimics 17.0 software (post-OWHTO configura-
tions, Fig. 1).

Registration process
For each specimen, the distal part of the post-OWHTO
tibia was superimposed on the distal part of the
pre-OWHTO tibia using an iterative closest point (ICP)
algorithm (Fig. 3). This registration process ensured that
measurement references for all models of each tibia were
the same. Then, mMPTA and PTS were measured on
both the planned-OWHTO and the post-OWHTO

Fig. 1 Overview of the experimental protocol. All measurements are performed in the preoperative reference planes and relative to the
preoperative mechanical axis
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configuration. For maximum reproducibility of measure-
ments, both planned and postoperative angles were mea-
sured in the frontal and sagittal pre-OWHTO planes
relative to the pre-OWHTO tibial mechanical axis.
Planned-OWHTO and post-OWHTO configurations

were compared to assess the precision and the accuracy pro-
vided by the patient-specific cutting guides for OWHTO.

Statistical analysis
Statistical analysis was performed between the planned-
OWHTO and the post-OWHTO mMPTA, and between the
planned-OWHTO and the post-OWHTO PTS. Correlation
analyses were performed using Pearson’s correlation test to
assess the precision reached by the patient-specific cutting
guides. Accuracy was assessed by the calculation of the bias
correction factor (Cb) given by Lin’s correlation test [32].
Significance was considered at p < 0.05. The 95% confi-

dence intervals (CI) were presented. Statistical analysis
was performed on R software.

Results
The mean pre-OWHTO mMPTA was 87.7° (SD 2.2°),
and the mean pre-OWHTO PTS was 5.1° (SD 2.6°). A
mean 7.3° (SD 1.3°) correction in the frontal plane and a
3.3° (SD 2.7°) correction in the sagittal plane were thus
planned. For all specimens, the positioning of the
patient-specific cutting guides on the bone was possible
in accordance with the planning. All patient-specific cut-
ting guides fitted the tibial surface, so all OWHTO were
performed as planned.
Differences between the post-OWHTO and planned-

OWHTO configurations were calculated. The mean
difference between the post-OWHTO and planned-
OWHTO configurations was 0.2° (from − 0.3° to 0.5°, SD
0.3°) in the frontal plane, and − 0.1° (from − 0.7° to 0.8°,
SD 0.5°) in the sagittal plane (Table 2).
According to Pearson’s correlation tests, a statistically

significant correlation was found between the
planned-OWHTO and post-OWHTO configurations,
for the mMPTA measurements with a correlation coeffi-
cient of 0.99 (95% CI, 94–99%, p < 0.0001), and for the
PTS measurements with a correlation coefficient of 0.97
(95% CI, 86–99%, p < 0.0001) (Fig. 4).
Bias coefficient Cb was 0.99 in both the frontal and

sagittal planes (Table 3).

Discussion
OWHTO success remains on accurate correction in order
to avoid persistent pain or functional limitations [3, 4].
This in vitro study aimed to investigate the accuracy in
both the frontal and sagittal planes provided by

Fig. 2 Angle measurements on 3D models. amMPTA measures the
medial angle between the tibial mechanical axis and the tangent
mediolateral line of the tibial plateau in the frontal plane. b PTS is the
posterior angle between the orthogonal line to the mechanical axis and
the anteroposterior tangent line of the medial plateau in the sagittal plane

Fig. 3 The post-OWHTO model was registered on the
planned-OWHTO model
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patient-specific cutting guides with respect to 3D planning
of OWHTO. The hypothesis that patient-specific cutting
guides can provide the planned correction in both the
frontal and sagittal planes was confirmed in this CT
scan-controlled in vitro study.
In this patient-specific procedure for OWHTO, bone

deformation angles were measured with respect to the
anatomical reference planes determined using the pro-
cedure of Lee et al. [31] in order to mimic clinical prac-
tice. Clinical studies report several methods of finding
anatomical reference points and measuring deformation
angles [25]. Seeking to achieve maximum reliability and
to measure only the correction provided by the
patient-specific cutting guide, all measurements were
performed relative to the same axis and in the same
planes for the pre-OWHTO, planned-OWHTO, and
post-OWHTO configurations. Unlike Munier et al., who
performed measurements separately on the preoperative
and postoperative 3D configurations, and then compared
how far the two configurations differed from the
planned correction, we performed our measurements
relative to the preoperative mechanical axis. This was
made possible by the registration process we used to
superimpose the post-OWHTO configuration on the

planned-OWHTO configuration. As our objective was
to assess the amount of correction, it was vital to keep
the reference definition the same for both planned-
OWHTO and post-OWHTO configurations.
Intraoperative methods to control correction are

varied, have limited accuracy, and mainly focus on the
frontal plane correction. In their review of the literature,
Van Den Bempt et al. reported ranges of accuracy in the
frontal plane from several clinical studies [4]. For
conventional methods, the mean amplitude of the
range of accuracy was 5.6° (from 4° to 8°) [33–37],
whereas using the CAS method, it was 5.5° (from 4° to 7°)
[10, 17, 38–41]. Irrespective of the range of accuracy
chosen by the authors, the literature reports a mean 32%
of outlier patients when authors used conventional
methods [9, 10, 17, 21, 34–37, 40, 42–45] and 22% when
they used CAS [10, 17, 21, 38–42, 44, 46]. Some in vitro
studies find CAS to be accurate for OWHTO. On a single
synthetic bone and with a statistical model, Keppler et al.
[47] evaluated a mean error of 0.7° in the frontal plane be-
tween the postoperative results and the target. Wang et al.
[48] performed OWHTO with several amounts of correc-
tion in a synthetic bone using CAS and reported 0.4°
accuracy in the frontal plane. Both authors validated their

Table 2 Angular measurements

Pre-OWHTO Corrections Planned-OWHTO Post-OWHTO Planned-OWHTO vs post-OWHTO

Specimen mMPTA (°) PTS (°) mMPTA (°) PTS (°) mMPTA (°) PTS (°) mMPTA (°) PTS (°) mMPTA (°) PTS (°)

G068 89.6 7.9 8 5 97.3 3.0 97.0 3.5 0.3 − 0.5

G131 88.5 2.1 6 0 94.5 2.1 94.7 2.3 − 0.2 − 0.2

G059 84.2 5.3 8 0 92.9 5.2 92.9 4.4 0.0 0.8

G141 88.0 2.4 9 3 97.0 − 0.7 96.6 − 0.6 0.4 − 0.1

G115 86.9 4.7 8 4 95.2 0.7 94.7 1.2 0.5 − 0.5

G111 88.5 2.9 7 3 95.1 − 0.1 95.2 0.3 − 0.1 − 0.4

G119 88.1 4.5 6 4 94.1 0.6 93.6 0.9 0.5 − 0.3

G113 89.5 7.6 5 6 94.1 1.7 93.7 1.1 0.4 0.6

G136 90.3 4.2 7 0 97.3 4.1 97.6 3.9 − 0.3 0.2

G117 83.6 9.8 9 8 92.2 1.9 91.8 2.6 0.4 − 0.7

Pre-OWHTO measurements, planned corrections, planned-OWHTO measurements, post-OWHTO measurements, and absolute difference between planned-OWHTO
and post-OWHTO configurations

Fig. 4 Correlations between planned-OWHTO and postop-OWHTO models for mMPTA (a) and PTS (b)
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experimental work in a preliminary clinical study, on five
and four patients. They both found a mean error of 1° in
the frontal plane. On a single cadaveric specimen, Lützner
et al. [49] evaluated the accuracy of CAS to measure lower
limb alignment. They found a mean error of 0.6° in the
frontal plane. Hankemeier et al. [7] performed OWHTO
on 20 legs randomly assigned to CAS or a conventional
method. They reported better accuracy and less variability
than with a cable method. Among clinical studies using
patient-specific cutting guides, Menetrey et al. [20] evalu-
ated the frontal plane correction, based on 2D measure-
ments for planning. Their patient-specific cutting guide
only incorporates the cutting plane position, the correc-
tion being guided by two additional wedges. They found
0.5° accuracy (from 0° to 1.2°) in the frontal plane.
Patient-specific cutting guides containing both the cutting
plane planning and the correction were used in two other
studies [19, 21]. In one, Munier et al. performed a postop-
erative 3D evaluation of their patients. Overall, they found
similar accuracy for both 2D and 3D measurements by
reproducing the measurement protocol on the postopera-
tive model [26] around 0.0° (from − 1.7° to 1.8°, SD 1.1°) in
the frontal plane. In the other study, Victor and Prema-
nathan [25] reported a mean difference of 0.1° (from − 1°
to 1°, SD − 0.1°) in the frontal plane.
Controlling the sagittal plane correction is essential to

preserve knee biomechanics [23–25], but conventional
methods have limited accuracy, remaining on gap mea-
surements [15, 19]. Using CAS on synthetic bones, a
mean error of 0.9° [47] and a 0.5° accuracy [48] were re-
ported in the sagittal plane. Using patient-specific cut-
ting guides, an accuracy around 0.3° (from − 2° to 3.2°,
SD 1.4°) [26] and a mean difference of − 0.1° (from − 3°
to 2°, SD 1.2°) [25] in the sagittal plane were reported.
In this study, the patient-specific OWHTO procedure

includes 3D preoperative planning of the surgery and
the design of a patient-specific cutting guide which takes
into account the tibial anatomy, the position of the cut-
ting plane, the amount of correction planned in all planes,
and the plate location. The mean differences between the
planned-OWHTO and post-OWHTO models are 0.2°
(from − 0.3° to 0.5°, SD 0.3°) in the frontal plane and − 0.1°
(from − 0.7° to 0.8°, SD 0.5°) in the sagittal plane.
OWHTO outcomes are compared with the planning by
superimposing the post-HTO 3D reconstruction on the
planning 3D model. This enabled to assess the accuracy of

patient-specific cutting guides. Findings of the present
study suggest that PTS is managed with accuracy, which is
important for the management of cruciate ligament bal-
ance [23, 25].
One limitation of our study is the small number of

specimens used. Moreover, not all specimens had a suffi-
cient varus deformation in their proximal tibia to be
considered as candidates for OWHTO. However, differ-
ent degrees of correction consistent with clinical practice
were planned in both the frontal and sagittal planes. We
also departed from clinical practice in performing all the
measurements on 3D models. This was possible thanks
to the cadaveric nature of the specimens. This enabled
us to assess precision and accuracy by comparing
post-OWHTO and planned-OWHTO 3D models,
thereby avoiding measurement errors related to 2D
radiography. The preoperative CT scan required for this
procedure could be another limitation for direct clinical
application, not being necessary in conventional or CAS
procedures. However, Menetrey et al. [20] reported that
the patient-specific cutting guide reduced the use of in-
traoperative fluoroscopy from 55 images on average
(range, 41–73) in conventional methods to 8 (range, 6–
14), as well as requiring less surgical time.

Conclusion
OWHTO is demanding surgery, and accuracy of the
correction in both frontal and sagittal planes is essential
to its success. This study shows that combining 3D plan-
ning with patient-specific cutting guides for OWHTO is
a reliable and accurate method of achieving multiplanar
correction in both the frontal and the sagittal planes.
Further randomized clinical studies should be carried
out to validate these experimental results and evaluate
the risk-benefit ratio of the preoperative CT scan, and
the reduction in surgical time.
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