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ABSTRACT: We study the kinematics of correlation functions of local and extended oper-
ators in a conformal field theory. We present a new method for constructing the tensor
structures associated to primary operators in an arbitrary bosonic representation of the
Lorentz group. The recipe yields the explicit structures in embedding space, and can be
applied to any correlator of local operators, with or without a defect. We then focus on
the two-point function of traceless symmetric primaries in the presence of a conformal de-
fect, and explain how to compute the conformal blocks. In particular, we illustrate various
techniques to generate the bulk channel blocks either from a radial expansion or by act-
ing with differential operators on simpler seed blocks. For the defect channel, we detail a
method to compute the blocks in closed form, in terms of projectors into mixed symmetry
representations of the orthogonal group.
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1 Introduction

The most natural observables in a conformal field theory (CFT) are correlation functions.
In this paper, we target the correlators which involve one extended operator and multiple
local insertions. In fact, conformal invariant extended operators, or conformal defects for
short, have been studied extensively at least since the early days of two dimensional CFT's,
starting from the seminal work of Cardy [1] on boundary conditions in the minimal models.
Rather than attempting a review of the relevance of conformal defects in both low and high
energy physics, let us only mention the most recent motivation for the present work.

On one hand, both numerical [2-6] and analytical [7, 8] conformal bootstrap tech-
niques' have been applied to the study of conformal defects. The main targets have been
so far the two-point function of scalar primaries in the presence of a flat defect, and the
four-point function of local operators living on the defect itself. Boundaries and inter-
faces provide an exception: there, external stress-tensors were considered in [2]. A natural
generalization of this setup is the bootstrap of the correlators of two bulk local operators
with spin and a defect. Conserved currents and the stress-tensor are of course the main
candidates. As we shall demonstrate in this paper, the more complicated kinematics offers
a considerably smaller challenge with respect to the case of a four-point function of local
operators with spin [10-12].

On the other hand, control over the kinematics involved in correlators of spinning op-
erators with a defect should be useful also when tackling specific examples with techniques
different from the bootstrap. For instance, the technology of defect CFT played a crucial
role in proving the Quantum Null Energy Condition (QNEC) [13] via the replica trick. In
particular, the Operator Product Expansion (OPE) of the stress tensor with the so-called
replica defect [14, 15] contains the non trivial information about the matrix elements of
the modular Hamiltonian, which not only lies at the heart of the proof of the QNEC, but
is also an important quantity in its own right. Therefore, the two-point function of the
stress tensor is again a natural observable to focus on in this context. Another example is
provided by the class of line defects, e.g. Wilson and ’t Hooft lines, which correspond to
massive probes. When these external objects surf the vacuum on a generic worldline, they
emit radiation. This real time process, so relevant in the case of a gauge theory, is again

!See [9] for a comprehensive review of the numerical bootstrap.



captured by correlation functions of the stress tensor with the line defect. In a supersym-
metric setup, a recent proof of a series of conjectures concerning the energy emitted by an
accelerated quark [16, 17] has been obtained by studying the coupling of the stress tensor
with a line defect [18].

Let us begin by recalling a few definitions. The conformal defect will always be taken
either flat or spherical, and the following convention is adopted:

p = dimension of the defect, ¢ = codimension of the defect, d = dimension of spacetime,

(1.1)

so that p 4+ ¢ = d. We call bulk OPE the fusion of local operators away from the defect,

O1(21)Oa(x2) ~ Y _ c1200(22) . (1.2)
@
A conformal defect can be excited locally by a set of defect operators, which appear in the
OPE of a bulk operator with the defect, or defect OPE for short:?

O(x) ~ Y bpeO(z)) - (1.3)
o

Here, the presence of a flat defect is understood, defect operators are denoted with a hat,
and x| denotes the projection of z onto the defect.

Let us recapitulate the status of the art in the analysis of the symmetry constraints
on correlation functions of local operators with a defect. The case of a boundary in higher
dimensional CFT was first studied in [19]. In the case of a defect of generic codimension,
one-point functions® of bulk operators, correlators of a symmetric traceless bulk operator
and a defect operator, and two-point functions of bulk symmetric traceless operators were
analyzed in [20]. The tensor structures which appear in the correlation function of mixed
symmetry bulk operators were recently studied in [21]. The bulk OPE was considered from
a different point of view in [22]: this paper studies the expansion of a spherical defect in a
sum over local operators, and describes the OPE-blocks for this kind of fusion. In [23], the
additional constraints implied by A/ = 4 superconformal symmetry were tackled. Mellin
space for defect CFT was considered in [24, 25]. Finally, [26] deals with defects which
break rotational invariance also in the g orthogonal directions. Although the authors do
not discuss examples, defects of this kind might arise as endpoints of flows triggered by
relevant defect operators with spin in the transverse directions: one such operator exists
for instance on the 3d Ising twist defect [27]. In the rest of this work, we only consider
defects which preserve the SO(q) group of transverse rotations.

2In fact, the set of operators obtained fusing bulk operators with the defect is complete, in the sense that
if a defect primary does not appear in the defect OPE of a bulk primary, then it belongs to a decoupled
sector. More precisely, call él the set of operators for which b, 3, =0 for all O, and O; the complementary
set. Then €6,0,4, = 0 and Co.d;61 < 5@%1, where the ¢’s are the coefficients of the three-point functions
on the defect. The result is easily reached by analyzing the defect channel in the three-point functions of
the form <0102(ZA51> =0 and <O1q£1q£]> = <O1> (q@lq%)

3We use a terminology which leaves the present presence of the defect as understood. For instance, a
one-point function is the correlator of a bulk operator with the defect. In section 2, though, we discuss
correlation functions of local operators without defects: we hope that this creates no confusion.



The minimal correlator which admits an expansion both in the bulk and the defect
channels is the two-point function of local operators in the presence of the defect. Re-
sults for conformal blocks are available in the literature, in the case of scalar external
primaries [19, 20, 28]. In particular, in [28] a convenient set of cross-ratios was defined, the
so-called radial coordinates, which we shall also adopt here.

Finally, in the recent paper [29], the conformal blocks for pairs of defects were studied.
The authors map the problem of finding the blocks into the problem of finding eigenfunc-
tions of a Calogero-Sutherland Hamiltonian. The approach allows to extend a set of known
dualities between blocks [20, 23, 30], and as a special case applies to the bulk channel blocks
for the two-point function of external scalars with a single defect.

The content of the paper is two-fold. Sections 2 and 3 are dedicated to the tensor
structures appearing in correlation functions of local operators in arbitrary representations
of the rotation group. We describe a way of explicitly building the structures in embedding
space, which we apply both in the ordinary CFT setup, and in the presence of a defect. In
section 4, we turn to the computation of the conformal blocks for the two-point function
of traceless symmetric primaries. In the bulk channel, we extend the results of [28] and
explain how to efficiently generate the blocks in an expansion in radial coordinates and by
mean of the spinning differential operators of [31]. In the defect channel, the full set of
conformal blocks can be computed in closed form, and we describe the general solution.
Finally, in section 5 we illustrate the results in the simple context of a free defect CF'T.

2 Mixed symmetry representations and CFT's

In this section we introduce new tensor structures for mixed symmetry representations
which generalize the H;; and Vj j introduced in [32]. We will find a minimal choice
of polynomials which are in 1 — 1 correspondence with the conformal invariant tensor
structures in a correlation function. Our structures differ therefore from the ones introduced
in [33], which are not minimal and cannot be used for the counting of tensor structures.

2.1 Tensor structures for SO(n) mixed symmetry representations

We begin in the context of the orthogonal group. This allows us to review some background
material and set up a technology that, with minor modifications, will be applied to cor-
relation functions constrained by the full conformal group. Furthermore, defect operators
enjoy a global SO(g) symmetry, and the content of this subsection can be used verbatim
to take care of the associated representation theory.

2.1.1 Mixed symmetry tensors as polynomials

A tensor t; in a irreducible representation [ = Iq,... ,l[%] can be labelled by a Young
tableau which has indices in each box. The indices in the rows are symmetrized, while
antisymmetrization is performed on the indices in each column. Finally, all the traces are
removed. In order to make the symmetrization manifest we can contract all the indices of



the i—th row with the same polarization vector z(?),

O Y i e
z(2> z(2) qu u? (z) (Z)
ti(z) =t =1 2 2oz (2.1)
L] | E T my,
FOIIRG bl yfk

where k < [2]. A vector (e.g. 2(?)) inside a box means that the index of the vector is con-
tracted with the index of the box. The result is a polynomial ¢;(z) which has homogeneity
I; for all the z(9),

29280 ty(2) =1 ti(2). (2.2)

Antisymmetry of the columns (or better mixed symmetry of the Young tableau) is the
statement that it is not possible to symmetrize an index of a row j with all the indices of
a given a row ¢, with ¢ < j. In terms of the polynomials this condition can be imposed
asking that

20805 ti(z) =0,  Vji>i. (2.3)

Alternatively, we can say that #;(z) is invariant under the map 2 — 20 + a2 for j >
and for any a € R. Finally, tracelessness implies

0. - 0y ti(2) =0, Vi j. (2.4)
Rotations act naturally on #;(z), the generators being L = Zgi}l(z(i)“ %y — PARES )
It follows that ¢;(z) are eigenfunctions of the Casimir operator C = —$L*L,,:
(3]
Cti(z) =cti(2), = Li(li+n—2i). (2.5)
i=1

So far the vectors z() are unconstrained. However, there is a cheaper way to encode
a tensor in terms a polynomial #;(z), by asking that it is defined in the following subspace

N = {z(l), 2B eRY (200 200y = 0, for all i,j} . (2.6)

Indeed, the tensor can be uniquely recovered from the polynomial restricted to the subspace
N. It is important that the tensor should be transverse, namely

ti(z) € S ={f : N = R such that 29 -8 ¢ f = 0}. (2.7)

Transversality has useful consequences. For instance, the action of the Casimir operator
on functions t;(z) € S reduces to

I3

]
Cti(z) = (29 0,0 +n—20)(zD - 0,0)t(z), Vih(z)eS. (2.8)

i=1

Therefore any function t;(z) € S with the correct homogeneity in 2\ automatically satisfies
the Casimir equation.



Equations (2.7) and (2.8) make sense because the vectors L, and PR -0,(j) are tangent
to the manifold N. This is not true of the partial derivative 9,¢). It follows that indices
cannot simply be opened while staying inside N/, nor can the tracelessness condition (2.4)
be verified. Still, a recipe exists to recover the tensor from the polynomial restricted to N.
The recipe [33, 34]S é? ‘;0 derive all the (") of ;(2) and contract the resulting open indices

n

with a projector into the representation [ of SO(n). This prescription defines a (gen-

eralization of) the differential operator introduced in [35]. Namely, given ¢;(z) € S we have

I . [L]ll ot . /‘lll Q)| o | e | e | e | O
20 ]2 . 2 ]2 Y T O R P
o\ R L e e e S e e o (z),
wf | /Aﬁ ukl o M;"K A1) - |Ok)
(2.9)
where ¢ = 1/(l1!...1l§!) comes from the derivatives. We will comment on the definition of
SO . . . .

M ™ i the next section. Let us briefly explain why (2.9) works. On one hand the oper-

ation (2.9) recovers the original tensor if applied to ¢;(z) with unconstrained polarization
vectors. On the other hand any ¢;(z) defined in N differs from the unconstrained ¢;(z) only
by terms proportional to (¥ - z(9). However these terms are automatically annihilated by
the operation (2.9), because the projector is traceless. The result follows.

Let us summarize. A tensor in a representation [ = (I1,...[,/9) of SO(n) is encoded
in a polynomial ¢;(z) with the following three properties

e t(2) is defined on the subspace (2 - 20)) =0,
e t;(z) has homogeneity [; in 2(9, i.e. it satisfies (2.2),
e t;(2) is transverse: it is invariant under z0) — 20)4+az( for j > i, i.e. it satisfies (2.3).

We recover the initial tensor from the polynomial ¢;(z) by performing the operation (2.9).

Given any tensor t, there is a simple way to project its indices onto a representation I.
One can just construct the associated polynomial ¢;(z) as follows. For each column with m
boxes in the Young tableau of the representation, contract m of the indices of the tensor ¢
with the following antisymmetric tensor

(m) =, .. m _ n
C i =2 AR m=1,..., [2} . (2.10)

The tensors ™ are automatically transverse in all the () such that 1 < i < [n/2]. For

instance, given a tensor ¢ with 8 indices, we obtain the polynomial #;(z) associated to the
representation | = (4,3, 1) as follow:

1| 2 | 143 | Ha ‘
tl(Z) =t vy |ve | v CgS)Nllel 622)M2V2 622)“3V3 Cgl)u4 . (211)
P1

Notice that the polynomial ¢;(z) now scales correctly in 2 and it is automatically trans-

verse. From now on we can therefore think that any #;(z) is just a tensor contracted

opportunely with a set of cgm).



2.1.2 Projectors onto representations of SO(n)

As explained, the projectors 7TlS o

onto a representation [ of SO(n) are useful objects. In
order to make the paper self contained we review here their definition and the state of the

art on the subject. For more details, see for instance [34].

A projector W?O(n) (a,b) depends on two sets of tensor indices a,b (a = ay,. coap),
b= Bi,...B8), where |I| =1y + -+ +1,/9). Both sets of indices have the symmetries of
the Young tableaux of the representation [ of SO(n). The projector is invariant under
conjugation by an element of SO(n). As a consequence, when the projector is contracted
on one side with an arbitrary tensor ¢4, the result is a new tensor ¢; which transforms in

the irreducible representation ! of SO(n):

ty =m0 (4, b) . (2.12)
The projector is also idempotent,
720 (4, 0) 7O (b, ) = 770 (a, ¢). (2.13)

When we contract with vectors the two sets of tensor indices in a projector we find a

polynomial®
n ) _ _S0O(n) Xl ... %
Pllv--wlk (X17 U ’Xk7Y1’ e 7Yk) = ﬂ-ll,...,lk N LR B )
X ] X AN

(2.14)
where k£ < [n/2]. The vectors X; and Y; are meant to be unconstrained (X; - X; # 0 and
similarly for Y;). It follows from the discussion of the previous section that these polyno-
mials need to satisfy scaling (2.2), transversality (2.3), tracelessness (2.4) and the Casimir
equation (2.5) both in the X; and in the Y;. One can use these requirements to bootstrap
the form of the polynomials (2.14). This approach was used in [34] in order to obtain a vast
class of such polynomials for generic /1, and many choices of small integer values of s, l3.

The simplest polynomial is the symmetric and traceless one,

X1
VX X)) Y)

P7(X;Y7) _ i

(X1 - X0)2(v- )2 245 — 1), (2.15)

(), =

A less trivial example is the polynomial P}, which can be obtained in a closed form for

“4In the following, we will use these polynomials both in physical and in embedding space. The coefficients
of the polynomials do not depend on the signature of the metric, while the variables, which are scalar
products in X; and Y;, do. With abuse of notation, we will intend the polynomial P? as a function of scalar
products built out of the metric of the physical space R?, while P?*2 will depend on scalar products built

out of the metric of the embedding space RY4+1,



any [ [34, 36] in terms of operations performed on the projector (2.15),
P (X, X0 Y1, Y5 X - Yo\ X5 - Y5
(X : 2; Y1 2)l _ ’1[ <( 1 Y2) (X2 - Y1) —x(Xg-Y2)> o,
(X1-X1)z (Y1-Y1)2 VX1 X1V -1
( (Xi XY - Yo+ X -Y5Xo V1) Xi-XoXy - V)
VX1 X1V - X1 Xy
Y1 -Y2Xo- 11
Yi-1

—(2*-1) XQ-Y2> ag} Cl%_l (),  (2.16)
where z is defined as in (2.15) and ¢;; is a normalization coefficient, irrelevant for the
purposes of this paper. Importantly, | appears in (2.16) only through the Gegenbauer
polynomial (beside the overall normalization ¢; ;). This makes the formula convenient for
generic integer [, and even suggests its analytic continuation to real values. Moreover, in
all the known cases the functions P}, take the form [34]

Pﬁ’._.71k(Xla--~7Xk;Y1a~--aYk) n ' %71
(Xl . Xl)l1/2(Y1 . Yl)l1/2 = # Dlg,...,lk(Xla R 7Xk7Y17 s 7Yk78m)cl

1
where D, are some explicit differential operators which can be found in [34]. For

(x) (2.17)

example, DY is the one defined in the square brackets in (2.16). Again, notice that in (2.17)
the full I dependence is carried by the Gegenbauer polynomial. In [37] it was also found
that one can generate all the operators D (for any l3) by acting successively with some
weight shifting differential operators [38].

2.2 Tensor structures for SO(d 4+ 1,1) mixed symmetry representations

In this section we construct tensor structures for mixed symmetry representations of SO(d+
1,1), exploiting the fact that they can be seen, roughly speaking, as analytic continuations
of representations of SO(d + 2).

It is convenient to lift CFT operators to the embedding space [32]. Given a primary
O (g), defined on x € RY, with a; = 1...d, conformal dimension A and SO(d) spin
l={(l1...,ljq/9) we can lift it to the embedding space as an operator whose indices have
the same symmetries:

O () — OAv-Au(P) (2.18)

where |I] = Iy + - + g9 and P € R4*1L1 The tensor can be as usual encoded in a
polynomial:

Al || Al k
or,zN=ow@) |- I1 Z(Zi---Z(Z;, (2.19)
Ak| Ak i=1 '

where k < [d/2]. The operator (2.19) is required to satisfy the following scaling and
transversality relations

4]
O(aP,3;Z2%) = 0(P,Z") o2 T] B}, (2.20)
=1

P-3,,OP,ZV) =0, Z® . 0,,0P,ZD)=0, (j <k). (221)



We recognize the scaling and transversality conditions which we imposed for tensors of
SO(n). The only difference from what discussed in section 2.1 is that the embedding space
operator does not scale in P as a polynomial. However, when —A € N we can think of
O(P, Z™) as a tensor of SO(d 4 2) associated to the Young tableau (—A, Iy, . .. s Lja/2)) with
an extra line of —A symmetric indices contracted with “polarization vectors” P. In this
case one can write the operator O as a polynomial following the recipe of section 2.1,

Al ] ...IA_OA
k
. A | ] L |AL . .
or,z0)~o| 2 L Py P [[25 2. (222
- 1 l;
i=1 g
Akl ap

Of course, the indices in the first row (highlighted in yellow) cannot be defined for generic
A € R. Nevertheless, we keep in mind the picture (2.22) to motivate the following prescrip-
tions, in analogy with the discussion on SO(n) presented in section 2.1. First, following
section 2.1.1, we consider vectors P and Z() satisfying the conditions

P.-P=0, p.zU =0, ALAC S (2.23)

These conditions match the ones derived in [32] and [33]. Notice, however, that the first
two conditions have a different status here: they are forced on us by the projection onto
physical space, as we review in subsection 3.3.

According to section 2.1.1, we can think of the operator O(P, Z()) in (2.22) as con-
tracted with antisymmetric tensors of the form

C;mzl...Am =P [A; Z(QQ Z(T:Lél;l])v m = 17“" |::| +1. (2‘24)

Cl(gm)Al"‘Am on the

To avoid cluttering, we do not explicitly denote the dependence of
polarization vectors Z().
Using (2.24) one can write a correlation function of generic operators O;(F;, Zi(] )) in

terms of scalar contractions of the associated antisymmetric tensors C}T) Av-Am A an
example we define the following class of scalar contractions,
n,mims __ ~(n) A1...Ap (m1) (m2)
T;Jk 1mz — CPi CPj Ay A, CPk Ay i1 Ap (225)

where n = mj + mgy. Although more contractions are in general possible among the
tensors (2.24), the (2.25) are sufficient for the purposes of this work. The structures (2.25)
satisfy the properties
bl O P— ) bl bl i ’
Ty =T =10, T = (mm LI TT = 0, (2.26)
which easily descend from the symmetries of the tensors (2.24). The simplest instance is

the scalar product
T =P Pj. (2.27)

i,J



The well known Vj ;. and H;; introduced in [32] are in correspondence with the (2.25) as

well:
P -P)(Z;-P.)— (P;,- P.)(Z; - P;
11 o v, = B PGP — (P P)(Z- Py
P\/f_’Q(]ZDZ ?)(P PPk)Z(PkPH)Z (228)
7;2]’.2<—>Hijz(i'j)(z i) = (B Z)(By - Zi)
’ (P - Pj)
The structures T Y k L and T2? scale with the P;, while V; ;,, and H;; were chosen to be scale

invariant. This is convement, and we shall also often define structures with degree zero
in the P;, by an appropriate choice of factors P; - Pj. Let us now use the formalism to
characterize two and three-point functions.

Before we proceed, we want to comment on one important difference between SO(n)
tensors and embedding operators seen as (2.22). For SO(n) tensors we chose polarization
vectors z(®) which satisfy z*) . 20) = 0 as a trick, but in the end we needed to restore their
dependence on unconstrained z(*) € R" by using the prescription (2.9). For embedding
operators instead we will never want to restore their dependence on unconstrained P €
RI1L1 since the subspace described by the null cone P? = 0 (and similarly P - Z (k) — 0)
is still redundant (it is a d + 1 dimensional space, while the physical space is R?). In
subsection 3.3 we review how to recover the physical space operators form the operators
defined on the null cone by further restricting the vectors P to a d-dimensional subspace
of the null cone. On the other hand, one may want to lift the results to the case of
embedding space polarization vectors which are not constrained to be transverse to each
other, Z®) . Z() = 0. If the operator and the polarizations are transverse to P — i.e. O
obeys the first of the (2.21) and P - Z(Y) = 0 — this operation can be performed by using
the prescription of section (2.9), using SO(d) projectors [32].

2.3 Examples of correlation functions

Two-point functions. Using the structures (2.25) it is trivial to see that all the two-
(j))

point functions of operators O;(F;, Z;”’), transforming in a representation ¢; € SO(d), are

fixed in terms of a unique combination of structures. This combination is only allowed
when A=Ay =Aand ¥l =l =1 = (ll,...,l[g}) and it reads
2

(o, Z90(p,, ZY H Ty h e (2.29)

In (2.29) we wrote A, in terms of the associated Dynkin labels n = [ng, nq, .. .n[%]] such
that ng = —A -1y, g = l[%} and n; = l; —l;41 (for i = 1...[2] —1). We stress that (2.29)
is the only possible combination of structures which satisfies equations (2.20)—(2.21). As
an example, the two-point function of traceless and symmetric operators of spin [ reduces
to the usual expression,

(O(P1, 21)0(P2, Z2)) = (2.30)



Notice that a two-point function for Zi(j ) such that Zi(j ). ka) # 0 is fixed in terms of the
polynomial P" defined in (2.14),

Pd+2 (Pl Z(l) . Z([d/Q]) P2 Z(l) L Z([d/QD)
() (4) hiv, ol 271 20r 2™ 22 02
<O(P17 Zl )O(sz ZZ )> X (Pl . Pz)A—‘rll

, (2.31)

It is possible to check that, setting Zi(j) 'Zz-(k) = 0in (2.31), one does recover exactly (2.29).

One can also check that (2.31) reduces to the two-point function in physical space once we
(9)

write it in the Poincaré section described in subsection 3.3, with generic polarizations z;

Three-point functions. Here we classify the tensor structures in the OPE of two trace-
less and symmetric operators. We claim that any three point-function of operators Oy, Os
traceless and symmetric with spin l1, lo and an operator Oz in a representation with generic

spin (lél), 1(2), lgg)) can be written as follows

3
O ‘
; 5, AR (P 2:. 7))
<01(P17 Zl)OQ(P% 22)03(P3> Z?E ))> = Z >@7 O3 = A1+A22p—A3 A1+A23—A2 A2+A23—A1
P o Py Pp3 Py
2

(2.32)
where 052)3 are the OPE coefficients and P;; = —2(P; - P;). Each OPE coefficient in (2.32)
is multiplied by a conformal invariant structure of the form®

n; NG s s 4’
[T (Vi)™ Tl (Hip)™ (T )™ (T30 (Tyy)" (2.33)
[~2(Py - Py)(Py- P3)(Ps - Py)] -2 ’

QWP 2, 25) =

where Vi = Vio3,Vo = Vo 31, V3 = V319. The values of p in (2.33) label the choices of
exponents in the right hand side of (2.33), which are non-negative integers subject to the

conditions
k=1
k1+k2+k=l§2),
ny+nig+nes+ ki +k+k= l:(gl) , (2'34)

ni+nizg+ms+ ki +k=10,
ng+nio+neyt+ket+k=Is.

5Actually a more elegant equivalent way to define the two point function is in terms of the analyt-

ically continued projector P‘izzll 7777 s, (P1,21(1>, .. .,Zf[d/2]>; Ps, Zél)7 - .7Z§[d/2])) which will be used in

section 4.2.1. It is easy to check that this analytically continued projector reduces to (2.31) when P-P =0
and P-Z® = 0.

5The structures (2.33) are scaleless in all the P;. The three point function (2.32) could have also been

T_’ﬂ»’mlm2

written in a compact way in terms of the structures ik alone, but we decided for a form which may

be more familiar to the reader.
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As an example we write the number of structures Q) in some three point functions for

fixed spin Iy, Iy and generic lél):

(17, 181(0,0) (1,0) (1,1) (2,0)
# 5 4 1 1

=1, 1" > 2, (2.35)

(157,157)/(0,0) (1,0) (2,0) (3,0) (4,0) (1,1) (2,1) (3,1) (2,2)
# |14 16 11 4 1 5 4 1 1

ol =2, 1§ >4,

It follows from the relations (2.34), as one can check from the table (2.35), that the non-
vanishing three-point functions need to satisfy the conditions

htl>1@+1, >, =1 (2.36)

In the table we also recognize some seed three point functions [39, 40], which are defined as
the three point functions with only one tensor structure’ for generic l31) (in this case p only
takes the value 1, so we will drop it). We treat O3 differently, asking for the length of its first
row to be generic, because we think of it as the exchanged operator in the OPE of O; and
0o, see section 4. From the conditions (2.34) it is easy to see that a seed three point function
is generated by exhausting all the polarization vectors Z; and Z5 while building the tensor
structures T?i 1221 , T:,i 2211 , T:.i 1222 . In other words, seed three point functions can be obtained by
looking for solutions of (2.34) with n;; = ny = ng = 0. These are uniquely obtained as

k=18, na=1" 17, k=0 -1, k=1-1{Y, (2.37)
provided that the external operators satisfy the following seed condition
lh+1y= l:(f) + l:(f) & seed. (2.38)

The seed three point functions saturate the first of the three conditions (2.36). The re-
quirement (2.38) matches the one obtained in [34].

The prominence of the seeds stems from the fact that all other three-point functions
are obtained by acting on them with a set of differential operators [31] which increase the
spins [; or ls. In fact, as we explain in subsection 4.1.3 and in appendix B.1, the minimal
set is even smaller. Out of the lgz) — lég) + 1 pairs (l1,l2) which exchange a given O3 as a
seed, only one is necessary. The others can be in fact obtained by acting with differential
operators [34] which map seeds into seeds (see appendix B.1). It is therefore convenient to
choose a representative seed three point function for each O3 exchanged. A natural choice

is to consider seeds that also saturate another of the (2.36), say lo = l§3),

On, L=

seed representative = s OAg @ (2.39)

O, 1p=1$Y

" Actually, also when Iy (or I2) = lgS), lém = l§2) and 1 + 12 > l§2) + l§3> there is only one structure. This
additional case, where lél) is bounded for fixed [1, l2, is not counted among the seeds. Indeed, the same
O3 is exchanged by external primaries with lower spin, which saturate the first of the (2.36). The single
structure of the additional case can then be obtained by applying the spinning operators of subsection 4.1.3.
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In appendix B.1 it is detailed how to obtain all the three-point functions by acting with a
set of differential operators on the representative seeds (2.39).

As a last remark, we would like to discuss conservation of seed correlation functions.
Let us consider the case of a seed three-point function (O;0203) in which one symmetric
and traceless operator (let say Oflmml) is conserved, namely it satisfies amo‘fl“"”l =0. It
is trivial to see that the seed three-point function is automatically conserved. Indeed, since
the three-point function with the operator (; saturates the condition (2.36), the three-
point function with (8“1()?1'"“[1) violates it, thus it vanishes. The same argument holds
for more generic seed correlation functions, because seed correlations functions saturate a
condition of existence of the kind (2.36). In subsection 3.2, we shall see another example of

conservation of seed correlation functions in the case of the bulk-defect two-point functions.

3 Mixed symmetry representations and defect CFTs

In a defect CFT, a p dimensional defect breaks the SO(d + 1,1) symmetry to a SO(p +
1,1) x SO(q) (with p + ¢ = d) subgroup of the original conformal group. As in the pure
CFT case, the non linear realization of the stability group of the vacuum makes it hard
in general to implement the symmetry constraints on correlation functions. The uplift to
the embedding space for defect CFTs of general codimension was worked out in [20]. In
the present section, we will extend the analysis of [20] to operators transforming in mixed
symmetry representations of SO(d). This problem was addressed in the recent paper [21],
using the formalism of [33]. Our solution, as in section 2, employs commuting polarization
vectors to build a minimal set of structures with no redundancy, thus facilitating the task
of enumerating them.

Before presenting the results, let us set our conventions up. Following [20], in the
embedding space it is convenient to split the (d + 2)-dimensional scalar product P - Q =
> PM Q) into its counterparts parallel and transverse to the defect, which is always lifted
to a (p + 2)-dimensional time-like plane. Following the convention of [28], we implement
the splitting by defining projectors Il,, I1,:

Pe@Q =P-1I,-Q (parallel) , (3.1)
PoQ=P-11,-Q (orthogonal) , (3.2)
with I, +1II, = diag(—1,1,...,1). The shape of the defect in physical space can be chosen
by specifying the form of the projectors (3.1)—(3.2). With the usual conventions for the
projection onto the Poincaré section, to define a flat defect it is sufficient to take the axis P~
to lie on the parallel subspace, while in general the defect will be spherical [28]. Of course,
equations (3.1)-(3.2) define a splitting of the physical space scalar product z -y = x#y"6,,,
as well
TOY =T Te-Y (parallel) , (3.3)
TOY =T To- Y (orthogonal) , (3.4)
with me + ™o = 0. When the defect is spherical and centered in the origin, the p + 1
directions in which the defect is embedded are defined to be parallel.
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3.1 Operators and tensor structures

There are two classes of operators: bulk operators O and defect operators O. Bulk inser-
tions are the same local operators of a d dimensional CF'T. We discussed them in section 2.2.
Defect operators O deserve a separate treatment. Since they live on the defect, they can
be thought of as operators of a p dimensional CFT, with quantum numbers under symme-
tries acting parallel to the defect. They also transform under an SO(q) global symmetry,
the rotations trasverse to the defect. The defect operators O are therefore labeled by
SO(p+1,1) x SO(g) quantum numbers, in particular

A conformal dimension,
. . SO(p+1,1)
[ = (ll, ) ..l[p/g]) parallel SO(p) spin, (3.5)

5= (81,...5]4/9) transverse SO(q) spin.

As we did in (2.19), we consider operators in embedding space, @(P) with P living on
the defect (PyIIMN = PN) and contract the SO(p) indices with polarization vectors
ZW . zp/2) and the SO(q) indices with new polarization vectors w® o wle/2D, In or-
der to make analogies with 2.1.1, we also repeat the construction (2.22) for defect operators,

A j i I A5 I O R A ©))
O(P,Z(J),W(J))NO B R S R 7 (3.6)
ARI VAL wml . w®

where £ < [5] and h < [2]. As we did in (2.22), we coloured in yellow the line of the

tableau which makes sense for —A € N. We think of Py, Z (]j\}, W(]f} as vectors in RA*L1
(therefore M = 0,...d+ 1), but P, Z () only have non zero components parallel to the
defect, while the only non zero components of W) are transverse to the defect, namely
Z0 TIN = ZO0N and W) TN = wO N,

We associate to a defect operator two sets of antisymmetric tensors: the Cl(jn)Ml"'M”
as defined in (2.24), with n =1,..., [5] + 1, and the following
_ q
CI(/IT/L) My, = wi [)M1 W(T;\)/[n] , n=1,..., b} , (3.7)

which are of the form (2.10). We can build all the conformal invariant structures appearing

(n)

in a correlation function of bulk and defect operators by contracting the tensors C P:_L and

C(Wn) The only extra ingredient are the projectors (3.1)—(3.2), namely the indices of the

C(™) can be contracted either with 11, or with Il,. For our purposes, the following class of
structures will suffice:

I7 5™ = C}n)Ml...Mn Cgmlzefl...le C;(mQJ)le_H...Nn L (3.8)

where x = e, o labels the two projectors and the capital letters I, J, K = P;,W; are
introduced to distinguish between Cp, and Cyy,. For simplicity we denote Tl*g’[?o =177".
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Explicit examples are the building blocks analogous to the H;; and V; j;, of (2.28)
(.PZ * PJ)(Zl * P]C) — (Pl * Pk)(Zl * PJ)

* 2,11 V* =

P;,P; Py Wk = (P e D) (P e D)(Dre D) (3.9)

22 e = Bk B)(Zik Zj) = (Pix Z)) (P » Zi) |
by M = (P * P) ’

where x = o, o. By taking an opportune set of linearly independent VZ*Jk and H; one can
write any correlation function of bulk traceless and symmetric operators. In the following,
we will give a set of linearly independent structures for the two-point function.

Correlation functions of defect operators only can be also written in terms of structures
of the kind (3.9), but in this case the label x = e, since the P and ZU) live in the parallel
space. In order to take into account the global symmetry SO(q) of the operators, we
need to add to the mix similar structures obtained by transverse contractions of CI(,%), like
TV(I)/ZlV%/J - Wi(l) ° Wj(l)'

A more involved set of structures appears for correlation functions involving both bulk

and defect operators. Indeed, it is possible to contract C( ) (n)

of a defect operator with Cp
of a bulk operator, in this case using the transverse product since the W; are orthogonal

to the defect. The simplest structures are

()
ol,1 i WZ OPj
fwk, = (ot

1 1
o211 i (PoP)(ZioW ) — (P o W) (P o Z;) \ 10
P;,W; Py, Yi,k = P,o P, ’ ( ’ )
poze g~ W ePywoz)) - W o P)(WV o 2))
wi,p, 705 = 1/2 :

(Pjo Pj)

Again we normalized the structures so that they have degree zero in P;. In the next
subsection, we exemplify the formalism.

3.2 Examples of correlation functions

One-point functions. The one-point function of a bulk operator O(P, Z%j ) ) can be
constructed with the structure TP}T)L". Notice that, since P> = PeP + PoP = 0, the
structure defined with o is not linearly independent, Tp ;" = (—1)"Tp p™". We obtain,
up to a normalization constant,

Tmax

(o H T /2 imax = min (p+1,¢ — 1,[d/2]) . (3.11)

In (3.11), as in (2.29), we wrote A,l in terms of the associated Dynkin labels n =

[no,n1, . ..n[%]] such that ng = —A — Iy, ) = l[%] and n; =1l; —lj4q (fori=1... [%] —1).
For example, the one-point function of a traceless and symmetric primary of spin [ is fixed
as follows "
H.
(O(Py, Z1)) = aoi( 1) <. (3.12)
(_Pl [ ] P1)7
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). and this only happens if all the [;
are even. We conclude that the operators with non vanishing one-point function are®

The function (3.11) must be a polynomial in the ij

Onaly..21 (3.13)

“max

The maximum number of rows iy, cannot exceed [d/2], of course, nor can it be larger
than min(p + 1,¢ — 1). The latter bound follows from the fact that it is impossible to
antisymmetrize a larger number of vectors in the parallel or in the orthogonal subspaces,
which makes the structures (2.24) vanish identically if they have too many indices. In
particular, notice that if the defect has codimension one, then only scalar primaries acquire
a one-point function. As in the case of the two-point functions (2.29), the one-point function
can be written in terms of a projector when the ZU) obey ZU) . P =0, but 2@ . ZU) is
unconstrained. In this case, the projector is contracted on one side with the Z (@) and on
the other side with IIMN:

. 1 d/2
Ptz (p,zM Lz,

(Ou(Py, 2)) o A (3.14)
Here we introduced the notation P *9*2 for the following polynomial
x| ‘Xl‘ My ] ‘Mlll
Pl:dJr%k (X1,....X3) = ”lsl(,)..(.c,l;f) ):(2 Xo 7 M| || M
pANED A MF| .. MZ’Z
x ﬁ M -Hiwé*Mli' : (3.15)

Jj=1

where k < [d/2]+1. As in footnote 4, with abuse of notation we will use the functions (3.15)
both in physical and in embedding space. The metric for the scalar products is intended as
the metric of these spaces. Moreover when we use (3.15) in physical space we contract the
SO(d) projector to mh"” — defined in (3.3) — instead of its embedding space counterpart
IIMN | By construction, these polynomials are non zero only when I1,...,[; are all even
numbers. Also, it is easy to check that (3.14) reduces to (3.11) when ZU) . Z() = 0. We
can give some examples of these polynomials

(),
(=),

J
2

S

P;d(Xl) =

. i d+j—2 p+1 XieXy
X1 X1)2 .8 (—2 ; :
(K- X) 21( 27 2 2 'X-X,

and similarly in appendix A we define the function P ]-"2d.
In the next section, the polynomials P *" will play an important role in the computation
of the bulk channel conformal blocks.

8This rule applies to parity even primaries. The one-point function of parity odd operators is constructed
by contracting structures C™ with the epsilon tensor of the p+2 or ¢ dimensional space. Using this recipe,
it is not hard to classify the parity odd operators which can acquire a one-point function.
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Two-point functions of bulk traceless and symmetric operators. In this case the
set of linearly independent building blocks is

. . . (3.16)
H12 ) H127 Hll ’ H227
where V;* is defined in terms of the structures V5 and V5%, of (3.9):
P1 [ ] PQ Pl [ ] P2
=V, 1
VYZ ‘/7,,7/(3—1) PxP\ P - P, (3 7)

Terms in square brackets are cross ratios, thus are not essential. They have been chosen
so that the tensor structures remain finite and linearly independent in both the bulk and
the defect OPE limits (see appendix C.1). In order to prove completeness of the struc-
tures (3.16), it is convenient to use the radial coordinates defined in subsection 3.3. Using
the bulk radial coordinates to fix ideas, the elementary building blocks are the bilinears
in the physical space polarizations z;, 29 and in the angle n. It is easy to see that said
bilinears are in one-to-one correspondence with the (3.16), thus proving the completeness
of the latter.”

In sum, a two-point function of bulk operators O; of dimension A; and spin /; can be
written as follows

(O1(P1, 21)O02( P2, Z3)) = ! = > I {ua})Qi(Pr, P, 21, Z5) . (3.18)
(Pl o Pl) (PQ o P2)T

The structures @)y are given in terms of the building blocks

2
Qr = (Hiy)™2(H )™ H )" (Hgg )™ (3.19)
=1

where the index £ labels the choice of non-negative integers n; and mfj which satisfy the
relation

The functions f*({u,}) depend on two cross ratios [28].

Two-point functions of generic defect operators. The two-point function of a defect
operator O with transverse spin s and parallel spin [ is fixed in a combination of tensor

structures
o R |
(O(Py, 2 WOy, 25, W) o [T (@ xH Tyiw)™ . (3:21)
i=0
As before n = [no,nl,...n[g] are defined as the Dynkin labels associated to
(*A,ll,...l[p/g]) such that ng = —A — [y, npep = l[g} and n; = l; — i (fOI“ T =

9This basis can be also written in terms of the structures defined in [20].
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1...[8] = 1). The extra labels m = [my,.. .m[%}] are instead the Dynkin labels associ-
ated to s = (s1,...5q/2))-

As an explicit example, the two-point function of a defect operator O with symmetric
and traceless parallel and transverse spin [ and s, is fixed as follows:

() (WioWa)*

(O(Py, Z1, W1)O(Py, Zay, W) = 3
(—2P1 ° P2)7

(3.22)

It is easy to generalize this result to higher point functions of defect operators, since
they coincide with those of a p-dimensional CFT with a global symmetry. Vice versa one
can also use this formalism in order to write correlation functions of CFTs with SO(q)
global symmetry.

Bulk-defect two-point functions. We consider now a correlation function of a bulk
symmetric traceless primary O, with dimension A and spin /, and a generic defect primary
O, with dimension A parallel spin [ and transverse spin s. Using the structures (3.8), it is
easy to see that the defect operator is fixed to be a traceless and symmetric parallel tensor
of spin [ and a tensor of orthogonal spin s = (s1, s2), with s; = 0 for i > 2. Therefore

" bgéQ(p)(Pl,ZlaP%Z?’ )

(O(P1, Z))O(Py, Zo, W) = O#@ : ——,
2 Zp: (—2P1 e P)A(P o P) 5

(3.23)
where!? A
QW = (HY)' (57)% (Hy)™ (Vi)™ (K7)™ (Y™, (3.25)
The structures involved are defined in (3.9) and (3.10). The index p labels the choices of
non-negative integers m;; and n; which satisfy the constraints
| — Z— So =2mq1 +n1 +mio, (3.26)
81 — S = Ng +mq2.
Eq. (3.26) implies the requirement
1>1+sy. (3.27)
Let us now exemplify the counting of tensor structures for fixed spin of the bulk operator.
Analogously to the discussion in subsection 2.2, we are mainly interested in defect operators
with label s; generic, which in this case means s; > [ — :

=1, s> 1 —i, (1,82)((0,0) (1,0) (0,1) (3.28)
# 2 1 1

=9 sy >2 10 (,52)](0,0) (1,0) (0,1) (2,0) (1,1) (0,2) (3.29)
# 14 2 2 1 1 1

9The building blocks map to the ones defined in [20] as follows:
Hf% =Q%p, Ki=Qpp, WVih2=-Qbp, Yi1=Qsp, Hii=Qbp. (3.24)

We introduced an extra structure in order to take into account operators with transverse spin sz > 0.
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From formula (3.26) and from the table it is clear that, for large enough s;, the number
of structures only depends on the difference N =1 — [ — 55 and in particular it is equal to
# = (1+ N/2)? for even N and # = (1+ N)(3 + N)/4 for odd N. We are led to a simple
characterization of the seed two-point functions, which are again defined as the correlation
functions which appear with a single structure # = 1 (for large enough s1). These are
forced to have N = 0 or equivalently

I=[+s < seed= Omﬁ%@m_z_@ ors) (3.30)

in which case m;; = 0 = ny (of course s1 > s3).

Using more generic structures (3.8) one can characterize the bulk-defect two-point func-
tion also when the bulk operator transforms in a generic representation [ = (I1,...,l4/9))
and the defect operator has generic parallel [ = (I1,...,lj/9) and transverse s =
(81, .. ,s[q/2]) spin. In particular it is easy to see that all the non zero two-point func-
tions satisfy ; > [; 4+ s;4.1. Moreover, this condition is saturated by the bulk-defect seeds,
which obey [; = iz + si4+1. As a last comment, we would like stress that, as we already ex-
plained at the end of subsection 2.2 for bulk seed structures, the seed bulk-defect two-point
function of a conserved bulk operator is automatically conserved.

3.3 Correlation functions in physical space

This section is dedicated to the projection of the embedding space expressions to physical
space. We will simply gather the relevant formulae, referring the reader to the literature
for a complete discussion [20, 28, 32].

As mentioned in subsection 2.2, the CFT lives on the null cone of RV4*!. The usual
flat Euclidean space with Cartesian coordinates x* is obtained by restricting the operators
to lie on the Poincaré section:

1+ 22 1—2a?
Plgg[incaré = ( 2 71'“7 9 > s (331)

where the first coordinate is the time-like one. The embedding space indices of the oper-

ators are projected onto the physical ones via the Jacobian of the immersion (3.31). The
polarization vectors in embedding and in physical space are related by requiring that such
a projection, applied to the tensor structures in embedding space, yields the polynomial
which encodes the tensor structures in physical space. Since in the following the only ex-
ternal operators will be bulk primaries, we only explicitly consider their polarizations. A
possible choice is

Z)M _ (k) aiu PM g B k) gy (3.32)

The polarizations defined this way obey (2.23) if (") . 20) = 0, but the choice (3.32) is non
unique, since a shift Z](\f:[) -7 M) + aPys leaves the correlation functions invariant.

In the next section, we will be concerned with the two-point function of bulk primaries.
In [28], two convenient configurations for this correlator were discussed, which we call the
bulk radial frame and the defect radial frame.
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Figure 1. The bulk and defect radial frames, corresponding to equations (3.33) and (3.36). Bulk
radial frame (left): the defect is spherical and orthogonal to the plane drawn in the figure, and
crosses it at the position marked by the red dots. The operators O; and Os sit at the same radius
r. Defect radial frame (right): the defect is flat and orthogonal to the plane drawn in the figure,
and crosses it at the position marked by the red dot. The operator O; sits at unit radius, while O
lies at radius 7.

Bulk radial frame. In the bulk radial frame, the defect is a p-sphere of unit radius
centered in the origin. The operators are inserted in P; and P», with

1472 1— 72 142 1,2
P1:< —;T 7TnM7 2T>7 P2:< —;r7_rn“7 2T>7 (333)

where 7 is a unit vector in R? and 0 < r < 1. The configuration, which is depicted on the
left in figure 1, naturally defines the two cross-ratios

T, " =nen . (3.34)
The polarization vectors are
ka) = (r ng) -n, z%k)“, -7 z%k) n) , Zoy = (—7‘ zék) -n, zgk)“,rzék) . n) , (3.35)

Defect radial frame. On the other hand, in the defect radial frame the defect is taken
to be flat and the operators are located at

1 ~2 1— ~2
RN ) , (3.36)

Plz(]-anuvo)a PQZ( 2 , T, 2

where 0 < # < 1, and n, n/ are now unit vectors in the transverse space R, i.e. mh"n, =

By _

me 1, = 0. The coordinates of P, can be taken as cross ratios:

T, n=non’, (3.37)
and the configuration is depicted on the right in figure 1. The polarization vectors are

ZYC) = <z§k) on, Z%k)“, —zgk) o n> , Zék) = <f zék) on/, zék)“, —7 Zék) ) n') . (3.38)
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4 Spinning conformal blocks

We would like to study the two-point function of symmetric and traceless bulk operators
O;, with dimension A; and spin /;, in the presence of a defect:

Fo{P;, Zi}) = (O1(P1, Z1)O9( Py, Z3)) . (4.1)

We are going to consider the conformal partial wave decomposition of the two-point func-
tion both in the bulk and the defect channel. In the bulk channel one has

B(P. 2 =3 a0, GE P, Z})
O p

01

=YY cod po#
O »p

02

Here ap is the one-point function coefficient, which is implicit in (3.11) and appears ex-
plicitly in (3.12). The C%)O are the three-point function OPE coefficients defined in (2.32).
The exchanged operator O with conformal dimension A and SO(d) spin [ needs to have a
non-vanishing one-point function in order to appear in the bulk OPE. From the discussion
of subsection 3.2 we therefore conclude that all the Cartan labels | = (¢1,...,£|q/z)) of O
are forced to be even numbers.

The defect channel expansion is written as follows:

F({P, 2 =33 ool GhI((p, ;)

O P
4‘5 ) (4.3)
SN o

O b 0243?

where bulk-defect OPE coefficients b%’ bég were defined in (3.23). The exchanged operator

O is labelled by its conformal dimension A, the SO(p) representation [ and the SO(q) repre-
sentation s. As explained in subsection 3.2, the parallel spin [is always traceless and sym-
metric, while the transverse spin s may be in a mixed symmetric representation s = (s1, s2).

It is often convenient to study conformal blocks (CBs) in the radial coordinates defined
in 3.3. Following the conventions of [28], we expand the partial waves in terms of a sum
of conformal blocks, which depend on two cross ratios. In the bulk channel, from (4.2) we
define

kmax

PP, Z)) = Alrm) ki, P, Z: 4.4
o )y ProPn S (PP 2 z_:go mQk({ 1 (4.4)

where the structures @, are defined in (3.18) and A is the following function

1
A(r,m) = (27“)*A17A2 (r4 _ 4772r2 L2 4 1) L(A1+A) .
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A similar expansion holds for the defect channel partial waves (4.3), where we define 7,7
as in 3.3:

1 kmax

PP (P P)AgZgg’q)’k(ﬂﬁ)Qk({B>Zi})- (4.6)
10477) 2 (F2002) 2 k=1

A(p,a) AL
GOI(P, 2:}) =

In tables (4.7)—(4.8) we give some examples of conformal blocks which appear in various
two-point functions of bulk operators with spin /; and /5. The notation is as follows. When
the number of OPE tensor structures (which we recall are labeled by p in the bulk channel
and (p,q) in the defect channel) is 1, we call the associated conformal block a seed block.

The label kpax is the number of tensor structures in the two-point function, according
to (4.4) and (4.6).

li 2 | kmax | Bulk OPE

0 0/ 1 > o #
Al
1 0| 2

p=12 (4.7)
Avl Av(l72)
1 1 6 %
p=1,...,5 seed CB
Al A(1,2) A,(1,4) A(1,2,2)
2 2 27
p=1,...14 p=1,...11 seed CB seed CB

From tables (4.7) and (4.8), we see that the total number of partial waves in the bulk
and defect channels is equal. They are also equal to the number of two-point function
tensor structures kma.x. For instance, the two-point function of spin one operators can be
decomposed in 5+ 1 = 6 bulk partial waves, or in 22 +1 4+ 1 = 6 defect partial waves
and has kmpax = 6. Similarly, the two-point function of spin two operators is decomposed
in 14 + 11 + 1+ 1 = 27 bulk CBs and in 42 + 2 x 22 + 3 x 1 = 27 defect ones and again
kmax = 27. In fact one can check that this match continues also for external operators with
higher spin. It would be interesting to justify this match by using representation theory as

~921 —



it was done in [41] for correlation functions in CFTs without defects.

l1 Iy | kmax | Defect OPE
— 4
0 0 1 A,i:O,s
1 0 2 A,Z:()S
p=12 (4.8)
1 1 6 Al=0,s Al=0,(s1) Al=1,s
p,q=1,2 seed CB seed CB
O T Oam, e
2 2 27 =08 A 7o Al=1,(s1
4%) (ﬁ) Al=0,(s,1) 4? Aj:o’(&g)
p,g=1,...,4 p,qg=1,2 seed CBs

In the following, we describe some techniques to determine the conformal blocks g and
¢ in formulae (4.4) and (4.6). In general, the bulk CBs are going to be computable only as
an expansion in radial coordinates: roughly speaking the bulk CBs are as hard as the CBs
for the four-point function, with which they share the same bulk OPE. On the other hand
we will be able to determine a closed form formula for any defect channel CB.

In appendix B, C, D and E we will exemplify the techniques by computing CBs with
ll = l,lg =0 and ll,lg =1.

4.1 Bulk channel
The bulk channel partial waves (4.3) are eigenfunctions of the quadratic Casimir operator:

U B GBI 2)) = ent GE(P 2)). (4.9)

The eigenvalue is ca; = A(A —d) + (I +d — 2) and the generators are JMV = 2Pi[M8g} +
2ZZ-[M8JZVZ_]. Different partial waves associated to the same operator are distinguished by the
asymptotic behavior in the OPE limit. Equation (4.9) can be cast into a set of second
order partial differential equations which couple the functions gg)’k(r, n) defined in (4.4)

for k=1,..., kmax. We schematically write
kn]ax
My (0, 0,) g% (r,) = 0 4.10
kk( T 7])9(9 (""777) . ( . )
k=1
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Here the matrix M depends on the cross ratios r, 77 and the derivatives 0,,0,. A closed
form solution for generic dimension and codimension is not known.

The goal of this section is to compute spinning conformal blocks by generalizing differ-
ent methods that were used in [28] to compute the scalar blocks. First, we explain how to
write CBs as a series expansion in the radial coordinates. The coefficients of the expansion
can be computed in various ways. In particular, we comment on an efficient way to gen-
erate them through a recurrence relation of the kind introduced by Zamolodchikov in [42].
Finally, we explain how to obtain the spinning conformal blocks by acting with differential
operators on seed blocks, following the idea of [31].

4.1.1 Radial expansion

The existence of the bulk OPE implies that the bulk CBs can be written as a power
expansion in the radial coordinates of section 3.3 (see [28, 43, 44]). In fact, by writing
the two-point function in the cylinder frame (3.33), it becomes clear that the powers of r
measure the cylinder energy of the operators exchanged in the OPE. The dependence on
the unit vector n is fixed by the SO(d) representations of the descendants, and encoded in
the polynomials P *? of (3.15). Finally, the expansion can be conveniently repackaged in a
finite number of functions W (r,n, n, z;) in one-to-one correspondence with the three-point
function tensor structures given in subsection 2.3.
The object of interest is the following matrix element in radial quantization:

Go = (0|1 P O1(n, 21)Oa(—n, 22)[0) , (4.11)

where Pp is the projector onto the conformal family with highest weight labelled by A and
SO(d) spin I and H,y is the Hamiltonian conjugate to the cylinder time 7 = logr. The
function Gp is equivalently obtained by writing the conformal partial waves into the bulk
radial frame'!
D PGP Zi)) oy NG (rmn s ne sk 2 2,0 7). (4.12)
..
p

as explained in appendix C.1. In this section we define a eb = a - 7, - b with 7, the parallel
projector for spherical defects, namely the diagonal matrix with p 4+ 1 ones followed by
q — 1 zeros. Eq. (4.12) makes it manifest that in the radial frame the functions Go can be
expanded in tensor structures generated by the building blocks n-z;, n e i, 21-22, 2, ® ;. It
is natural to rewrite the projector Pp in (4.11) as a sum over a complete basis of bulk states:

Go =Y _r* "N "(0|m, j, ) (m, §,d|O1(n, 21)Oz(—n, 2)|0) , (4.13)
m=0 j d

where we sum over all states at level m of the conformal family, organized in irreducible
representations (irreps) with spin j = (j1,j2,. -, jj4/2)) of SO(d). d labels the degeneracy
of such states.

11 practice, the freedom contained in the coefficients ¢® is translated in the freedom of choosing the
coefficients w® (0,1) in eq. (4.21) below.
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The one-point function (0|m, j,d) is always fixed in terms of a single tensor structure.
For example when j = (k,2) we have

<6|m, p1 | p2 ~-‘Mk‘7 d> — U(m§j,2§d)ﬂ';§g(d) <M1 H2 »-~‘#k" pP1| P2 ‘Pk> 7.‘.31 027'(51 P2, .,ka—l Pk ]

V1| V2
(4.14)
The case of generic j is just a straightforward generalization. Equation (4.14) implies that

the only allowed one-point functions correspond to states for which all the Cartan labels
J1sJ2,- - Jd/2] are even integers. While we pointed out in subsection 3.2 that this is true
for primary operators, we now see that the same holds for descendants as well, but only
when acting on the vacuum at the center of a spherical defect.

The overlaps (m, j,d|O1(n, z1)O2(—n, 22)|0) of (4.13) were already considered in [44].
For concreteness we present here some examples of their form. If j is a symmetric and
traceless SO(d) representation, the overlap is fixed by Lorentz invariance up to a few
coefficients u® (m, 7,d),

(m, [aa] ~Jas AJO1 (m, 21) 021, 22)[0) = 3" uP) (m, 5, ) 1P (n, V,, 21, 20)75°D (] Jas [ ][ 2) »
p

(4.15)
where we introduced the covariant derivative on the sphere Vi, = 9 — n# (n - d,). The
coefficients u(®) (m, j,d) multiply the tensor structures t%*). The tensor structures t®) are
homogeneous functions of z; of degree I; and are generated as products of the following five
building blocks (we take all the derivatives to be ordered on the right of the polynomial):

(n-z1), (n-z2), (21-Vy), (22-Vyn), (z21-22). (4.16)
For example, for one external vector we get two structures
tW = (z1-n), t®=(z-V,). (4.17)
While for two external vectors we get five structures

tW = (21 -n)(22 - n), t? = (z1-n)(22-Va), t® =(z-n)(z1-V,),

4.18
t(4) = (2’1 . vn)(ZQ ’ vn) ’ t(5) - (Zl ’ 22) : ( )

The exchange of other representations j require appropriate SO(d) projectors in eq. (4.15).
For instance, if the primaries O and Qs are vectors, they also exchange operators in the
representation j = (¢, 2),

ol as .4.‘0%‘ . . SO(d) aq|az .4.‘04@‘ n|n ‘ n‘
(m, AL ,d|01(n, 21)O2(—n, 22)|0) = u(m, ¢,2,4d) Tyo ([31 5 Py
(4.19)

Notice that in this case there are no tensor structures t® since all the polarization vectors

z1, 22 are being contracted with the SO(d) projector. In fact this is a seed three-point
function as defined in (2.38).
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Putting all together, one obtains a general formula for the radial expansion:

(»)
GAdyodiany (17155 20) Z Z t®) (n, Vn,zl,zQ)VV]2 el (rym,n, z;), (4.20)
P J25d[d/2]
li+m (
(») p) -\ A+m ped ,
sz, »J1d/2] T mn, ZZ Z Z wj27~~~:j[d/2] (m’ﬁ) r lev---vj[d/Q] (n, ZZ)’

m=0 j; =max[l; —m,j2]

(4.21)

where IUJ(S) Jld/2) (m, ]1) = Zd u(P) (m7 j? d)v(m, j? d)'

Notice that the sums in (4.20) over p and jo, .. . Jld/2) span a finite sets of elements: p is
bounded by the number of tensor structures in the OPE O x O, while the Cartan labels
.- Jja/2) are bounded by the possible representations exchanged in the OPE Op x O
and need to be even. This means that to compute the conformal blocks we need to know a
finite number of functions W(p) WIS They are constrained by Lorentz symmetry as shown
in equation (4.21), where the only unknowns are the coefficients w®. Equation (4.21)
provides a natural expansion in radial coordinates, where at each new level in r there is a
finite number of coefficients to be computed.
In (4.21) we loosely write Pj.1(,j---,j[d/2](
external operators. This is a schematic formula to stress that all the complication of a mixed

n, z;), where z; are the polarization vectors of the

symmetry exchanged representation are encoded in the polynomials P j'd defined in (3.15).
More precisely, in the definition (3.15) each line of the Young tableau is contracted with
the same polarization vector, while in (4.20) different polarization vectors may appear in
the same line. Let us exemplify this construction with the two-point function of vector
operators,

5
GA o (1M, 25) = Zt(p) (n, Vi, 21, zg)WO(p)(r, n,n) + Wa(r,n,n, z;), (4.22)
p=1
where the structures tP) are defined in (4.18). We dropped the label p from Ws since it
only has one tensor structure and we omitted the dependence on z; from Wép) since it does
not depend on them. The definition of the functions W is as follows,
li+m
W(p) (r,m,n Z Z w(()p) (m, ji) rAt™ Pj'ld(n), (4.23)
m=0 j;=max[l; —m,0]
li+m
Wa(r,n,n, z;) Z Z wa(m, j1) 2™ (21 - 9.,) Pj'lfg(n, z9).  (4.24)
m=0 j;=max[l1 —m,2]
The purpose of the derivative (z; - 9,) is to insert the polarization vector z; in the second
line of the Young tableau, in accordance with equation (4.19).

The final task is to fix the coefficients w. A possible strategy uses the Casimir equation,
which can be cast as a recurrence relation for the coefficients w. This strategy was used for
example in [28] to compute the bulk channel scalar CBs. In the next subsection, we explain
instead how to compute them using a recurrence relation akin to the one Zamolodchikov
proposed for 2d Virasoro CBs [42].
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4.1.2 Zamolodchikov recurrence relation

In [28] we explained how to write a Zamolodchikov recurrence relation [42] for scalar bulk
blocks following the recipe of [45-47]. Here, we show that it is easy to generalize the
Zamolodchikov recurrence relation to the case of external operators with spin. Following
the argument of [47], a conformal block for the exchange of an operator O of conformal
dimension A and SO(d) spin [ = (l1,l2...,l4/9), has the following pole structure as a
function of A:

1 / N
G¥)(P, Z;) = ey ST RA)w G (P Zi) +0((A - A%)°).  (4.25)
pl

In equation (4.25) we denoted by Ay and lg = (la1,la9,...14 [d/Q]) the labels of the
operator O 4 which is a descendant of @. The descendant operator Q4 becomes primary
when we tune the dimension of the primary O to A = A%, in which case Ay = A% +ny4,
where n4 € N is the level. Being both a primary and a descendant, O4 has a vanishing
norm, which in turn gives rise to a pole in the conformal block [47]. We break up the
matrix R4 into the following pieces:

(RA)PP’ = M,(AlL)QA(M,ExR))pp’ ) (4.26)

where the coefficients M4 and Q4 take into account the different normalization of the
operator 04 with respect to a canonically normalized operator @ with the same SO(d)
spin as 04 [28, 47]. In particular Q 4, MIE‘L) are defined by

(04007 = —PA 00\ 1L O(A— DY), (O4) = MmPoy, (4.27)

T AN

while the matrix MAR) implements the following change of basis,

01 Ol
>% 04 = Z(Mﬁ)pp, o . (4.28)
p/
02 02

As we explained in [28], the pole structure matches the one of the conformal blocks
for theories without defects [44, 47]. However, parity even primaries with odd spin have
vanishing one-point functions — see section 3.2. Therefore, in the present case the spins
l;,la; are even integers. For completeness, we write the full set of poles A% and the
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quantum numbers of the associated primary descendants O 4 in the following table

A A% nA lak
I, n=2,4,..., 1.1 — i k—1Il—n n Il +n
Iy, n=24,.... 5 —les1 | d+lu—k—n n  li—n (4.29)
I, n=1,2,...00 d—n 2n I
IV, n=1,2,...las a4l _p on I

where k =1,...,[d/2].

Also the coefficients @ 4 and the matrices MIE‘R) are the same as the ones defined in [47].
They were computed for the vector-scalar and the vector-vector cases in [10, 44, 47]. Finally,
MgL) was computed in appendix B.2 of [28] for all the operators O4 in a symmetric and
traceless representation.

The conformal blocks (4.4) are obtained by summing over all the poles in A and the
regular part as follows:

W () = (4r) 72 g8 () P ) (4.30)
RA n
h(Ag’ (r,m) = hool’ r,n) + ZZ A gp* Ah(AA)lA(r n). (4.31)

The functions h(oz)l’k(r, 1) can be computed by solving the Casimir equation at leading order
for A — oco. Notice that, since n4 > 0, we can use this recurrence relation to compute the
radial expansion of the conformal blocks.

4.1.3 Spinning differential operators

It is possible to obtain spinning conformal partial waves in the presence of defects by acting
on seed conformal partial waves with appropriate differential operators D® . first defined
in [31]. These differential operators act by effectively increasing the spin of operators in a
three-point function

O =1 Oa, 1y
DF) > On = 2: Ony (4.32)
Oy tp=1® On, 1y

where I} > I; and [ = (IM),1?)13)). The three-point function on the left hand side of (4.32)
is a representative seed of the kind (2.39) (here we named Oz = O), while the one on the
right hand side is a generic three-point function, thus it is labeled by a tensor structure
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index p. The result of [31] is that D®) can be constructed as compositions of the following
elementary operators

Dy = (P B)(Z1-0p,) — (Z1- P2)(P1 - Op,) — (Z1 - Z2)(P1 - Oz,) + (P1 - Z2)(Z1 - 0z,),
Dio = (P1-P)(Z1-0p,) — (Z1- Po)(P1-0p,) + (Z1 - P2)(Z1 - 0z,) ,

Doy = (P P1)(Z2 - Op,) — (Z2- P1) (P - Opy) — (Z2 - Z1) (P2 - Oz,) + (P2 - Z1)(Z2 - Oz,),
Doy = (Po- P)(Zs - 0m,) — (Zo - PL)(Ps - 0,) + (Zs - P1)(Zs - Oz, (4.33)

and Hio as defined in (2.32). With the above definitions D;; increases the degree in Z;
and P; by one unit, while Hjs increases both Z; and Z3. With respect to [31], we want to
consider an extra operator which increases the degree in Z; while deceasing the degree of Z;
Z(jT) of [34] defined in equation (B.8)
in appendix B. This has the special role of mapping seeds in seeds (see appendix (B.1)).

by one unit. This is the so called spin transfer operator D

Therefore it allows us to construct all the seed three-point functions (2.38) from its action
onto the seed representatives (2.39).

The bulk OPE is not affected by the presence of the defect. This means that it is
possible to generate the spinning blocks in the bulk channel by acting with D® on the
(representative) seed partial waves,

O, 1,=1 On,
D) > oll >@ ol . (4.34)
OAQ l2:l(3) OAQ l/2

In appendix (B.1) we show that the full set of partial waves (for O; in traceless and
symmetric representations) is obtained by acting on seed partial waves with the following
combinations:

D) — H?Qm D711213 D?21123 D?ll D;Qz Dgg) ko ynitnos,natnis (4.35)

The label p counts the choices of non-negative integers m;j,n; which satisfy the con-
straints (2.34). The operator ¥**2 implements the shift on the external dimensions
A, — A+ o

We put a bar on the OPE label p because the basis of differential operators is different
from the OPE basis (labelled by p) defined in (3.19). There is however a linear map
between the two bases D®) = > p(ap »)"'D® which can be easily obtained acting with
D®) on the representative seed and expressing the result in terms of the OPE basis (3.19).
This problem was already addressed in the paper [31] (see equation (3.31)). The matrix
(app) ™"

As in the case of a four-point function of local operators, the differential opera-

is computed explicitly in few examples in appendix B.

tors (4.35) are not sufficient to generate all the blocks, since they do not provide a way to
compute the seed representatives. In the four-point function case the problem was solved
by the introduction of weight shifting operators [38] which can be used to generate seed
blocks by acting on scalar ones. It would be interesting to generalize this technology to
defect CFTs.
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Finally, it is important to stress that there are just three new seed blocks which need
to be computed in the case of the two-point function of spin two operators with a defect in
generic dimensions. This has to be compared with the eight (non symmetric and traceless)
seeds which are needed to tackle the case of the four-point function of stress tensors. In
order to compute the missing seeds (in radial expansion) one can apply the techniques ex-
plained in the sections above. Moreover, in three spacetime dimensions only traceless and
symmetric representations are allowed, therefore by acting with spinning differential opera-
tors [31] on the scalar bulk channel CB one can generate the full set of bulk channel blocks.

4.2 Defect channel

In the following, we show that the full set of defect partial waves can be written in a closed
form. In particular, they are simply related to the set of special functions P™ introduced
in (2.14). The functions P™ explicitly computed in [34, 37] are sufficient for obtaining all
the defect CBs “of interest”. In order to further illustrate and check the results, in subsec-
tions 4.2.3 and 4.2.4 we also extend the radial expansion techniques to the defect channel. A
list of computed conformal blocks for external vector operators is presented in appendix F.

The factorized form of the defect symmetry group SO(p + 1,1) x SO(q) gives rise to
two independent Casimir equations for the parallel and transverse factors. We claim, and
check in various cases, that the conformal partial waves (4.6) can be written in embedding
space in a completely factorized form:

(3
— (4.36)

The functions G* and G° are eigenfunctions of the parallel and transverse Casimir equa-
tions respectively (with appropriate boundary conditions), namely

1 A A
7 —SUEGIPY =l GIOD . (437)
Here J; is defined as JMN = PMOJ — PNop + ZM 0} — Z{ )" where the suffix o (o)

means that we consider the indices M, N to be in the parallel (transverse) space. The
eigenvalues are

(VIS
(SIS

] ]
=AA-p)+ Lili+p—2i), cg = si(si+q—2i). (4.38)
1 =1

[ ]
N
7

Notice that P; o P; commutes with both the Casimir operators. This implies that the defect
conformal blocks are independent of the dimensions A; of the external operators.
4.2.1 Seed blocks as projectors

Our strategy will be to obtain a closed form expression for the so called seed partial waves
and then to act on them with differential operators in order to generate the full set of
conformal blocks.
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In this subsection we explain how to obtain all the seed conformal blocks in terms of
the mixed symmetry projectors found in [34], schematically

seed CB = Projector[SO(p + 1,1)] X Projector[SO(q)]. (4.39)

Let us now explain the ingredients that enter formula (4.39). From the discussion in
subsection 3.2, defect seed conformal blocks appear when the SO(d) representations l; =

(Lt [4]) of the external operators O; satisfy the following relation:
2
seed <> l1; =1lo; = lAZ + Sit1, (4.40)
where [ = (Zl, .. '7i[§]) and s = (s1,..., s[%]) are respectively the parallel and transverse

spins of the exchanged operator O. For the sake of clarity, and in line with the main
focus of the paper, from now on we restrict ourselves to the case of external traceless and
symmetric primaries with spin /; and Ia,

OAll 4&

seed CB = O . (4.41)

A,i=l—s2, (s152)
C)ZXQZ AAAWT

It is convenient to rephrase the condition (4.40) as a property of the parallel and
transverse seed partial waves defined in (4.36). The factorized seeds need to satisfy the
following scaling properties:

~ Z/\

Gé[(Pi, aiZZ-) = (alaQ) Gé[(Pi’ Zi) ) G;182

(P, i Z;) = (0102)*2 G2

5182

(P, Z;). (4.42)

This implies in particular that the full seed block G Al satisfies the seed condi-

tion (4.40). As we remarked at the end of section 3.2, Ssle?(i blocks are automatically
conserved.

We claim that all the transverse seed blocks can be simply written in terms of the
polynomials (2.14). For example, if the external operators are symmetric and traceless we

can write all the transverse seeds as follows

Pghsz(Pla 215 Py, ZQ)

Go (P',Z‘) — . .
12 ' ’ (P10P1)71(P20P2)71

(4.43)

This can be easily seen from the leading defect OPE as we will describe in more detail
in section 4.2.3. From an abstract point of view, one can check that (4.43) satisfies all
the required properties to be a seed. In fact (4.43) has the appropriate scaling (4.42)
and it satisfies the Casimir equation (4.37). In addition, (4.43) is conserved. All of this
immediately follows from the properties of the projectors described in subsection 2.1.2.
We moreover claim that also the parallel seed blocks can be written in terms of the
polynomials (2.14). This statement may look less trivial since the parallel seed ééi is not
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a polynomial. However, if Aisa negative integer the parallel seed satisfies the same set of
properties as the transverse one, thus, in this special case, we are lead to write

) P2 (P1, Z1; P2, Z)
(Pl OPI) 2 (PQOPQ) 2

On the other hand, we are interested in the case where A is a positive real number. We
therefore define (4.44) as the analytic continuation of (2.14) for a Young tableau with a
negative real number of boxes in the first row. In practice, this analytic continuation is
straightforward: roughly speaking it amounts to replace a Gegenbauer polynomial by a
Hypergeometric function »F;.'? As an example, we first revisit the scalar case, where the
projector into the traceless and symmetric representation simply reduces to the Gegenbauer
polynomial (2.15). The transverse partial wave is in fact G¢ o C’s% 71(77). The parallel one
can be written as [20]

1 1

D 9 (ProeP)2(Pre )2
1: = — . 4.45
+ ?X ) ) X Pl'PQ ( )

Notice that the parallel block G'® is equal to the Gengenbauer C’? A(1 /x) when A is a nega-
tive integer, up to an overall normalization. Thus, G* isan analytic continuation of the pro-
jector (2.15) for a number —A of boxes in the first row, and for n = p+2. It is easy to check
that the function G* has the correct asymptotic behaviour to describe a defect conformal
block. We claim that even for more general Young tableaux we can still use the prescription

]

20 (2 —1) 1—1 1 n 1
C, 2Ll Ry < =5+ 932) : (4.46)

@)= Tas7y A

Notice that this replacement is easy to perform since every projector in [34, 37] is written
in terms of an explicit differential operator acting on a single Gegenbauer polynomial as
shown in (2.17).

Equations (4.43)—(4.44) are powerful formulae. Indeed, just by knowing (2.15)
and (2.16) we automatically obtain the seed blocks for the exchange of the operators

ORj—os ( Aiet,sr OA o (s,1) (Which

appear for l; = 1) and @A i=1(s.1) (for [; = 2). In [37] it is explained how to obtain
projectors with an arbitrary number of boxes in the second row by applying differential

which appears for scalar external operators, [; = 0), O

operators on the traceless and symmetric projector. This implies that from (4.43)—(4.44)
we can obtain the defect seed blocks for any two point function of traceless and symmetric
operators. Moreover from the projectors computed in a closed form in [34] one can also
extract seed blocks for external operators in mixed symmetric representations of SO(d).
From formulae (4.43)—(4.44) it is also possible to argue that, when p is even, the
dependence on 7 of all the seed blocks is of the form 'f"AR(f'), where R(y) is a rational
function of y. Indeed, from formula (2.17), we see that all the parallel seed blocks are

12This kind of analytic continuation applied to different physical problems also appeared in [37, 48].

~ 31—



obtained by acting with a finite number of derivatives on the scalar block.'® Since for even
p the radial part of the scalar block is of the form f’AR(f’), we conclude that the full result
takes the same form.

In the next subsection we define new differential operators of the kind explained in
subsection 4.1.3 and in [31], which generate conformal blocks for external operators with
generic spin by acting on a seed block. Knowledge of the seed blocks and of the differential
operators allows to compute all the defect conformal blocks for external traceless and
symmetric operators.

4.2.2 Spinning differential operators

In this subsection we explain how to generate all the spinning defect conformal blocks by
acting with differential operators on seed blocks. First, we define a set of differential oper-
ators D that create the bulk-defect spinning structures out of the seed ones. Schematically,
we look for an operator f)l@) such that

Ap) A . .
Di OAil 4% OA,Z—SQ,(Sl,SQ) - OAili 4# OA,l—sg,(sl,sg) ) (447)

where [; > [ is a generic spin and the index p labels a choice of bulk-defect tensor structure
as shown in (3.25). Following the logic explained in [31], the differential operators must be
functions of positions P; and the polarizations Z; of the external bulk operators O;. As in
the bulk case, we consider D; to be a composition of elementary operators, each of them
increasing the degree of homogeneity of Z; of one or two units at a time. To obtain the
form of the operators we first impose that their action preserves the submanifold defined by

P,-P=P-Z;=27-7;=0. (4.48)

While this condition was sufficient to uniquely fix the bulk differential operator, in the
defect case it leaves some freedom. Therefore, we explicitly require that (4.47) holds,
namely that the action of the differential operators on a generic bulk-defect tensor
structure (3.23) is a linear combination of tensor structures (3.23). This is carefully
explained in appendix E. The result is that the operator D; (for i = 1,2) is generated by
products of three elementary operators. The first two take the differential form

ﬁ: = (B*Zi)(PZ-*api)—(R*Pi)(Zi*c‘)pi)—(B*Zi)(Zi*azi)+(Zi*ZZ-)(Pi*8ZZ.), (4.49)

where x = e, o. The third one is simply the multiplication by H.?, defined in (3.9), which

2
increases the spin by two at point P;.

13To be precise, the derivatives are in the variable 1/x, but the Jacobian of the change of coordinate from
X to 7 is a rational function of 7. Also, the schematic dependence on z of formula (2.17) is polynomial, as
one can see from the example (2.16).
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In conclusion, we obtain a generic spinning conformal block in the defect channel just
by acting with differential operators on a seed block (4.44), namely

Oay J Oay 4"5

:ﬁyﬂﬁéq) Ajl—s2,(s1,82)| = Al —s2,(s1,52) , (450)

Op,i W O, ﬂ?

(p)

i

where each operator D
blocks (4.49) and H,?

is generated by the composition of the elementary building

DI = (H2 )™ (D2 )" (D)™ %

0

LJ o
n; +n;
)

(4.51)

The operator X7 implements the shift A; — A; +n. The index p labels the number of
ways in which one can fix the integers m;, n*, n such that 2m; +n® +n’ = 1; — (.
We introduced a barred index p, since the basis (4.51) of the differential operators is not
the same of (3.25) labelled by p. However one can easily obtain the change of basis by
performing the computation sketched in (4.47) and expressing the right hand side in terms
of (3.25). This procedure gives an invertible map between the differential basis (4.51) and
the basis (3.25). For more details we refer to appendix E.

The differential operators either act on the parallel space or on the transverse one.

Therefore the partial waves preserve the factorized form

A~

(ﬁf)m(D2°)nPfZlA(P1, Zv; Pa, Z5)

Glmnl = : , (4.52)
Al (PLeP)"2(PyePy)~ 2

N o \m( o \np4q .

Gsl[srg,n] = (Dl ) (D2 ) P51,82(P17ZhP27Z2) . (4'53)

(Pl Of)l)%(_PQOf)Q)S?1

Hence, we can write a very compact and explicit formula for all the conformal partial waves
which can appear in the expansion of a two point function of any external traceless and
symmetric operator:

Ao nd ng] Aong ng]
Gﬂ(ﬁ,ﬁ) — (Ho )ml (Ho )mQ GAZ Gs182
A — 11 22 Ap+n® +n? Ag+nd +ng

(ProP)” 2 (Poly)” 2

(4.54)

Again, here the labels (p,q) count the possible ways to choose n} and m; subject to the
constraints mentioned above.

In appendix E we give more details on the construction of these differential operators,
and provide a few examples.

One can in principle generalize this framework in order to find conformal blocks for
external operators in any representation of SO(d). It would be also interesting to generalize
the formalism of [38], which obtained differential operators that change the representation
of the exchanged operators.
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4.2.3 Radial expansion

In this subsection we show that the defect conformal blocks can be written as a convenient
expansion in radial coordinates. The results presented here are a generalization of the
radial expansion for scalar blocks obtained in [28] and provide a check of formula (4.54).

We are interested in computing the functions QO which are obtained by projecting the
partial waves (4.6) onto the defect radial frame of section 3.3,

Z b(p)boq (g (P, Z) m pB2 Q@(f, n,no zy,n o zg, 2k 0 2§, 2k - %) (4.55)

as detailed in appendix (C.1). We define the function G by inserting a projector in the
two-point function written in the defect radial frame,

Gats = (0101 (1, 21) P11 P35 O (0, 22) 0) . (4.56)

Hy) is the Hamiltonian conjugate to the cylinder time 7 = log7. Pj;, projects onto the
conformal family with highest weight labeled by A, [ and a Young tableau s which encodes
the transverse spin. With traceless and symmetric external operators, the Young tableau
s can have at most two rows, namely s = (s1, s2). We then rewrite the projector as a sum
over a complete basis of defect states

o0

Gris = D fmmz (0101(n, 21)|m, j, 5,d)(m, ), 5,d|Oa(n’, 22)[0) , (4.57)
5

m=0

where the sum over the parallel spin j runs from max[l —m, 0] to min[l +m, I} — s2,la — sa].
Requiring Lorentz invariance fixes the general structure of the bulk-defect overlaps as

follows
(0101 (1, 21) [ ] ] PN (4.58)
(P) SO(q) 1| m[isl‘ nl..|.. [n‘
X ZU m ]; ] (Zl Ov'le on,zi OZl) 7751,52 < i 1/32 0 P I P )

where V}, = 0l — n# (n - d,), the indices ay, are in parallel directions and the indices 7 in
orthogonal directions. Notice that the structures t® are generated by three building blocks
z1 0V, z10n, 21021, while the extra building block z{ is already factorized in formula (4.58).
The four building blocks plus the projector itself are in fact in correspondence with the
embedding space structures defined in formula (3.25) (the projector takes into account the
contributions of two structures: each column of length 1 correspond to a K? while each
column of length 2 to S$?). As an example, when the operator O; has spin [; = 1 and the
exchanged operator has sy = 0 we have two possible cases: either j = 0 or ) = 1. When
7 =0 there are two possible structures,

t(()l) =zi0on, t(()Q) =z10V,. (4.59)

On the other hand when j = 1 there is just the trivial structure tgp) =1.
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Putting together the left and right overlaps we obtain the following expression for the
conformal blocks:

min[l1,l2]
Oty = Y Piloria) X010 Vsmon 1021)
=0 ” (4.60)
X t;q)(z2 oV, zpon',zp02)PY o (n, 2150/, zz)Wép’q)(f) ,
where the functions W;p’q) are defined as
WD () = 57 w®D (m)patm, (4.61)

with w®® = 3 u®a@. Let us now compare the ansatz (4.60) with the counterpart in
embedding space (4.36). The transverse piece P, s, is equal to the transverse seed (4.43)
after projecting the points to the radial frame (3.36). However, the full result (4.60) for fixed
p, q is not factorized in a purely transverse times a purely parallel part. This is expected,
since the parallel scalar products in embedding space project onto linear combinations of
both parallel and orthogonal products in the defect radial frame of subsection 3.3.

At this point, the parallel functions are still unknown since the coefficients wjgp’q) have
not been fixed (in fact so far we only imposed Lorentz symmetry). In order to compute
the functions W9 (7) it is convenient to plug the ansatz (4.60)—(4.61) into the Casimir

J
equation. This leads to simple recurrence relations for the coefficients wép’q), which we were

able to solve and resum in all the cases that we considered.

In appendix C.2 we give two examples of this technique. First we consider the two
point function of a vector and a scalar operator, then we study the case of two external
vectors. In both cases we obtain closed form expressions for the defect channel conformal
blocks which match the results of formula (4.54).

4.2.4 Zamolodchikov recurrence relation

In this subsection we apply Zamolodchikov’s recurrence to the defect conformal blocks for
spinning external operators. Again, we focus on external operators in the traceless and
symmetric representation, but everything can be easily generalized to other cases.

Spinning defect conformal partial waves have poles at special values of A with residues
proportional to other conformal partial waves. The expected analytic structure in the poles
of a generic spinning defect conformal partial wave is

(p, (RA) rqq’ Ap',q’ N ~
GOV(P,Z) =" A_*’gi:c:ﬁgj (P, Zi) + O((A - Ay)°). (4.62)
P,q

Note that R4 is a matrix that mixes the various defect conformal partial waves associated
to the exchange of the primary descendant operator Oa.
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We can then obtain a recurrence relation for the defect conformal blocks defined in (4.6)
by summing over the poles in A and on the regular part,

BEDE G 7) = ()28 @ n) — BEDEE ),

Als A—soo ols
4.63)
P pa)k o Ay 7 (0a).k 7, 17) n RAppqq“( LAk o (
hAZS ( 7]) o hools + zA:pZ: B A A* hAAlAs (T777) :
q

The transverse s spin is diagonal in formula (4.63) since O is a descendant of @. The sum
over A runs over the types (LILIIT) and the integers n. When the two external operators
are traceless and symmetric, the values of A and n can be found in the following table!

A A" na la

Typel n=1,...n" 1—-1l—n n l+n
(4.64)

Typell n=1,...n{" f+p—1—n n l—n

TypelIll n=1,...00 p/2—n 2n l

and Ay = A% 4+ na. The value of n for the type III runs in general over an infinite
range while the type I and II are bounded by the spin of the external states. In fact
ma.

n"™ = min(ly, ly) — so while njp** = I < min(ly,lo) — s9, where s = (s1, s2) is the transverse

(pa).k

spin of the exchanged operator. The function izoo . (7,7) can be computed case by case by

solving the Casimir equation at leading order in large A. Finally, R4 is defined as follows:

(RA)ppraq = (Mf(xL))pp/QA(MéR) Jaq’ (4.65)

and can be computed following the same logic of [47]. In particular the Q A’s are obtained
by comparing the normalization of the two-point function of primary descendant operators
with the one of canonically normalized primaries. The expression of Q4 is the same as the
one computed in [47], once we replace h — p/2 and [ — [ and the result is reported for com-
pleteness in appendix D. The coefficients M 4 are obtained by computing the normalization
of a bulk-defect two-point function where the defect operator is a primary descendant,

(0104)®) =3 (M) (0,016, (4.66)
p/

where @' is a canonically normalized primary with the same quantum numbers of Oa.
In appendix D we present all the ingredients to obtain the recurrence relation for the
scalar-vector and the vector-vector two-point functions.

In appendix D - see equation (D.22) - we also show that when p is even the poles of
type III of any seed block have zero residue for n > p/2 — 1. Thus, in this case there is

1YWhen the external operators are not in the traceless and symmetric representation there are more types
which match the extra types I, I obtained in [47].
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a finite number of poles for any conformal block. We recover the expectation that all the
defect conformal blocks h Ajs drastically simplify and become rational functions of 7.

Let us make a general comment on the matrix R4 in equation (4.65). From (4.66) it
is easy to see that (MIE‘L))W = 0 if the two point functions (O;0)®) and (O;0)*") do not
share the same transverse tensor structures (i.e. they need to share the same sg,ng,mio

in the notation of (3.25)). In fact the descendant @4 is obtained by acting with parallel
. (p,0)

o

for special values of p, p’ and q, ¢’ when their transverse

derivatives on O, which commute with all transverse products x o y. Thus, the block G
(v.a")
Oa R
part exactly matches. This means that just few of the A% (with different p, q) will actually

can only be proportional to G

be coupled in (4.63), or in other words that R4 is going to be very sparse. We will explicitly
see this phenomenon happening in the examples computed in appendix D.

In order to avoid the redundancy explained above it is possible to directly write a
recurrence relation for any linear combination (in m and n) of Gg}m’n] defined in (4.52),
which by definition involves only the parallel part of the partial waves. We chose however
to present the recurrence relation without introducing this optimization step for the sake
of clarity. On the other hand, from this point of view we can give a new interpretation
to the Zamolodchikov recurrence relation for defect blocks. Roughly speaking it can be
understood as a recurrence relation for the (analytically continued) projectors themselves.
For example the recurrence relation for the scalar CB (obtained in [28]) can be exactly
interpreted as a property of P™ A when we continue into the complex plane the number

—A of boxes in the first row of the projector. It would be interesting to expand on this
point of view and see whether it may help in the construction of more generic projectors.

5 Example: the scalar Wilson line

As a further check of our formulae, we would like to apply the formalism to a specific
example. We consider a theory of a complex free boson in 4d coupled to a line defect of

D = exp (i/EXaerA@) (5.1)

where X is a straight line. D is inserted in the path-integral of the free theory. The theory

the following form:

has a conserved current for the U(1) symmetry of the bulk:

1 o
Ju = 5(90up — POup) (5:2)
while the next vector primary O,, has dimension Ap =3(d —2)/2+1=4ind=4:

1

1
O,u = 5@28;&0 - 5@‘»58#95' (5'3)

In the rest of the section, we present the conformal block decomposition of correlators
involving (5.2) and (5.3). We shall take ¢ to be canonically normalized: (p@) ~ 1.
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5.1 Decomposition of (OO)

We begin with the non-conserved vector primary (5.3). We choose to exhibit the two-point

function (0,0,) rather than (0,0,). Notice that the former does not vanish since the

defect transforms under U(1). After some simple Wick contractions, one finds:
1 A2

(ProP1)?(PoPp)? 12863

X { (= (L6ANE+3) — L6ANE® +2€) Q1 — ¢ (16ANE+3) (Q2+Q3)

¢ (16AXE+3) +8Ec (2ANE+1)
- (26+¢)

(O(P1,21)0 (P2, Z3)) = (5.4)

Qu—4 (226 +1) (Q5+Q6)} |

Where the two cross ratios £ and ¢ = cos ¢ are defined as [28§]

PP PioP
E=— 11 T, Cos¢= T ) (5.5)
2(P10P1)2(P20P2)2 (P10P1)2(P20P2)

N|=

We recall that the structures ) are defined as follows
Qi=V"V", Qa=V"V°, Qs =V° Vo', Qu=V"Vy°, Qs = Hyy, Qs = Hyy,  (5.6)
in accordance with the discussion in section 3.

Bulk channel. The bulk OPE is constrained by charge conservation, and since O,, has
unit charge, the only contributing primaries have charge 2. Wick theorem restricts the

choice to primaries built out of ¢™@™*2

, with m = 0,1,2. Their one-point functions
are proportional to A™A™*+2. We learn from eq. (5.4) that operators with m = 2 are
not exchanged. As we shall see, this is enforced by the structure of the defect channel.
The exchanged operators are either symmetric traceless tensors with even spin or mixed
symmetric tensors with labels (I,2): this is presented in table (4.7), and it is easily verified
using eqgs. (2.32). Let us first consider the symmetric and traceless tensors O of even spin
[ = 2m and conformal dimensions A =1+ 2n + 2 (n € N). It is immediate to derive the

following table for the one-point functions of O:

A—-1=2, ao x A2

_ 5.7
A—1€2N+4, apx AN . (5.7)

As it turns out, only the subset of operators with A — [ € 4N 4 4 is exchanged in the
correlator (5.4). Moreover, no SO(d) representation with labels (,2) is exchanged. It
can be checked that primaries in this representation exist in the spectrum of theory, with
the right quantum numbers to be exchanged in the OPE of O, with itself.!> A direct
computation for a low lying example shows that they also acquire a one-point function. The
resolution is that their three-point function with the external operators vanishes. Therefore,
we only compute the partial waves for symmetric traceless exchanges in appendix B, and

(p)

in particular we use the basis Ggol’ for equal external operators defined in (B.20).

'50One can use the conformal characters [49], see e.g. [50] for the explicit computation relevant here.
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The decomposition reads

22 00,(4 1 00,3
(0P 0P, 22)) = 55 Y- e (G240 + 368240, ) +
1=2N

A3\ oo, 1 _,00,3)
+ 475 Z Z /BA,Z <GA,I — EGA’Z s (58)
1=2N A=4+ 4N+

where we factored some powers of 4 for convenience. It is interesting to notice that only
the structures p = 3,4 appear, out of the four possible.

All the exchanged operators of twist A — [ = 2 appear in the CBs decomposition
weighted by coefficients a; which take the following form

(3.2
(5)! (5

We could not guess a general form for the coefficients a ;, associated to the exchange of

o =3 (5.9)

operators with twist A — 1 = 4 + 4n. We propose a closed form result for n = 0, 1 which is
compatible with the conformal block expansion up to values of A < 22,

B _ gVt _(+2)+5(+2)!
A=4+I1,1 — 2l (%)l ) A=8+I,l — 2“’7([ n 4) (%)

(5.10)
+2

For completeness we also report the firsts few coefficients for higher twist operators A —1[ =
4+ 4n (with n > 3),

l 0 2 4 6 8 10 > 12
3 3 243 3 5 243 1
A=12+1 | 89600 20384000 833000 4874716 857376520 13006500
8 1 1 625 25
A=16+1 | 8830976 24630144 50871389184 7147812672

1 25
ﬂA=20+l,l 2530344960 175352905728

Defect channel. As summarized in table (4.8), this correlator can exchange defect op-
erators in representations labeled by (A,l = 0,s), (A,I = 0,(s,1)) or (A,I = 1,s). For
a line defect, [ is in fact only defined mod2, and measures parity under the reflection of
the coordinate parallel to the defect. Again, the U(1) charge imposes selection rules. Let
us promote A and A to background fields with the appropriate charge, so that U(1) is
conserved. O, couples to defect operators with unit charge. Since O, ~ ©p?, Wick theo-
rem leaves four possibilities: A2, \2¢, AA@, Ap@, which can be decorated by derivatives.
We already disregarded operators that appear in the defect OPE of O, but cannot be
exchanged in the two-point function (5.4), e.g. operators of the form ~ ¢@?. The operator
AA? is the identity, which is not present in the defect OPE of a vector. The operators with
one power of ¢ only contribute to the [=0 spectrum, since 9| ¢ is a descendant. Further-
more, all the operators of the kind (9;0")"¢, where i, j are indices orthogonal to the defect,
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are descendants up to the equations of motion. Finally, in order to anti-symmetrize the
derivatives in transverse directions we need to apply them to ¢, e.g. J;p0;p. All in all,
we find the exchanged spectrum, and the powers of the couplings in the CFT data:

Al=0,5) : A—s=1, babs o< AA
( 16,

A—s€2N+2, by ox N2 (5.10)
(A, l=1,5) : A—s€2N+3, bybsy ox A2 '
A A ) ~ 32
(A,1=0,(51)) : A—(s+1)€2N+2, byuby x \?,

with s =0,1,... except for the last line where s = 0 is excluded. Let us check that this is
indeed what happens.

In accordance with the discussion above, three families of defect partial waves con-
tribute to (5.4), for a total of six partial waves, as presented in the table (4.8). Their
explicit form can be found in appendix F. There are two defect OPE structures associated
to the exchange of a spin s primary with [ =0 and correspondingly four defect partial
waves, (A}'g(’)qs) with p,q = 1,2. There is a unique defect OPE structure associated to the
exchange of a mixed symmetric representation (s,1) and therefore a unique partial wave
associated to it: the seed block G A0(s,1)" Similarly, when [ = 1 there is a unique defect

OPE structure and its associated partial wave is the seed G Als:
The conformal block decomposition precisely obeys table (5.11):

(O(P1, Z1)O( Py, Z2)) Z Zo‘(pq)Gp_qs+1l 0s T Z Z Z 6 g? 0,

p,q=1 s=0 p.a=1 =0 A—oN+2+s

o0
+Y > Ya.Gaior.

5=0 A=9N+3+s

+Z Z 5A,séA,Z:0,(s,1)' (5.12)

5=1 A=2N+3+s

The equality of the external operators implies at the level of defect OPE structures that

(12) _ @) _ g2
A

Qg and similarly B . In the transverse twist A — s = 1 sector, the

)

coeflicients take the following form

ol = N2 (s +1)2, ol = XA ls(s+1), alP = X251 (5.13)

s

In the even transverse twist sector (A — s = 2N + 2), we find

~

W) _ N A (A 1A (5 + DA s
BA,S = 24—SA ((A — 1)A — 33(3 + ].)) W,
A—s—2

5(1,2) N A2 ( )A s+1

Ao T (51 3), (5.14)

Y2 .
(22 _ A A nA) BT 2ae
BA,S — 2478 S (5(5 + 1) — B(A — 1)A> W
—5—2
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Finally, as expected the seed blocks only contribute to the transverse twist A—sec2N+3
sector, as follows:

3N . A

5.2 Decomposition of (J.J)

Let us turn to the 2-point function of the current (5.2):

1 1
(J(P1, 21)J (P2, Z3)) = (ProPy )2 (PyoPy) 32 6463 (5.16)
X {(Sc/\Xg + ¢+ 8ANE2)Q1 + (BeANE + ¢)(Q2 + Q3)
¢ (8CANE + ¢+ 8ANE? + 2¢) _
610 Qs+ (AN +1)(Qs5 + Q6)},

where we the structures @ are defined in (5.6) and the cross ratios £, ¢ = cos ¢ in (5.5).
As a first simple check, it is easy to verify that setting to zero the couplings A, A, and
adjusting the normalization, one obtains the correct central charge C, see e.g. [51].

Bulk channel. The fusion rule of the U(1) current involves higher twist operators. How-
ever, the bulk channel decomposition only includes, besides the identity, primaries with
Il =2m and A =2+ 2m (m € N), i.e. twist two. This is enforced by crossing. As we shall
point out, it is clear from the defect channel that the coupling to the defect is proportional
to A\, and it is easy to see that only the one-point functions of operators of with twist
two are compatible with the requirement. We write this decomposition in terms of the
conserved blocks, G’i{l’a presented in appendix B.3. We find

(J(P1,21)J (P2, Z2)) = anaGog' + AN Y (Gii12+l,l + Gi‘fm,z) : (5.17)
1=2N
with coefficients )
(1-1) (%)%—1 1 (5 18)
Qp = - ) Qld = 577 - .
213(5)! (lTl) i 321

Defect channel. The spectrum exchanged in the defect channel can be guessed in a way
analogous to the previous subsection. Part of the spectrum just coincides with the one of
a trivial defect: it consists of the Taylor expansion of J, evaluated on the defect, and its
purpose in life is to decompose the bulk channel identity [8]. The coupling to the defect
happens through the operators A\@ and Ay, which form a sector with A —s=1and OPE
coefficients proportional to A\.

Conservation reduces the number of independent OPE coefficients and, as a conse-
quence, not all the blocks involved in the decomposition of (5.4) are separately consistent

with the conservation in the bulk. As argued in section 4.2.1 the seed blocks G A and

,[:1,3
GAio (s,1) A€ always separately conserved and are therefore generically exchanged in the
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defect decomposition of (5.16). On the other hand, only a precise combination of blocks
associated to [ = 0 defect primaries of transverse spin s is consistent with conservation.
This is denoted as G"Z‘]; . and its form can be found in E.2. The decomposition in terms
of the defect channel conserved blocks presented in F reads

o0 o0
_ ~JJ ~JJ
(P, 20)J(Po, Z0)) = 3 Gl g 4D D BaGiling, (5.19)
s=0 5=0 A=2N+{2+s

0
+ Z Z ’YA,SGAA,A:LS

5=0 A=2N+3+s

- Z Z 5A,SGA,i=0,(S,1)7 (5.20)

5=1 A=oN43+s
As anticipated, the only coefficients that depend on the couplings are those with A—s=1:
s =M 251 (s +1)2. (5.21)

Notice in particular the presence of a primary with (A, s) = (1,0): this operator is in fact
protected, and required when the defect breaks a global symmetry, see e.g. [18, 52]. The
coefficients 84 , are in correspondence of primaries with A—s= 2,4,6,.... We present

them in closed form: )
275 41) ()asen

3B-1) (1 ay (522

BAs

~

Finally, 74 , and 64 . receive contribution from the odd transverse twist sector A —
s = 3,5,7,...,

- 22(A—s—1)(A+5) (s+1)a_s 5 :(Ai—l)’w . (5.23)
A5 3(A—1) (s + %)A—s—Q’ o A

6 Conclusions

In this work, we studied correlation functions involving local operators which transform in
mixed symmetry representations of SO(d). Firstly, we described a constructive procedure
to obtain the tensor structures that appear in any correlation function of bosonic operators
in a CFT. The procedure associates to each local operator the tensors (2.24). In the defect
CFT scenario, the additional building blocks are the tensors (3.7), which take care of
the quantum numbers of defect operators associated to the transverse rotations, and the
projectors (3.1)—(3.2) onto the spaces parallel and transverse to the defect.

These ingredients allowed us to define explicitly all the tensor structures relevant to
the conformal block decomposition of a two-point function of symmetric traceless primaries
in the presence of a defect. In the second part of the paper we precisely focused on this
decomposition. We explained how to generate the bulk channel conformal blocks in a radial
expansion, adapting various techniques present in the literature, with special emphasis
on the Zamolodchikov recurrence relation and on the differential operators first defined
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in [32]. For the defect channel, on the other hand, we proposed a complete solution:
the seed blocks can be found in closed form performing an analytic continuation of the
projectors onto representations of the orthogonal group. The generic block is then obtained
by application of a set of differential operators. The structure of the radial expansion and
of the Zamolodchikov recurrence relation are also explained in the defect channel, and used
to check the closed form of the bocks.

With the toolbox provided here, the kinematics of a two-point function of bosonic op-
erators with a conformal defect is tamed. Hopefully, this will be useful in all the situations
in which such a correlator must be computed, whatever the technique employed.
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A Polynomials from projectors

This appendix is dedicated to an example of the polynomials P} f‘l“’lk which appear in the
one-point function of primaries — equation (3.14) — and in the bulk channel blocks —
equation (4.21). The polynomials may of course be constructed using the definition (3.15)
in terms of explicit projectors, but the alternative method presented here directly yields
expressions analytic in the label [;.

In order to obtain the polynomial P ]-'72d in closed form, we define the following ansatz

> X, e X,
P75 (X1, Xa) = (X1 - X1) ;:1 ai F; ( X -X1> Ti,
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where

_ _ _ (X1eX5)? _ X10XoX1eX _ (X10Xp)?
Ti=Xoe0Xy, To=Xy0Xy,, 752()(?, Ty = %, E:Txl),

and F; are functions of the ratio ))((1;))(4;1. We introduced coefficients a; (which could be

absorbed in the definition of F;) for convenience. We then require this ansatz to be com-
patible with the definition (3.15), i.e. to satisfy the properties of scaling, mixed symmetry
and traceleness (2.2), (2.3), (2.4). These properties imply

o= 1 tr. oy = (p+1) o a :_(j+p+1)(j+qf3)a4
2+ )(p+3) T P 2g-2) (-1 T 2p(p+3) ’
‘ (p+3>
N 2(—1)7/2jp(q—2) 2/ iz2 05=(1—q)a
TG ra-2)(tpra-3) ) (5 5= (1=q)az,
Fi(n)=plp+1)(p+3) fj+2,-a1(n) — (.7+P+1)(J+q 3)f5.05(1),
Fy(n)=(q—2) fjr2, 41(77)—(772—1)fj,0,1(77),
Fs(n) = fios(m), Fa(n)=fioszm), Fs(n)=fioi(n),
(A1)
where we defined
Jiman(m) = 211 <—j;2,d+j2+m;n;p;n2> : (A.2)

Note that the explicit form of this projector can be also obtained studying the analytic
structure in A of the bulk blocks for two external vectors (B.18). Indeed, as we explain
in 4.1.2, the latter exhibit a I-type pole at n = 2 (which corresponds to A = A% = 2)
with residue proportional to Pl:2d. This is a consistency check of our results. Notice that,
since (B.18) are computed as differential operators acting on the scalar bulk conformal
blocks, this procedure gives the projector Pl'72d as a combination of derivative acting on the
symmetric and traceless projector Pl’d.

B Spinning differential operators — bulk channel

B.1 Recurrence relation for the differential basis
Following the same logic as [31], we now derive a set of recurrence relations which allow to

build generic three-point functions in terms of the action of differential operators on seed
three-point functions.
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The list of the relevant tensor structures was presented in equations (2.32) and (2.33).
For convenience, in this appendix we denote them as follows:

A1 Ay Ag
3 ) 321 3,21 4,22
ni nz ng _ [L— (Vi)™ HKJ’(Hij)n”(T:a,lQ)kl(T3,21>k2(T3,12)k (B.1)
= ki thotk ° :
PA2s pliz2 plasif_op . PP - P) (P - Pi) 20—
Ni1g s T 1o PPt Pyt [<2(Py - ) (P - Ps)(Py - )]
ki ko k

where Ajjp = 2(A; + Aj — Ay) and the integers satisfy the condition (2.34). From (2.34)
we obtain that the seed three-point functions take the form (2.38),

(B.2)

Notice that for a given operator O3 (which we want to think of as the exchanged operator
in the OPE), there are many possible seed three-point functions. In fact, from the con-
ditions (2.36) and (2.38), they are labelled by the choices of {1 > lgg) and lp > l:(),g) such
that Iy + 1o = l§2) + lég). Their total number is therefore l:(f) — lég) + 1. For example, if O3
has spin l§2) =4, lgg) = 1 there are four possible seeds which correspond to the following
choices of spin for the external operators (I1,l2) = (4,1),(3,2),(2,3), (1,4).

There exist two spin transfer differential operators Dg), Dg), first defined in equation
(D.7) of [34] and reviewed in the following subsection, which map seed three-point functions

45 —



in seed three-point functions as follows,

Ay Ag Ag A1 Ay Ag
T 0 0 n3 d 0 0 ns
D§2) =ko (2+k2—3—|—k> (Ag—d—ko+4—k) , (B.3)
0 0 0 0 0 O
kl k2 k k1+1 kQ—l k
Ay Ag Ag Ay Ay Az
D21 =k <2+]€1—3+/€> (Al—d—kf1+4—k‘) . (B.4)
0 0 0 0 0 O
ki k2 k ki—1ko+1 k

The existence of such operators allows us to obtain all the l:(,,Q) — lég) + 1 seed three-point
functions associated to a fixed operator O3, just by knowing one representative. This can
be in turn used to compute all the seed conformal blocks for the exchanged operator just
by knowing one of them. A natural choice for the representative is the three-point function
_ @ 5 _,0) ;o 7(D)
Iy =137, lo =13 and generic [5 .
In the following, we generalize the computation of [31] by writing the action of the

differential operators (4.33) on the basis (B.1),

A1 Ay As AL —1 Ay Ajg AL —1 Aq As

ny nog ng noy ni no — 1 ns kz 4 ns niy ng ns — 1

n12 N13 N23 ni2+1 mni3 nog niz ni3+1 nog

ki ko k k1 ko k k1 ko k
A1 —1 Ay Ag

+A—A12+l§2)+2?:1ni_1 ni+1 ny ng
2

ni2 N13 N23

ki ko Kk
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A1 —1 Ay Aj A1 —1 Ay Asg
ni ng ng+1 ni ng + 1 ns
— 23 —na23
ni2 +1n13nog — 1 niz niz+ 1neg —1
kv ke Kk k1 ko k
Al—1 Ay Ag Al—1 Ay Ag
n+1ny+1ng+1 Lk ny no ng—1
2
— 27123 + -
2
ni2  ni3 nog — 1 ni  niz ne3+1
k1 ko k ki +1ky—1 k

Ar—1 Ay As

ny n2+1 ng

+ k2 ) <B5)

ni2 ni3 nN23

ki+1ky—1 k

A1 Ay Ag A1 —1 Ay Ag A1 —1 Ay Ag
ny na2 ng ny ny — 1 ng N3 kl + n3 ni ng N3 — 1
n12 N13 No3 ni2 + 1 ni3 no3 niz n13 neg + 1
ki ko k kv ko k ky  ky Kk

A —1 A, Aj
kl ni no ng — 1

niz niz+1 mno3

ki1 —1 ko +1 k

+—A+A12+k1—kQ—k—nl—n2+n3—2n23+1
2
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Ar—1 Ay As

n1 no+1ng

ni2 ni3 nN23

k1 ko k

where we used k1 + ko + k = léQ) from (2.34). Similarly we can apply the operators Doy
and Dago which give analogous results (their action is the same as the one of Djy and Dy
once we replace 1 and 2). Finally, of course, the multiplication by Hjy increases the label
ni2 of (B.1) by one. As expected all the differential operators (4.33) act internally to the
basis (B.1).

From the previous formulae one can easily see that acting with (4.33) on the set of seed
three-point functions (B.2) it is possible to generate all the possible three-point functions.
Moreover, by using the operator D) we can obtain all the three-point functions just by

acting on the seed representative defined by I} = ng) and [y = l:(;’),

) _ -
Ay Ay Ag AL Ay Ag
1 42
oz s — ryni2 s pynes nyn Hne (@) k2 s +Fnas,nadnas 0 01 s
=H5*Di5° Dyi? D11 Dy3 D" X )
112 113 N23 0 0 0
ky ky Kk 1P o
] (B.7)

where the integers n;, n;; satisfy (2.34) and X%?* shifts the external dimensions as A; —
A; + a;. The curly bracket basis on left hand side of (B.7) is the differential basis defined
in (4.35). The basis (B.1) and (B.7) are related by an invertible linear map. In appendix B.3
we explicitly compute this change of basis in few examples.

B.2 Spin transfer operators

(1)
ij
from the operator j to the operator 7 . By this we mean that DZ(J-T) has homogeneity —1 in

Here we define the spin transfer operators D;;’ which act by transferring one unit of spin

Z; and +1 in Z;. The spin transfer operators are defined as [34]

p@ _ L Z)Piu — (P Py)Zjn oy
ij P, P] Zi,P; »

(B.8)
where

DYy = doo(X, Y)Y +d_11(X, V) + XMd_o0(X,Y) +YMd_1 1 (X,Y), (BY)
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and dyn(X,Y) are differential operators with weight m in the variable X and n in the
variable Y. They are defined as follows

doo(X,Y) =~ [(d— 1) +3(X -0x) + (¥ 9] — (X - 0x)(¥ -d) ~ XM (X-0x)xar.

d_go(X,Y —7[d+ Y-8y)+(X-0x)](0x -0x),
d-11(X,Y)=—d(Y-0x) — (Y -0x)(Y - Oy) — (X -Ox)(Y - Ox), (B.10)

1A (X,Y)= [j+<x-ax>} (Ox-0y) + L[(-0x) Oy -0y) — (X-0) (Dx - 0x)]

The main property of D% y is that it acts as a derivative in Y while preserving the con-
ditions X? = Y? = X - Y = 0. These differential operators can in fact be used to write
projectors into SO(n) representations labelled by Young tableaux with two rows [34].

B.3 Examples

In this section we exemplify how to use the spinning differential operators (B.7). We will
consider simple cases in which we act on the scalar partial wave Go. This can be computed
as an expansion in radial coordinates, as explained in [28].

Vector-scalar. We consider the case of the bulk two-point function of one vector operator
01 and one scalar operator Os. In this case there are two independent conformal partial
waves Gg) with p = 1,2 associated to the exchange of the symmetric traceless operator O
with dimension A and spin [. The label p is associated to the OPE tensor structures Q®
defined in (2.33), which we choose as follows

QW = Hizvi 1, QY =wvvi. (B.11)

The conformal partial waves are conveniently computed using the differential operators
of (4.35)

G =pNGp =D 0Go, G =DPGp = D13 Go, (B.12)

where G is the scalar partial wave [28]. As we already mentioned, the partial waves Gg)

(p)

are in a different basis with respect to G;’. The two bases are related by an invertible

linear map
2
G = (aw) G (B.13)
p=1
The matrix app is obtained performing the following computation
.‘/3l —
(—2P, - Py)~3(A=81=82)(_op; . p)3(A+di2)(_gp, . py)3(A-du)

(»)
= Zaﬁp “T(A—AI—Ay) ¢ T(A+AL) T(A—Ap)’ (B-14)
(—2P1 . PQ) 2 1 2 (—2P1 . P3)2 12 (—2P2 . P3)2 12

p®)
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which gives

i l l

(app) ' = TN (B.15)

I+ A+Ap -1 I —-A+Apn+1

Vector-vector. Let us now consider the case of the two-point function of vector operators
O; with dimensions A;. The two vectors exchange symmetric traceless primaries and an
additional seed block — see table 4.7. Here we take care of the first class of operators, which
have dimension A and spin [. There are five possible partial waves Gg) labelled by the OPE
index p =1,...,5. The index p is related to the following choice of OPE tensor structures:

QW) = {H1oVi, ViVaVi, Hys ViVt HisVoVa~ ' HizHos Vi %} (B.16)

We can compute the partial waves by acting with differential operators on the scalar
partial wave as shown in (4.35)

GS) = D11 D22 Go, GS) = D1 D11 2*°Go,
Gg) = D12D2%"%Go, GES” = D12D21 2" Go, (B.17)
GO = HiyGo.

The partial waves Gg) are obtained after the following change of basis:

5
GO = (am)GY), (B.15)

p=1

where the matrix (ag,) !, obtained similarly to the previous case, is

0 0 0 0 2Aa-1)A
1 1 1 1 2 —2A
@)=z [ 2-1 E do1 A sa-y | (B19)
&-1 &1 kA A A1)
(1=A)2 (I=A)(I+A) (=A)(I+A) (+A)2—4A 2(A-1)(A-1)

-0~ (-Di -0l -1 -1

Identical vectors. When the external vector operators O; are equal, we must impose the
symmetry under the exchange of O; <+ Qs in the set of structures (B.16), or equivalently
in the differential basis (B.17). For the exchange of an operator with spin [, only four of

the five possible conformal blocks survive (for more details see for example [10]),
00,(1) _ A1 00,2) _ 2 3 00,3) _ (@ 00,(4) _ 5
V=cl). aPOscfial. PV=cfl. Y=g,
(B.20)
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Identical conserved currents. We shall now focus on the case when the external op-
erators (J; are conserved currents. It is easy to see that only two combinations of the five
tensor structures (B.16) are conserved. As a consequence, there are only two conserved
bulk blocks (see for example [10]),

5 5
JJ, _ JJ, _
e =% 6%, P =356%, (B.21)
p=1 p=1

where [ must be even. Here the Ggl) are associated to the basis (B.16) (of course one can
rewrite this relation in the differential basis using (B.18)). The coefficients are defined as

follows,

a1 =-20-1)d-A-1)2d-A+1—-4) p =0

A+ 2d—A+1-2
QQZ_QO” 522( )ﬁs
d—A—-1 d—A—-1 (B.22)
az=o4 =0 B3 = B4 =l
l
a5 = 55:(d—A—2)a5

2M—A+1—4"

As a last remark, we mention that for [ = 0 only the block Gi‘l]’(l) survives: Gi‘l]’@)

identically vanishes.

C Conformal blocks in the radial frame

C.1 Two-point function in the radial frame

In the main text we explained that a two-point function of bulk operators can be decom-
posed in the tensor structures (3.19). In this appendix, we explain how to decompose the
same two-point functions in terms of tensor structures directly in the bulk or defect radial
frames. Two sets of tensor structures will naturally appear, depending on the choice of
frame. We shall see that two linear maps exist, which relate the embedding space struc-
tures (3.19) to both the bulk and defect radial frames structures.

Bulk radial frame. The partial waves in the bulk radial frame, as defined in (4.12), are
obtained by evaluating P; and Z; as in (3.33) and (3.35). In the bulk radial frame it is
convenient to expand the two-point function in terms of a set of tensor structures Qp,

kmax
Gai(r,n,m - zi,n ez, z; - zj, 2 ® 2) = Z Fi(r,n)Qk(n - z,mnez,z - zj,zez) . (C1)
k=1

The coeflicient of each tensor structure is a function F}), of the radial coordinates. The
index k runs over a finite range which depends on the choice of the two external operators.
The tensor structures Qp are polynomials in the eight variables

n-z1, N2y, NZ, NeZy, 2z|-29, 2102y, 21021, @2 . (C.2)
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The O have degree [; in each polarization z;. For instance, for one external vector the
decomposition (C.1) takes the form

Gar = (n-21)Fi(r,n) + (nez1)Fa(r,m). (C.3)

Notice that the first four structures in (C.2) have weight 1 either in z; or in 29 and the last
three have weight 2 (two of them in the same z; and two of them in both z; and z3). The
number of building blocks and their weights match the embedding space definitions (3.16).
In fact, there is a map between the building blocks (3.16) and (C.2), which is obtained by
projecting (3.16) onto the bulk radial frame. For instance,

e (R4

[7”2 (2772 — 1) nez —nez + 21727”271 o zl] . (C.4)
bor.f. \/(7‘2 + 1)4 — 16n*r4

It is important to notice that with the definitions (3.16)—(3.17), the small 7 limit of the
tensor structures is regular and non-degenerate,

V5 — V2nx21+0(?),  Hfy — 21 %20+ 0(?),
b.r.f. b.r.f.

C.5
Vz*ﬁ—\/in*zQ—i—O(rQ), Hi;ﬁziozi—i—O(ﬁ). (G:5)

Therefore there exists a linear map between the structures Qf and @y of (3.19), which is
invertible also in the leading bulk OPE limit (when r = 0).

Defect radial frame. Similarly, one can define the two-point function in the defect
radial frame (4.55) via equations (3.36) and (3.38). Therefore, we can expand QO in a
basis of tensor structures

kmax
Go =Y Fr(i,n) Qu(nozi,n oz, 20z, 2 2). (C.6)
k=1
As in the bulk case, the tensor structures Qk are generated by 8 building blocks:
nozy, Nnozy, n’ozl, TL/OZQ, 21021, 21029, 29029, Z1*22. (C?)
For instance, for one external vector we have

Go = (no =) Fy(7,n) + (' ) Fa(r ) (©8)

Again, we can map the building blocks (C.7) to the ones defined in (3.16) by projecting
the latter onto the defect radial frame. For instance,

it — (=)o V"—>nozl_ﬁiln/oz1 (C.9)
1 dr.f. (129 207 ’ ! d.r.f. 207 ’ ‘
(7“ + 1) 1 — T‘A2+1 1 - 7@2_;’_1
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The normalization of the structures (3.16) was chosen such that this map is also in-
vertible at 7 = 0,

‘/1. — nozl‘i_O(f), H1.2 — 21022—’—0(72),
dor.f. drf.

Vot — —n' oz + O(F), HY — z1020 — ) *nozn/ oz + O(#),
d.r.f. d.r.f.

1 ) (C.10)
V,° oanea - n'oz +O(F), HY g e + (noz1)” + O(F),
. J. . J.

Vy® d—f> n' oz —ﬁflnozg + O(7), Hoy ﬁ 20 @ 29 + (n/022)2 + O(7).
r.J. r.J.

In turns, these relations imply the existence of an invertible and non-degenerate linear map
between the structures Qy and the Q. of (3.19).

C.2 Examples — defect channel

Here we present two explicit examples of application of the Casimir recurrence relation,
mentioned in subsection 4.2.3, to the computation of defect channel conformal blocks.

Vector-scalar. Consider the two-point function of a vector O; and a scalar Oy. The
tensor structures are written in (4.59). We therefore get that formula (4.60) reduces to

Gags = (21 0n)Cs(MWW (F) + (210 Vo )C(W P (7) (C.11)

where we dropped the index j, since it can only take the value 7 = 0. The function Cy is

written in terms of a Gegenbauer polynomial as follows
(n). (C.12)

Using the identity
VE f(i) = (" —in*)0, f (i), (C.13)

where f is a generic function, we can rewrite (C.11) in the basis of the two structures
(21 on) and (21 on’) to match (C.8),

Gag = (21 0m) (W) = W) 00, ) + (21 0tV @0y] (i) (C14)

The basis of (21 o n) and (27 o n’) can be mapped to the usual H and V basis by a
linear transformation. It is therefore trivial to write the Casimir equation as a differential
equation for the functions W® (7). The transverse part of the Casimir is solved by the
ansatz (C.14). On the other hand, the parallel part of the Casimir acts on the functions
W () = 3% w®) (m)fA+m and implies recurrence relations for the coefficients w(®).
Notice that using this basis of functions the recurrence relations decouple. For w") we get

0=—2(m>+ACm+p—4) —am+2p+4) wV(m -2
(A (2m+p—4) p+4) (m=2) c15)
+2A +m—4)(m+p—DwH(m — 1) +m@2A +m — p)w(m),
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while for w(®) we get the same recurrence relation of the scalar conformal block [28] and
therefore the solution is

(5), (D)
- (—g +A+ 1)

w® (2m) = o w?(@2m+1) =0. (C.16)

m

The recurrence relation for w) in slightly more involved and it can be solved to find
(A+2m) (8) (A+1)m

w®(2m) = w1 (0) :
m! (—g +A+ 1)

, w(2m+1)=0, (C.17)

m

in terms of the initial condition w™)(0). It is then straightforward to resum the series in 7
obtaining

272 5 Fy <§+1,A+1;—§+A+2;f2>
2A —p+2

WO () = wM(0)

WO (#) = w®(0), 7y (g,A;A - ’23 +1;f2) . (C.18)

The coefficients w®)(0) set the normalization of the conformal blocks. They can be fixed
to reproduce the defect OPE limit.

Vector-vector. We repeat the previous exercise for two external vectors. In this case )
can be either 0 or 1. When j = 0 we have the structures (4.59) for both the left and the
right overlaps (of course for the right overlap we need to replace 23 — 29 and n — n’).
When j = 1 there is a unique structure given by (z; @ z3). If the exchanged operator is in
a traceless and symmetric representation of SO(g), the decomposition (C.1) becomes

Gai, = |(z10m)(z2 0 W YWVEHD(7) + (21 0m) (220 Vi)W (7)
(210 V) (22 0 W)WV (7) + (210 V) (220 Vo )WSH2 ()
+(21 0 22)Wi(7) | Cs(7) (C.19)

where we dropped the indices (p,q) of Wi (7) since there is a single tensor structure in
this case. We remind that the transverse part of these functions is already solved by the
ansatz (C.19), we only need to find Wép’q)(f) and Wi (7). To do so we make use of the
parallel Casimir equation.

In this case, according to formula (3.19), the tensor structures in the bulk two-point
function are six, matching the six radial frame structures:

(21 0n)(z2 0 1), (z10n)(22 01), (210 22),

(21 0n')(22 0 m), (21 0n') (22 00'), (21 @ 29). (C.20)

The Casimir equation gives a set of six coupled differential equations which simplify using
the ansatz (C.19). Firstly, we obtain that one of the equations can be dropped, since
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it is linearly dependent from the other ones (there are six differential equations for five
functions). Secondly, three of the five remaining equations can be decoupled, so that only
Wél’l) and W are still coupled. Finally, the resulting set of equations can be solved exactly
for the five functions. In particular, when [ = 0 there are only four linearly independent
conformal blocks labelled by the constants w((]p’q)(O) (for p,q = 1,2) which parametrize the

leading behaviour of Wép’q) for # = 0 according to (4.61),

W () = wi P (0) A7 #0:#0: 1 (7). Wit () = wg™ P (0) AT 01 (7).
WEH (7) = wlP(0) AV rasf(), WP (#) = wP(0) £(F), (C.21)

)= #0F (/2,8 -p/2 + A+ 1;72)

A A ; (C.22)

The extra constant wi(0), associated to the leading behaviour Wy = #2 (w1 (0) 4+ O(#)),
does not appear since it is forced to vanish by consistency with the Casimir equation.
Similarly when [ = 1 the Casimir equation forces w(()p’q)(O) = 0, therefore we obtain a single
conformal block labeled by the constant wq(0),
2p 7 .
—9(7)
(1+p—A4)
(= 8) ((A-1i* - (A+1)
- - 7
AP -1)(-A+p—1)

P2+ 1 . .
+ = p(7 +A ) o <p+2,A;p+A+1;f2>]a
A1) (=A+p—1) 2

W (7) = wi (0)

Wi(#) = ua) |

and all the other functions vanish.
There is another conformal block, for the exchange of a defect primary in the transverse
representation (s, 1),
gA,i:o,(s,1) = Wo(f)P‘;l(n, z1;m, 22) . (C.23)

It easy to check that the transverse Casimir is automatically satisfied and that the parallel
Casimir fixes the form of Wy(7) to be equal to the scalar one of [28] (see also eq. (E.6)).

In appendix F we present explicit expressions for the previous conformal blocks in the
bulk-to-bulk basis (4.6).

D Zamolodchikov recurrence relation — defect channel

In this appendix, we show explicit examples of the Zamolodchikov recurrence relation
for the defect conformal blocks explained in section 4.1.2. We only focus on the case of
external operators in a traceless and symmetric representation, but the generalization to
more complicated SO(d) representations can be obtained following [47].
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Before we go to the examples, let us stress that most of the results presented in [47]
and reviewed in [28] still apply to the defect case. In particular it is convenient to define
defect primary states as

N > AQ1...47
AL s 2) EZal“'Z“iOAlis 1(0)]0), (D.1)
where the orthogonal indices are left implicit. We then define the following descendant

states
|AAylAA7$;Z> :ﬁA‘Aal:S;Z)? (D2)

with A = T, n and types T' = L IL, III with n = 1,2.... The operators D, are the same
of [47] after we replace d — p, | — [ and the scalar product with the parallel one e (for a
flat defect)

Dia|A L s;2) = (ze P)"|AL;2),

D.eP)" . .

D= DY Aisi2), (D.3)
(2 - p/2 - l)n(_l)n
DHI’n|A,ZA,S;Z>EV()OV10...0 n_l\A,f,s;z>,

DII,n|Aa i, S, Z>

where P* is the generator of translations and

P PeD
V;=PeP -2 A( .'Z)( *D:) — (D.4)
P2+1+i-1)@/2+1-j-2)
The descendant states in (D.2) become primaries when A = A;l with
n= —l—-n n=12,...,
AanElA—l—p—l—n n=12,...,1, (D.5)
A _Pp
fIani—n n:1,2,....
Finally, the inverse norm of the primary descendants have residues Qa predicted by
A n
Qin = “on(nl)?
0 n(—)n (p/2+1—n—1)
In = — A = )
T Pt —n -2, (241 1) (D-6)
- n 241l-n—-1
Quin = — v/ )

(=16)"(n1)2(p/2 =1 = Dan (p/2+1+n—1)

The states also transform under transverse rotations, but the latter commute with the
conformal transformations on the defect. Hence, the operator D4 in (D.2) is diagonal in
the transverse spin s, and consequently so is the recurrence relation (4.63).

D.1 Examples
Vector-scalar. We consider the two-point function of a vector @7 and a scalar Oy. As

we showed in table (4.8), in this case there are two partial waves Gg) and @g) which are
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both associated to the exchange of an operator O labelled by the conformal dimension A
and the transverse spin s (the only allowed parallel spin is [= 0, so we will drop this label).
We associate the label p of Gg) to the tensor structures Q¥ defined in (3.23)

QW = V1,.12(K12)S ) Q¥ = Y12,1(K%)8_1 . (D.7)

We also expand each partial wave Gg) in conformal blocks gg)”“ as defined in (4.6). The la-
bel k is associated to the choice of two-point function tensor structures @, defined in (3.18),

Q1=V", Q2=V". (D.8)

From table (4.64) we see that the only type of poles which is allowed is the type III (this
is in fact the only type that does not change the parallel spin of the blocks at the residue).
Formula (4.63) therefore reduces to

(e 9]

NN TP k( o (Burn)ey’ )k (4 o
hAs (’I“,T]) p) 7 +Z Z r A h%+ns(7“777)7 (Dg)

By
n=1p'=1,2 +n

where p = 1,2 and k = 1, 2. To compute the matrix Ry, we use the prescription (R )y =

(M/ElL))pp/QAMIE‘R) of formula (4.65). The coefficient Q4 was defined in the beginning of
this appendix, while MI(III%)H is the same as the ones of the scalar blocks. To compute M%)
we follow the recipe (4.66). We write the two bulk-defect tensor structures (D.7) in the

Poincaré section

<(91(y, Z]_)@As(gg7w2)>(1) - _ (%) [2(3/OEU)<$021) + (y02’1>(yoy _ 3?01')] |

A—Aq+1

(yoy)~ 2 (yoy+azex)ditl

(2228)"™" [ou)uso ) — (wsop)(yo )

(yoy) 2 tHyoy+zex)™

(D.10)

<
o
<

(O1(y, Zl)@As(f’3> wy))?) =

Here, without loss of generality, we placed the bulk primary O; at the origin in the parallel
space, so that y only has transverse components.
We then use the definition (D.2) of the primary descendants O

=DsOx, ;. to

AAiAs A* is

obtain the following equation which defines the matrix MI(H)n,

2

(0: 0 00)" (O1(y 21) 05w, w2)) P = 37 (M) ) (01l 21)04 (. w2)) ¥ (D.11)

p=1

Here, the differential operator ZADHLn reduces to (0, @ ;)" because [ = 0. The result is

p+2n 0

(i), = o (2, |7 -
0 1
pp’
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As mentioned in subsection 4.2.4, the matrices R4 are expected to be very sparse since
we can only couple conformal blocks which have exactly the same orthogonal part. In the
present case the two OPE tensor structures (D.7) cannot couple since they have a different
orthogonal structures, namely (K7)* # Y (K7)*'. We conclude that the recurrence
relations (D.9) for p = 1,2 are decoupled.

From the Casimir equation of the defect channel, it is easy to compute the large A
limit of the conformal blocks. The boundary conditions are provided by the defect OPE
limit # — 0. The result is

ROy = (1—72) "2 R+ D)2 — 27 +1) Cali)),

o o 207 .
W2 ) = — (1—7) 71— 12— s 'hCl(n), (D.13)

where C, is defined in (C.12) and S5 (7, 7) = A& (7,7) = 0. We conclude that h(Al)

RO (11

= 0, thus (D.9) becomes a simple set of two decoupled recurrence relation for h Ae

and h(2) One can use (D.9) to compute the conformal blocks efficiently in a radial expan-
sion. However a closed form solution for such blocks exist, as we show for example in (E.8).

Vector-vector. We now study the bulk two-point function of two vectors O and Q3. As
shown in table (4.8) this case is more involved, since there are six different partial waves for
the exchange of operators O in three possible representations labelled by A, the parallel spin
[ and the transverse spin s. For [ = 0 there are four partial waves, CAJ(APE)? with p,q = 1,2,

labelled by the same choice of OPE tensor structures Q) as defined in (D.7). When [ = 1
there is a single OPE tensor structure available, (H%)(K?)*, which gives rise to the seed
block G Aps- Finally we can build another seed block G A0(s,1) when the exchanged operator
is in the mixed symmetric representation (s, 1) of the transverse spin. This case is com-
pletely decoupled from the previous ones since the exchanged operator lives in a different
transverse representation, therefore we will consider ;t separately in the end of this se?ti())r]i.
p,q),

Using (4.6) we write the six partial waves @g’q in terms of conformal blocks g 5
The index k is associated to the tensor structure @) defined in formula (5.6). From ta-

ble (4.64) we see that in this case, beside infinitely many poles of type III, there are two
new allowed poles: the A = (I,1) for égéqs) and the A = (I, 1) for éAls' Equation (4.63)
can be therefore written as the following set of recurrence relations

(p.a).k », on ( RHIn Jor'ad’ 7000k -
o =BG 3 5 o el
n=1p’ q'=1 +n
. (R .
+7r ( )pq hlls(r 7)
- (D.14)
ko oinoa ik (s on (Rurn) 55 .
hAls(rvn)_hools(Tvn)+z:l A*%ﬁLn 2+n15( ) )

RH A)pa 7 (p.a)k
B #,7).
—p 1 p0s ( n)

+

=>
[M]
|>A
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The coefficients (Ri11,,)ppraqr = (MI(IZI/,)n)pP/QIII:"(MI(é?n)qq/ are obtained using M%) = p(B)
equal to the matrix computed in (D.12). The coefficient (Ry1)pq = (Ml,l)pQLl(MLl)q is
fixed in terms of

(Min)1 = =2, (Min)2=0. (D.15)

In the recurrence relation for BZ L the residue of the type III can be computed as (Riir,) =
(M1, )?Quir,p, where

(—4)™(p+2n) (-n+5-1),,

My, = b on (D.16)

Finally the matrix (R,1)pq = (MILl)pQH’l(MHyl)q is obtained from
(Mi1)1 = —2p, (Mig1)2 =0. (D.17)
Since the second component in (D.15) and (D.17) vanishes, we find that h(loi) * is the only

conformal block that couples to hkA " This fact has a simple explanation: G(Af)ls) and G Als
are the only partial waves with the same orthogonal part in the OPE tensor structure,
namely (K?)*. Moreover, since (D.12) is diagonal we obtain that all the iAl(Api)qs%k in (D.14)
are decoupled from each other. The pole structure of formula (D.14) is now explained.
The last missing ingredient is the large delta behaviour of the conformal blocks. Solving
the Casimir equation at large A with initial conditions fixed by the leading OPE we find

oco0s

WP (7R) = (P2 +1) (1 - 72)
RS2 (7)) = W20, 0) = =70 (1= %) 75 (72 - 20 4+ 1) L),

o0 T
_p
7(2,2),4/ 4 _ﬁ(l_fQ) 2(7&_277?4_1) /A NV
hooOs (7", 77) - (,f,g + 1) 52 (Cs("?) + 7763 (77)) )
WO 0) = 572 (1 - 72) 72 CL(),
Bl (i) = 27 (1= 72) 7272 (72 — 207 + 1) Ca (),
Woors(7) = (1= 72) 2 Co(), (D.18)

where all the other functions are zero. We thus find that for most k& the functions (D.14)
are strictly zero.
We can now move to the partial wave G Ao(s,1)" This is actually a trivial case, since

the associated function A% A0(s.1) has the same recurrence relation as the scalar defect block.

Indeed, all the dependence on the external spin is absorbed in the transverse piece of the
partial wave. The only difference is the large A behaviour, which has to be replaced by

: g (1) TE (P20 41) (34)
hioo(s,l)(r777) - (S+1 q+$_ (% ) (7/;2_|_1) Cs—2 (T])7 (D 19)
. . (¢—2) 1-72)7% g . g
o) = 2 (g) - |-t @i 20t @
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Seed blocks. In this paragraph, we show that all the seed blocks in even dimensions
have a finite number of poles in A. To see this, it is sufficient to check that only a finite
number of poles of type III contribute to the Zamolodchikov expansion (4.63), since type
I and II poles are always finitely many (see the comment to table (4.64)).

We focus on the case of external operators O; in a traceless and symmetric represen-
tation of spin /;. A seed partial wave appears when [; = [y = [+ sy where [ and s = (s1,82)
are respectively the parallel and transverse spin of the exchanged operator @ In this
case the partial wave has a unique OPE tensor structure proportional to (H 1’2)l (times the
transverse part), which in the Poincaré section gives

2(zez)(21 ox+yoz1))[

(102~ " Goymzen)

(O1(y, Zl)@Azs(if, z)) = b5 X (transverse). (D.20)

A=A A

(yoy) 2 (yoy+zex)

In equation (D.20), the position vector y only has transverse components. We omitted the
transverse tensor structures since they are unimportant for this argument. One can easily
check that

Dirtn{O1 (v, Zl)ég,nis(% 2)) = MiFa(O1(y, Zl)@%+nfs(xa z)) (D.21)
for any [ > 0 and n > 1. The coefficient Mfﬁefl reads

(—4)"@l+2n+p-2) (—n+5-1),, |
2l —2n+p—2

Mgl = (D.22)
When the dimension p of the defect is an even number, the right hand side of (D.22)
vanishes for all n > p/2—1 (beside the case [ = 0, where the zero is at n > p/2). Therefore,
for even p, any defect seed block has a finite number of poles in A in the recurrence
relation (4.63). This is a clear indication of the simplicity of the defect conformal blocks
in even dimensions, which we expect to reduce to rational functions of 7 multiplied by A
as explained in section 4.2.1.

E Spinning differential operators — defect channel

E.1 Recurrence relation

In this appendix, we check that the differential operators (4.51) are correct and can be
used to generate all the bulk-defect tensor structures of (O@> (and consequently all the
conformal blocks). We consider defect operators O with traceless and symmetric parallel
spin [ and transverse spin s = (s1,s2). The bulk operator O has conformal dimension A
and traceless and symmetric spin .

The list of the relevant tensor structures was presented in equations (3.23) and (3.25).
In this appendix we will denote them as follows

) Z e \m S [ ] n m n
(AL AL LT iy, n, mis, na, 53] = (HS)" (Hf)™* (S7)% (V%)™ (Y£)™? (K7)™

A—A

(—2P e Py)A(PloPy) 2
(E.1)
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We remind that the integers m;; and n; need to satisfy the condition (3.26) which depends
on [, s1 and so. The form of the operators ZA)z* can be fixed as in (4.49) by requiring that their
action closes on the span of (E.1). In other words, we require their action on any of the (E.1)
to be expressed as a linear combination of the (E.1). Using (4.49), we explicitly find

DPA+1,A L Lmi,ni,mig,ng, s3] = —(I4+n14+A)[A, A 1+1,1,m11,n1 +1,m12,n2, 53]
—n1[A, AL Lmay +1,n1 —1,m12,n9,89] ,

1510 [A—}—1,A,l,i,mll,nl,mlg,nz,sﬂ = —ng[A,A,H—1,Z,m11,n1,m12—|—1,n2—1,52]
+m12[A,A,l+1,Z,m11+1,n1,m12—1,n2+1,32],

H [A,A,l,i,mn,nl,mlg,ng,sﬂ = [A,A,l—{—Q,Lmn—|—1,n1,m12,n2,52]. (E.2)

From these equations it is clear that one can use the spinning operators to generate
recursively all the building blocks (E.1), if one knows all the bulk-defect seeds

[A,A,1,1,0,0,0, 51, 5] (E.3)

Notice that in the seeds (E.3) the bulk and the defect operators have the same spin [=1,
as required by (3.26). For example, the scalar conformal block (E.6) is associated to the
bulk-defect seed [A, A, 0,0,0,0,0, s1,0].

We can finally write the bulk-defect building blocks in the differential basis as follows

{A, A, l, lA, mi1, N1, M12,N9, 82} = (H1°1)m11 (bf )nl (Blo )7"122’1”“"12 [A, A, i, lA, 0, 0, 0, S1, 82] R

(E.4)
where ©¥ implements the shift A — A + k. Again the integers m;; and n; satisfy the
condition (3.26). The basis (E.4) and the basis (E.1) are related by a linear change of basis
which can be obtained from (E.2).

E.2 Examples

In this subsection we exemplify how to compute defect channel blocks by acting with the
spinning differential operators (4.51) on seed blocks. We will focus on simple examples for
which there is a unique seed: the scalar one. In the following we denote its partial wave as
A g ) (’f'v ’f,)
Gy = < = (E.5)
(P1 o Pl)T (PQ o PQ)T

where the exchanged operator @, has conformal dimension A, parallel spin [ = 0 and
transverse spin s. The associated conformal block is [20, 28]

Jo(7,1) = P29 Fy (g, AA - g + 1; f2> Cs(n), (E.6)

where C; is defined in (C.12).
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Vector-scalar. In the case of one external vector (say the first operator), we have two
(p)
o
defect primaries. These can be obtained from the scalar conformal partial wave (E.5) as

independent conformal partial waves G , p = 1,2 associated to the exchange of [ =0

follows
GY) = —ATDING,,  GY) =sTIDI0G,, (E.7)

where the normalization is fixed to recover blocks in the OPE basis (E.1). Each of the Gg)
can be decomposed as in (4.6) with Q5 given by (D.8). We find

(1)1, 4 4 Aol T - - PP
Gy (i) = A VP H 1) (2207 + 72+ D0 (7).
57 (E.8)
A(2)2/4 A\ —1a M g & (ax
96" (1) = —s7 i1 = 2575039 (7, 11)

where g4 is defined in (E.6).

Vector-vector. There are six independent bulk-to-defect conformal partial waves asso-
ciated to the exchange of a defect primary O. The four of them @g’q) with [ = 0 (and
arbitrary transverse spin s) can be obtained by applying (4.51) to the scalar conformal
partial wave G » as follows

GOV = A2DIDINM Gy, @gm = (As)'DIDSEMG
~(2,1) A—1A0Hey1,1A A(2,2) —2 770 oy 1,1 A (Eg)
G@ — (AS) DlDzz ’ G@, G@ =S DlDzz ’ G@,

where we fixed the normalization consistently with (E.1). The remaining two conformal
partial waves are seeds and are obtained by different methods (see the appendix E.1 and
subsection 4.2.1). Their explicit expression is reported in appendix F.

Two currents. Asreported in the third line of table (4.8), there is a total of six conformal
partial waves in the defect OPE of a two-point function of vector operators. In the following
we shall consider the case of the two-point function of conserved currents (which have pro-
tected dimension A = d—1 and satisfy the conservation equation (0p-Dz)Oa 1(Z, P) = 0).

In order to understand the constraint of conservation it is convenient to classify the
possible bulk-defect tensor structures (3.23). When the defect operator has parallel spin
[ = 0 and transverse spin s there are two independent tensor structures.

s— 2 sy/ e
(K21 (Y2) + b0 (K3)* V%,

A—A
2

) (1),
(0a1(Z1, )04 g ,(Po, Wa)) = €€ (E.10)

(—2P e Py)A(PoPy)

It is easy to see that the expression (E.10) only satisfies conservation when the OPE
coefficients are related as follows

(q+5— 20 = —(A - p)b.2)

& (s>0). (E.11)

When s = 0 the coefficient bgzg is absent and conservation implies that the correlation

function vanishes, unless A = p.!'® The conserved structure corresponding to (E.11) can

16The presence of such a defect operator denotes the breaking of the global symmetry associated to the
conserved current by the defect, see e.g. [18, 52].
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be generated also in the differential basis (E.4)

D{ =D} D3. E.12
1 1+(q+5—2) 1 (E.12)

Therefore, (E.12) can be used to build the single conserved block C;’gJA_O as follows

) )

v _gen o P=A) s
Cximos = Yaimos T (g+s—2) GatlosT
A ~ 2
(P—A) Ay p—A (2.2)
Tt e T\ gxs=2) Caizos (E.13)

As we have shown in table (4.8), we can also build the two seed conformal blocks
G Ai=1s and G Ai=0,(s,1)" Since they are seed blocks, they are automatically conserved, as
we argued in subsection 4.2.1. As a check of this statement one can consider the bulk-defect
structure associated to the block G Adels

A b~ K2 s—lHo
<0A,1(Z17P1)OA7[:178(P2,Z2’W2)> — OO( 1) 12

(E.14)

(—2P1eP)A(ProP) 5
It is easy to see that (E.14) is conserved. Ultimately, this is a trivial consequence of the fact
that the operator (9,04 ;) is a scalar primary, which cannot couple to a defect primary
with [ = 1.

In sum, when the external operators are two conserved currents, there is a total of

JJ

three conformal blocks: G Al=0,s"

GA,[:LS and GA,[:O,(S,l) :

F The explicit vector-vector blocks in the defect channel

In this appendix we collect the results for the defect blocks for external vector operators,
which are relevant to the examples presented in section 5. These blocks are computed in a
closed form with various techniques. In subsection 4.2.1 it is explained how to obtain all
the seed blocks as projectors and how to get the most generic block by acting on a seed
with differential operators (as exemplified in appendix E.2). In appendix C.2 it is shown
how to obtain the same blocks by directly solving the Casimir equation taking advantage
of a suitable ansatz. Finally, in appendix D.1 an explicit recurrence relation for the radial
expansion of the blocks was derived (in this case however the resummation of the series
was not attempted). All the techniques give the same result.

Even if the blocks are already written in three different ways throughout the paper
we decided, for the sake of clarity, to report them here in their most transparent form,
as function of the cross ratios which multiply the basis of bulk-bulk tensor structures,
following the definition (4.6). In particular, for two external vectors, a conformal partial
wave is fixed in terms of five functions gg’q)’k(f, 7) (k= 1,...5) which multiply the basis
of @ defined in (5.6). The blocks associated to the exchange of a [ = 0 defect primary
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with spin s can be computed for example using (E.9)

1 A (=20r 4241
Ir0s (Fi1) = ( )

i |7 (7 = 1) 25 (7, 0) + (74 = 472 = 1) D5 (7,9)]
A E )
U B o O B R G e M ) (F.1)
22 =~ 5 O T (o 6o+ a6
o) = 570505 ,(77)

where g4 ((7,7) is defined in (E.6). The seed block associated to the exchange of a | =
0 defect primary with mixed symmetry (
basis (5.6):

) has only Q4 and Qg components in the

; 27slq(2—q) (P20 41) ggny
= - C,2 Fool?),
) (s+1)(g+s—3) (%_1)5 P2 +1 2o (1) Foo(7)
PO 2783'(q—2) 9 (4+1), . R (2
) - —1)qC,2 ~2)C,?
9Ao(s 1)(7",77) (s+1)(g+s—3) (%_1)3 [(77 )q s2o (M)+n(g—2)C 2

1 ()] FoolF),

4
ng(s,l)(T

(F.2)

where we introduced the auxiliary function

Fas(®) = oF (S + oA+ BA- L+ 1:2) (F.3)

The seed block associated to the exchange of a [ =1 defect primary with symmetric and
traceless transverse spin s has only 1 and @5 components in the basis (5.6)

R 2 (P2 +1)7 (P> —20f +1) . X
glAls(r’n) = (A + f—p) (732 _ 1)2 05(77)‘/7171(7“)4-
2f (7% — 207 + 1) R
AP A1)

% [0 = 8) (~A+ (A= 1) = 1) Foo(f) +p (7% +1) Fro(?)] .
5 o = 20, )
P K@ ) A+ p- 1)

X [(p—A) (—A +(A—1)f2—1) .7:00(

(F.4)
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