S Plaszczynski

J Peloton

C Arnault

J E Campagne

Analysing billion-objects catalogue interactively: Apache Spark for physicists

Keywords: Large-scale structure of Universe, galaxies:statistics, catalogues, distributed programming languages

Apache Spark is a Big Data framework for working on large distributed datasets. Although widely used in the industry, it remains rather limited in the academic community or often restricted to software engineers. The goal of this paper is to show with practical uses-cases that the technology is mature enough to be used without excessive programming skills by astronomers or cosmologists in order to perform standard analyses over large datasets, as those originating from future galaxy surveys. To demonstrate it, we start from a realistic simulation corresponding to 10 years of LSST data taking (6 billions of galaxies). Then, we design, optimize and benchmark a set of Spark python algorithms in order to perform standard operations as adding photometric redshift errors, measuring the selection function or computing power spectra over tomographic bins. Most of the commands execute on the full 110 GB dataset within tens of seconds and can therefore be performed interactively in order to design full-scale cosmological analyses.

Introduction

In 2002 Google released the mapReduce framework (see e.g, [START_REF] Dean | MapReduce: simplified data processing on large clusters[END_REF] a new parallel programming model exploiting efficiently many data centre hardware. In 2006 its open source implementation and many other tools related to the growing field of "Big data" emerged within the Hadoop ecosystem 1 .

In 2009 a research project started at UC. Berkeley [START_REF] Zaharia | Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing[END_REF][START_REF] Zaharia | Spark: Cluster computing with working sets[END_REF] to overcome some limitations met by Hadoop. In the next years, it captured many companies attention due to order of magnitude better performances on huge distributed data sets. It is today a very famous and active open source project named Spark owned by the Apache foundation2 and used by more than 1000 companies worldwide.

Spark was developed essentially in scala, a multi-paradigm language that appeared in 2004 within the java ecosystem, that revived functional programming (FP) 3 . FP deals with some old concepts related to λcalculus where functions become the central parts of programming. This approach allows the lazy evaluation mechanism which will be discussed in Sect.2. No knowledge of FP or scala is necessary to use Spark. Its API exposes efficient bindings to the python or R languages.

While under the influence of business and web companies, Big Data technologies were emerging, the data trend in astronomy was also rising rapidly. Typical surveys today reach Ter-abytes of raw data and Petabytes in a very near future (e.g., [START_REF] Zhang | Astronomy in the big data era[END_REF]. On the cosmological side, even after the reduction of images to user catalogues the BOSS experiment4 already imaged millions of galaxies. While the next generation of spectroscopic survey DESI5 is planned to image tens of millions of galaxies, the DES photometric survey6 already provides such a data volume. In the next decade LSST7 should reveal the properties of billions of galaxies that will be collected over 10 years. Moreover the study of the galaxy distribution properties requires tens to hundred times more simulated samples (mock catalogs).

We have also entered the Big Data area in astronomy not only for image treatment but also for analysing the output catalogues, which will be more and more limited by I/O throughput. Fortunately, such amounts of data are not impressive for today Spark industry standards.

Some exploratory work on using Spark in astronomy has already been shown by experts who ingested some large astronomical catalogues and organized them in a way where very optimized queries (as catalogues cross-match) can be performed efficiently [START_REF] Zečević | Introducing AXS: A framework for large-scale analysis of astronomical data[END_REF]Brahem et al., 2018a;[START_REF] Carretero | CosmoHub and SciPIC: Massive cosmological data analysis, distribution and generation using a Big Data platform[END_REF][START_REF] Riccio | C 3 , A Command-line Catalog Cross-match Tool for Large Astrophysical Catalogs[END_REF]. Although very promising for the future, this database-driven approach shows only one aspect of Spark possibilities.

Indeed Spark is a large framework and Fig. 1 shows its core modules, which can be complemented by numerous li-Apache Spark SQL Streaming GRAPH X

Machine Learning

Figure 1: Apache Spark provides four different modules. The SQL module focuses on the manipulating structured data such as tables. The Machine Learning module provides tools to perform distributed machine learning. The Streaming module allows to write streaming application. The GraphX module is the part of the API for graphs and graph-parallel computation. In this paper, we focus only on the Apache Spark SQL module.

braries. For this paper we will focus essentially on the SQL part, allowing users to perform efficient queries and analyses on catalogs. But Spark also offers machine-learning possibilities (MLLIB module [START_REF] Meng | MLlib: Machine Learning in Apache Spark[END_REF]) which can be complemented by external libraries 8 . A first application of the graph analysis module (Graph-X) to investigate the topology of cosmological simulations was recently presented in [START_REF] Hong | Constraining Cosmology with Big Data Statistics of Cosmological Graphs[END_REF], while Streaming possibilities open exciting perspectives for the real-time treatment of alerts by brokers in astronomy 9 . An introduction on using these different modules can be found in [START_REF] Zečević | Spark in Action[END_REF].

Apache Spark was also used to perform distributed processing of astronomical images (Zhang et al., 2015;[START_REF] Wiley | Astronomical Image Processing with Hadoop[END_REF] or to produce mock catalogues from huge N-body simulations [START_REF] Carretero | CosmoHub and SciPIC: Massive cosmological data analysis, distribution and generation using a Big Data platform[END_REF]. This illustrates the potential of the framework when used for fundamental sciences.

Our goal here is not to report the impressive results obtained by Spark experts, but to address the needs of end-users (physicists) who have little or no knowledge about Spark. We will not elaborate on the theory that can be found in many articles or textbooks (a classical introduction being [START_REF] Karau | Learning Spark. O'Reilly[END_REF] but try to show with concrete examples how this framework offers a simple way to achieve excellent results for analysing today's and upcoming catalogs in astronomy on computing clusters. Today's main language for astronomical data analysis being python, we will focus on that language. We will use some familiar concepts as dataframes and emphasise how external python codes can be reused. The use-case we develop is the following: one obtains a (large) set of astronomical files, not 8 see for instance https://maxpumperla.com/elephas. 9 as in https://fink-broker.readthedocs.io/en/latest/ necessarily produced by the user, and would like to have a look at some of the variables and perform some simple analysis over the entire dataset. As an example, we choose to use a catalogue of 6 billion of galaxies generated with a fast simulation and show how to perform easily an interactive tomographic analysis in a very reasonable time. Since a very common format in astronomy is FITS, we first developed an efficient connector named spark-fits10 described in [START_REF] Peloton | FITS Data Source for Apache Spark[END_REF], hereafter called SparkFITS18.

After presenting in a physicist's language what Spark is and what its advantages are for data analysis in Sect. 2, we describe how to start using Spark in python in Sect. 3. Then we design and optimize several Spark commands in Sect. 4 with increasing complexity leading to a full tomographic analysis over a simulated set of 10-years of LSST-like galactic data (Sect. 4.3.7). Several options are explored and performances discussed. AppendixA presents a more realistic treatment of photometric uncertainties.

What is Spark and why to use it

The main trend for analysing large astronomical datasets in the last two decades was to use High Performance Computing (HPC) approaches on super-computers. The challenge in using such a framework consists in optimising the arithmetic efficiency (number of data moves over number of operations) on more and more complex architectures and requires a high degree of skills. This can be performed with the Message-Passing-Interface (MPI, [START_REF] Gropp | A high-performance, portable implementation of the mpi message passing interface standard[END_REF]) but requires a careful tuning of the code for data exchanges between the nodes.

Starting with mapReduce, a new approach to address these problems has focused on High Through-put Computing (HTC) in data centres. Accent is put interacting with nodes that are "close" to the data and minimizing the traffic between them.

A key requirement for this is robustness and reliability, which is now achieved by performing computation in a fault-tolerant way on hardware which may not be fault-tolerant. A more in-depth overview can be found in [START_REF] Stickley | NebulOS: A Big Data Framework for Astrophysics[END_REF].

Spark is now for many years the leading solution in this domain. Hosted by the Apache foundation, the code is opensource and its community very active. In very general terms, "Apache Spark is a cluster computing platform designed to be fast and general" [START_REF] Karau | Learning Spark. O'Reilly[END_REF]. Although available for personal usage on laptops, it will reveal its full potential when running on a cluster on some large amount of data11 within a distributed file system.

To introduce the necessary vocabulary, we outline some of the features of the Spark solution and refer the reader to [START_REF] Karau | Learning Spark. O'Reilly[END_REF]; [START_REF] Tang | A Survey on Spark Ecosystem for Big Data Processing[END_REF]; [START_REF] Peloton | FITS Data Source for Apache Spark[END_REF] for a more thorough technical introduction.

In Spark, the user program, called the driver, launches multiple workers. Each worker can hold several executors (processes launched for an application) that execute a number of tasks.12 Workers read data by blocks (possibly from a distributed file system) and can persist computed objects in memory. In a typical work flow the Spark scheduler sends a set of tasks to the workers in order to compute locally over the nodes holding the data or in memory if they have been cached. The reduced outputs are then returned to the driver that can perform some final combination.

Although quite an evolved process, on a practical level the user only needs to interact with RDDs (Resilient Distributed Datasets, [START_REF] Zaharia | Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing[END_REF]) which are abstractions representing a distributed collection of objects. They provide a low level access to Spark features. Scientists will typically prefer to work with DataFrames (from the SQL module), which are built on top of RDD but with data organized into named columns and which also include the benefits of the Spark SQL's execution engine (Sect. 4.3.1).

Using Spark presents a number of advantages that are particularly well suited to data analysis tasks in the physical sciences, as we discuss below.

Simple parallelisation. The use of the mapReduce paradigm allows a coarse level of parallelisation without ever writing complicated code or directives. This is best illustrated by an example. Suppose you are looking for the maximum value of a huge set of numbers. The driver requires workers to compute their maximum value. The results from this map step are then returned and combined in the reduce step, here by taking the maximum of their values. Such a behaviour could also be implemented with other mechanisms such as MPI, but would require writing some extra piece of code while, quite remarkably, it is builtin feature in Spark.

Optimization. In imperative languages like for example C, C++ or Fortran, each instruction generates some low level commands that are immediately executed. Spark uses the mechanism of lazy evaluation, meaning that most instructions (called transformations) do not immediately trigger execution, but instead updates the construction of a Direct Acyclic Graph or DAG which in physicists language represents a pipeline. It is often a common surprise to newcomers to see how fast some Spark commands seem to perform, but this is only because the pipeline has not yet been closed by specifying an action, so nothing was actually run (see an example in Sect. 4.3.2). Then, the python front-end to Spark can be seen as a way of declaratively specifying a calculation that is then passed to the Spark layer for evaluation. An interesting aspect of this is that knowledge of the full pipeline structure allows Spark to perform some precise optimizations based on a set of logical/physical rules before running it. As long as one makes use of Spark functions, the user is relieved of the burden of code optimisation such as accessing different parts of data in different places.

Cache and interactive analysis. Maybe the most interesting feature for the end-user analysis is the ability of putting the data in cache. While quite a complex operation behind the hood, on the user side this is as simple as calling the cache() function. Even when the cluster does not allow all the data to be held in memory, putting some part in cache and spilling the rest over disk can still be interesting (see Fig. 3 of SparkFITS18). A key point is that in general, you do not need to put all the variables in cache, only those that will be accessed several times. The memory requirements are then drastically reduced.

Once the relevant variables are cached, all computations can be carried out efficiently enough that an interactive analysis becomes generally possible. For demonstration purposes in the following sections, we have put 110 GB of data in memory on a small cluster, but one can achieve easily 1 TB on large centres like the National Energy Research Scientific Computing Center (NERSC) 13 .

Performances and scaling. Spark, as a largely used industrial standard, gives generally excellent performances for analysing large datasets. We do not claim that Spark will always give the ultimate performance as depending on the specific domain some implementations with MPI or using relational databases, carefully tuned by experts, may outperform it. But having at disposal such a simple tool to reach such high level of efficiency is a great opportunity for physicists facing Big Data challenges.

The attractiveness of Spark also resides in the fact that one can design some analysis of a partial set of data on a personal laptop and later port it to large data centres knowing that in most cases performance will scale.

Working with Spark

As we saw previously, Spark's basic abstraction is the RDD which represents a coarse-grained distributed collection of objects which allow in-memory fault-tolerant computations. Dataframes were later introduced in 2015 within the SQL module [START_REF] Armbrust | Spark sql: Relational data processing in spark[END_REF]. They add to the RDD the knowledge of its data structure which allows a higher level of optimization. Although one can retrieve an RDD from a dataframe, one should always try to use the latter in the analyses, especially for python applications. Indeed the RDD performances are much worse in python than in the native scala language. This is not any more the case when working with dataframes, for which similar performances are obtained in most cases as shown in Sect. 4.3.8.

Most of astronomers use today the python language for their analyses and we emphasize that pyspark can be run within ipython or a jupyter notebook. We will then essentially discuss the python interface although some comparison with scala performances will be later shown. In our opinion, the scala language remains an interesting option to be looked at and we highlight some of the reasons why it may be useful to astronomers below:

• there exist some Spark kernels in scala to work in jupyter notebooks14 ,

• the HEALPix package15 can be build in java (and therefore used in scala) although not including all functionalities,

• the JEP package16 allows to make calls to external python modules as numpy or matplotlib, and the library Py4J17 provides an efficient bridge between python and scala.

Concerning data formats, spark-fits allows the reading of FITS distributed binary tables and also in recent versions of images. Some connectors also exist to read the HDF5 format (see references in SparkFITS18).

A full interactive analysis

We present a suite of rather standard operations18 an enduser can perform using the output of a 10 years LSST simulation presented in Sect. 4.1. Commands were run interactively in the pyspark shell on a cluster described in Sect. 4.2. They are explicitly shown as boxed inline code with their output following right after. We benchmark different options in some cases and focus more on performances in Sect. 4.3.8.

Simulation

In order to work with physics-oriented data, we built a catalogue of galaxies using the CoLoRe fast simulation19 corresponding to 10 years of LSST data-taking. Point-like galaxies are generated in the z ∈ [0, 2.5] redshift range assuming a standard ΛCDM cosmology, with a selection function coming from the LSST/DESC 2pt validation working group20 and shown on Fig. 2.

The generated catalogue consists of 6 billions of galaxies with their types, RA/DEC positions, cosmological redshifts and the redshift-space distortion (RSD) displacements. The CoLoRe simulation was run at NERSC and produced 32 FITS files of 112 GB in total that were imported to our HDFS cluster [START_REF] Shvachko | The Hadoop distributed file system[END_REF]. By importing, we mean simply copied to the HDFS cluster without any post-processing. Then, spark-fits gives transparent access to all the Spark advantages.

This procedure is mainly pedagogical since it introduces latencies for transferring data to another cluster.

Whenever possible, one should instead attempt to produce and analyse the data on the same cluster, which would have been possible on the NERSC supercomputer since it offers a Spark API (more in SparkFITS18).

Infrastructure

The cluster we used for this work, located at Université Paris-Sud in France21 is rather modest in order to illustrate the fact that you do not need huge resources to achieve spectacular results. It consists of nine 36 GB machines, each with 18 cores, running over HDFS. Since the total memory fraction dedicated to the cache is set to 0.6, the usable memory amount (170 GB) is largely sufficient to hold our full dataset. Then, we used the following set-up

• 1 driver (4 GB RAM)

• 8 executors (ie. workers) each using 17 cores and 30 GB of RAM.

The python interactive shell is run as followed pyspark --driver-memory 4g \ --total-executor-cores 136 \ --executor-cores 17 \ --executor-memory 30g 4.3. Spark analysis 4.3.1. Using dataframes Dataframes in Spark come from the Spark.SQL module. Similar to the pandas one 22 , they can be viewed as a set of named columns over which you can perform operations, but in a distributed environment. Some native Spark functions act on them and should be used as much as possible since they have been very optimized. They are available through the following import command from pyspark . sql import functions as F Once substantial data reduction has been achieved, we can recover a standard pandas dataframe with the toPandas() method, which opens the door to further standard python analysis. It is worth mentioning that toPandas() returns to the driver memory, so one should keep in mind that the data reduction (reduce methods) must be performed before.

Reading the data

We begin by loading the (set of) FITS files using spark-fits. CoLoRe FITS format stores separately the cosmological (Z_COSMO) and RSD (DZ_RSD) redshifts, but since we only want to work on their sum, we construct the z column on the fly: gal = spark . read . format (" fits ") \ . option (" hdu " ,1) \ . load (" hdfs : path / to / fits / directory ") \ . select (" RA " ," Dec " , \ (F . col (" Z_COSMO ") + F . col (" DZ_RSD ")) \ . alias (" z "))

This represents a (Spark) dataframe object. We show two ways of accessing columns in the select function, either simply through their names (strings) or, when some operations are to be performed, through F.col(..) that returns Columns objects.

Other dataframe standard ways to access columns are through gal.RA or gal['RA']. Note the use of the "z" alias to rename the new column.

You can now print the dataframe schema: Following the principle of lazy evaluation, it is important to realize that, at this level, data is not (yet) physically loaded: only the FITS header is read and the DAG updated.

Adding photometric smearing

We would like to add now the effect of the photo-z (PZ) resolution of the instrument. For LSST this will be close to a Gaussian and the upper requirement for Large Scale Structure analysis is given in The LSST Dark Energy Science Collaboration et al. (2018) as σ z = 0.03(1 + z) . A lot of work based on template-fitting or Machine Learning techniques shows that the actual distribution is more complicated than a simple Gaussian. However to not distract the reader from the main goal of this paper, we have relegated to AppendixA a more realistic discussion of this effect and how it can be implemented within Spark.

For the Gaussian case, we simply add a column to the gal dataframe according to from pyspark . sql . functions import randn gal = gal . withColumn (" zrec " , gal . z + 0 . 03 * (1 + gal . z) * randn ())

. astype (' float '))

Again, when this last command is executed the DAG is further filled but no data has been physically generated.

Let us now show 5 samples, which triggers an action:

gal . show (5) --------+---------+---------+--------- --------+---------+---------+---------+ only showing top 5 rows This happens within seconds (see Table 1). How is that possible? This is the very idea of lazy evaluation: if you only want to look at a few samples is it worth loading all (110 GB) of the data? Here Spark analyses the full pipeline, optimizes it and only physically read the very first block

+---------+---------+---------+---------+ | RA| Dec| z| zrec| +-

Caching

Now that we have defined which data we want to use in our analysis, we put them in cache. This is achieved with the cache() function. Some finer level of details can be obtained with the persist(level) function that allows to specify the storage level. cache() corresponds to persist(MEMORY_ONLY). You may use persist(MEMORY_AND_DISK) if your cluster does not have enough total memory. It was shown in SparkFITS18 that good performances can still be obtained in this case. Note that serializing the objects might also improve performances (e.g. level=MEMORY_ONLY_SER) but it was not observed in our case. In order to trigger caching, one must call an action as counting the total number of galaxies which requires access to the full data: print (gal . cache . count ())

5926764680

In our case, putting all the data in cache by counting them takes about 90 s, with about 20 s coming from the PZ computation.

Getting some basic statistical information

Some basic statistical informations may be obtained on some (or all) variables with: +-------+-------------------+------------------ ------+-------------------+------------------+ If we only need some specific values (e.g minimum/maximum), it is more efficient to use the Spark functions: minmax = gal . select (F . min (" z ") ,F . max (" z ")) \

+ |summary| z| zrec| +-------+-------------------+------------------+ | count| 5926764680| 5926764680| | mean| 0.875229444425171|0.8752293689731887| | stddev|0.47360539092073933|0.4771461812884577| | min| -5.93947E-4| -0.12403674| | max| 2.4352543| 2.943411| +-
. first () zmin = minmax [0] zmax = minmax [1] Table 1 gives the measured user-time in each case: once the data are in cache, one observes that all those commands run in seconds.

Histograms

We now wish to go further and study the redshift distribution of galaxies. Although RDDs provides some command to build histograms, we will show that it is much more efficient to design a function using dataframes capabilities, as follows 1. add a new column to the dataframe containing the bin number, 2. group the data by this number, 3. count the number of values in each group, 4. sort the bin index by ascending order.

Adding the z bin number column (labelled "bin") is done most efficiently using standard column operations: Nbins = 100 dz = (zmax -zmin) / Nbins zbin = gal . select (gal .z ,\ ((gal . z --dz / 2) / dz) . astype (' int ') \ . alias (' bin '))

Then, grouping by the bin column, counting its members and sorting in ascending order is performed by: h = zbin . groupBy (" bin ") \ . count () \ . orderBy (F . asc (" bin "))

Finally we may want to add the bin locations, drop the bin number and go back to the python world by recovering a standard pandas object: pd = h . select (" bin " ,\ (zmin + dz / 2 + h . bin * dz) . alias (' zbin ') ,\ " count ") \ . drop (" bin ") \ . toPandas ()

The histogram is obtained in about 10 s (Table 1) which is impressive for running on 6 10 9 data records.

We can now study for instance how the selection function varies with the PZ smearing which is shown on Fig. 3.

In order to prepare for the next part, let us see how to build the histogram by calling an external function. Operations may be applied onto dataframes with a User Defined Function (UDF) as: But we find that there are performance issues since execution time goes from the previous 10 s to 2 minutes.

To alleviate this issue, Spark introduced recently (v2.3.0) pandas udf's. Previously, standard UDF's were processing one row-at-a-time, which turns out to be slow for large numbers of rows. Newly introduced pandas udf's are built on top of Apache Arrow23 which, among several other features, bring vectorized optimization. Scalar pandas udf's24 are used for vectorizing scalar operations using pandas.Series (groups of rows). The UDF is re-written as: import pandas as pd from pyspark . sql . functions \ import pandas_udf , PandasUDFType @pandas_udf (" float " , PandasUDFType . SCALAR) def binNumber (z) : return pd . Series ((z -zmin) / dz) zbin = gal . select (gal .z ,\ binNumber (" z ") . astype (' int ') \ . alias (' bin '))

The user-time becomes 40 s which is better although not optimal and will be discussed more in Sect. 4.3.8. The main lesson from this part for python users is to always work with dataframes and whenever possible with the native Spark.SQL functions.

Tomography

Measuring galactic over-density power-spectra over some redshift bins (called tomographic "shells") is a nearly optimal method in cosmology to study galaxy clustering, especially for photometric surveys [START_REF] Crocce | Modelling the angular correlation function and its full covariance in photometric galaxy surveys[END_REF][START_REF] Asorey | Recovering 3D clustering information with angular correlations[END_REF]. Measuring the cross-correlation between nearby shells gives also access to Redshift-Space-Distorsions even in photometric surveys where the radial information is strongly suppressed [START_REF] Ross | Measuring redshift-space distortions using photometric surveys[END_REF]. Cross-correlation between far-away bins is also of interest: since, neglecting magnification lensing, no cosmological signal is expected there, any observed correlation singles-out some remaining systematics (as PZ distribution tails). Such studies can be efficiently performed with Spark. We have chosen 10 redshit bins marked out as vertical lines on Fig. 4. Since the selection acts on the observed space, each bin receives contribution from the true redshifts according to the coloured distributions.

For each tomographic shell, we use the well-known HEALPix sphere tessellation 25 , which partitions hierarchically the sphere (using the nside parameter) with equal-area and iso-latitude pixels. This latter property allows an efficient computation of power-spectra over the sphere. Using this scheme, one can map each (RA/DEC) position on the sky to a single pixel number. So, the construction of the projected galaxy number onto a HEALPix map (nside = 512) is as easy as building an histogram but using the external ang2pix function to determine the pixel number. For performances we use pandas udf to call this function.

For a z ∈ [z 1 , z 2] shell import pandas as pd import numpy as np import healpy as hp nside = 512

define the UDF @pandas_udf (' int ' , PandasUDFType . SCALAR) def Ang2Pix (ra , dec) : theta = np . radians (90 -dec) phi = np . radians (ra) return pd . Series (hp . ang2pix (nside , theta , phi))

build the shell shell = gal . filter (gal [' zrec '] . between (z1 , z2))

build the HEALPix map map = shell . select (Ang2Pix (" RA " ," Dec ") \ We end up with a standard HEALPix map on which one can perform further analysis. An example is shown on Fig. 5. We note that the python packages must be available on each executor.

z [0.61, 0.82] 250 350 Concerning performances (Table 1), each shell projection is obtained in about 30 s, quite independently of the galaxy population. All the 10 shells are obtained in about 5 mins.

From the maps, one can then compute auto and cross spectra using standard healpy functions. We illustrate some results we obtain for a few of them on Fig 6.

Performances

We already discussed the user-time measured for each step. They are summarized in Table 1. But are we far from the best possible ones in Spark? The native Spark language is scala which generally leads to the best performances. So, we have recoded and run all the previous commands in scala and compare performances in Table 1.

The initialization phase (load(HDU)) is slightly longer in scala than in python. Caching the 6 10 9 data records which is the most demanding part but only needs to be performed once, is obtained in our case in about 1.5 mins in each case. Then, the statistics part is slightly more efficient in python. As long as native dataframe operations are used both implementations yield a similar 10 s value for histograms. The use of an external (UDF) function is severely penalized in python. Using pandas udf's the user-time is reduced to 40 s which becomes reasonable although a factor of 3 higher than the corresponding scala implementation. The same kind of factor is observed

C i × j 1e 5 0 × 9 1 × 8 2 × 7 3 × 6 4 × 5 4 × 4
Figure 6: Tomographic power spectra reconstructed by cross-correlating the over-density maps with the bin numbering shown in the legend (see also Fig. 4). As discussed in Sect. 4.3.7 we see no power for well separated bins, some small contribution from the 4 × 5 adjacent one and strong power for the 4 × 4 auto-spectrum. when building the shells. Still, reconstructing a tomographic map in about 30 s remains very satisfactory for interactive work.

Let us compare these performances to the ones we would have obtained in a more standard imperative way. For instance, let us consider how we would have computed the min/max values of the PZ redshifts:

1. each FITS files is opened and read, 2. redshift uncertainties are added shooting random numbers, 3. the min and max values are computed and stored, 4. all min/max values are combined to obtain the lowest (highest) min (max).

We implemented that process in python: it takes about 45 mins to process the 32 files. Which is to be compared to the 2.8 + 12.4 + 97.7 + 1.8 2 mins we obtained with Spark. This sequential comparison is unfair since one could also implement some MPI logic to read the files in parallel on each node, or even post-process the files to distribute them on each core. The point is not getting the very best performance but already an excellent one with very little effort. Furthermore, while in the imperative approach all the data in memory is lost when the program ends, using the cache in Spark offers the possibility to investigate several aspects of the data in a single session without ever reloading them.

Conclusion

In the current days of ever-growing astronomical data, it is worth investing in a technology which gives physicists access to the interactive analysis of billions of objects, boosting timeto-physics considerably.

We have illustrated in this pedagogical introduction to users, how a 6 billion-objects realistic galactic catalogue could be analysed interactively producing histograms in about 10 s and tomographic bins in 30 s. Our main point is about simplicity. The access to a large volume of data in a distributed environment requires today quite involved technical skills that are relieved by simply using Spark (python) functions.

We emphasize that Spark is a Big Data technology, meaning it makes no sense using it for data volumes below a few tens of Gigabytes as one would lose its main computational advantages by paying its overhead costs. Although it is convenient to develop the software on a personal computer do not expect interesting performances there. The Spark technology is intended to be run on data-centres where the storage is a crucial part. However one does not necessarily need a very large cluster or a super-computer for that; we achieved very satistactory results on 8 machines. We focused here on rather simple operations without ever worrying where data reside on the cluster nor how they are organized, a process known as data partitioning. For performance, one always needs to minimize network connections among the workers and this may need to be investigated in some cases, as for instance when cross-matching catalogs [START_REF] Zečević | Introducing AXS: A framework for large-scale analysis of astronomical data[END_REF]Brahem et al., 2018b). It can be however a heavy process since data needs to be shuffled among the different executors, and possibly re-written to the disk. It further depends on the type of query that is to be optimized. Spatial locality may be achieved straightforwardly in 2D with a Healpix indexing and in 3D with an octree26 . But some more evolved indexing may be required for instance when also considering the color or shape of galaxies. This is an important topic, but one that goes beyond the scope of this paper and will be discussed in a forthcoming one.

We have addressed the question of interfacing pyspark to some external python code, which can be done reasonably well using (pandas) user-defined-functions. This however requires I/O's to be quite simple. A difficulty we encountered was that building some application always requires access to some external python libraries that must be available on each executor. While Spark offers some integrated mechanism to transmit binary modules to all workers, it is not a very efficient solution. The administrator may install some set of common scientific libraries on each node, but it is not a very flexible solution. An elegant solution we found for NERSC was to build a dedicated shifter image (a docker variant) including Spark and the necessary libraries. This is a simple solution that can be put in place by each user, but running a docker-like image over each node is not always supported on every data centre.

One can also interface some C, C++ or Fortran codes with scala and the JNA (Java Native Access) library. Some examples were reported in Zhang et al. (2015); [START_REF] Wiley | Astronomical Image Processing with Hadoop[END_REF] and the interested reader may start with https://github. com/astrolabsoftware/Interfaces for a practical usage. On super-computers one may take benefit from combining the HTC and HPC approaches, a road that has still to be explored. This is an exciting perspective, that would allow to add science to a technology born once in a public lab. It is the goal of the Astrolab27 organization to have everyone interested in such a project join it. confusion may arise when matching the catalogue which results in tails in the inferred redshift values. Knowing precisely the photometric redshift distribution is an important ingredient to several key cosmological analyses as those related to weaklensing [START_REF] Mandelbaum | Weak Lensing for Precision Cosmology[END_REF].

In order to assess a more realistic LSST use-case and show how to implement it within Spark, we use some recent results from [START_REF] Choyer | Impact of photometric redshifts on the BAO scale determination in the LSST survey[END_REF]. The authors have reconstructed the distributions of the observed photometric redshifts given the true ones P(z rec |z) applying a full template-fitting procedure. Fig . A.7 shows some of these distributions which reveals that their main part is more packed than the Gaussian model but exhibits complex tails.

Our aim is, for our simulation, to shoot some random number according to these distributions. We use for that a standard Monte Carlo technique: to generate samples according to some target distribution P, one generates some uniformly distributed samples and transform them according to the inverse of the P cumulative distribution, or, in statistical language u ∼ U(0, 1), F -1 (u) ∼ p when F(z) = z -∞ P(x)dx. The cumulative function can be computed and inverted numerically.

In our case, the authors of [START_REF] Choyer | Impact of photometric redshifts on the BAO scale determination in the LSST survey[END_REF] have provided a table of 300 photometric distributions according to their true redshifts in the z ∈ [0, 3] range. For each true value z i we computed the cumulative sum of the corresponding photometric distribution P(z rec |z i) and numerically invert it. Since in the inversion one looses the abscissa regularity, we re-sampled the values onto a linear grid of 1000 points over the [0,1] interval. We then stored the resulting values in a table 300 × 1000 as a plain text file. Then, for each true redshift value z i and an associated uniformly generated number u i , one just need to read the proper value from this table. We have checked that the full procedure applied to the gaussian case reproduces the results shown in Sect 4.3.6.

The implementation of the method within Spark is now rather simple:

1. read the inverse-cumulative table 2. add to the dataframe a column of uniformly generated numbers ("u"). 3. for each true redshift ("z") and random sample ("u"), locate the index within the table and get the value from a user-defined-function (pandas udf).

The code reads as follows # add column of uniform random numbers gal = gal . withColumn (" u " ,F . rand ())

t r a n s f o r m with the inverse -c u m u l a t i v e table gal = gal . withColumn (" zrec " , z_phot (" z " ," u ") + dz / 2) \ . drop (" u ") # do not need u anymore

Using the method discussed in Sect. 4.3.6, we histogram the "zrec" column which gives the selection function shown on Fig.

A.8. The non-Gaussian behaviour of the photometric distribution dramatically affects the selection function in a non-trivial way, which to our knowledge is shown for the first time.

Figure 2 :

 2 Figure 2: Density number of galaxies (black, left axis) and their cumulative sum (dashed-blue, rights axis) generated by CoLoRe corresponding to 10 years of LSST data-taking.

 RA: float (nullable = true) |--Dec: float (nullable = true) |--z: float (nullable = true)

 gal . describe (['z ' , ' zrec ']) . show ()

Figure 3 :

 3 Figure 3: Difference of galactic density when applying a Gaussian photometric smearing.

Figure 4 :

 4 Figure 4: Position of the 10 tomographic bins in the observed space (vertical black lines with the numbering convention up) and contributions from the true redshifts to each bin assuming a Gaussian PZ smearing with σ z = 0.03(1 + z) (filled curves).

 25 https://healpix.jpl.nasa.gov/ . alias (" ipix ")) \ . groupBy (" ipix ") \ . count () \ . toPandas ()#back to python world myMap = np . zeros (12 * nside ** 2) myMap [map [' ipix '] . values] = map [' count '] . values

Figure 5 :

 5 Figure 5: Mollweide projection of the contrast density map N- N N obtained from our LSST simulation on bin 4 (see Fig. 4).

Figure

 Figure A.7: Distributions of some photometric redshift distributions given the true values shown in the box, as obtained in Choyer et al. (2019) using a full template-fitting method. Note that we do not use a quality cut. The dashed lines corresponds to the simplified Gaussian model with σ z = 0.03(1 + z).

Figure A. 8 :

 8 Figure A.8: Histogram of the reconstructed redshift of galaxies in our 10-years LSST sample (full line) compared to the underlying real one (dashed), using the realistic photometric distributions from Choyer et al. (2019).

 import numpy as np import pandas as pd # read the inverse -c u m u l a t i v e file cuminv = np . loadtxt (' cum_inv . txt ') # we know the binning that were used dz = 0 . 01 du = 1 / 1000 . # find indices and return the table values @pandas_udf (' float ' , PandasUDFType . SCALAR) def z_phot (zr , u) : iz = np . array (zr / dz , dtype = ' int ') iu = np . array (u / du , dtype = ' int ') return pd . Series (cuminv [iz , iu])

Table 1 :

 1 User-time (in seconds) for the various analysis steps described in the text using the python commands (first column) and the scala ones (second column). Results were obtained by running sequentially the commands from the top to the bottom of the table, 10 times and were then averaged.

	Section analysis	python	scala
	4.3.2	load(HDU) PZ + show(5)	2.8 ± 0.1 12.4 ± 0.6 13.7 ± 1.2 8.8 ± 0.2
	4.3.4	cache (count)	97.7 ± 4.0 95.4 ± 5.0
		stat(z)	3.9 ± 1.5	4.9 ± 2.5
	4.3.5	stat(all)	9.8 ± 1.0	11.0 ± 0.9
		minmax(z)	1.8 ± 0.3	3.2 ± 0.7
		histo (dataframe)	11.5 ± 1.5 13.0 ± 0.8
	4.3.6	histo (UDF)	114.9 ± 5.6 13.9 ± 1.2
		histo (pandas UDF) 43.3 ± 4.5	-
	4.3.7	1 shell	30 ± 3	13 ± 2
		all shells (10)	307 ± 34	130 ± 18

https://hadoop.apache.org/

http://spark.apache.org/

FP should not be compared to procedural or object-oriented programming which are both imperative languages.

http://www.sdss3.org/index.php

http://desi.lbl.gov

https://www.darkenergysurvey.org

https://www.lsst.org

https://astrolabsoftware.github.io/spark-fits

by large we mean beyond several tens of Gigabytes.

In the examples below, we restrict the case to one executor per worker, with several tasks.

https://www.nersc.gov

e.g. https://toree.incubator.apache.org

http://healpix.sourceforge.io

https://pypi.org/project/jep

https://www.py4j.org/

A jupyter notebook is available at https://github.com/ astrolabsoftware/1807.03078

https://github.com/damonge/CoLoRe

https://github.com/LSSTDESC/2pt_validation

https://www.informatique-scientifique.u-psud.fr/ services/spark.html

https://pandas.pydata.org/

https://arrow.apache.org/

There are two types of pandas udf's: scalar and grouped map. In this paper we focus only on the former.

https://astrolabsoftware.github.io/spark3D offers a simple dataframe interface for doing it

https://astrolabsoftware.github.io

Acknowledgements

We acknowledge the use of the HEALPix package (Górski et al., 2005) and the CoLoRe fast simulation with support from David Alonso, Anze Slosar and Javier Sanchez that we kindly thank. The Spark work was performed at the VirtualData center at Université Paris Sud and we thank Adrien Ramparison for the upgrades and maintenance of the cluster. The CoLoRe simulation was run at the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

//github.com/

AppendixA. Handling realistic photo-z distribution

We have seen in Sect 4.3.3 how to implement some very simple Gaussian smearing of the redshift variable. Beyond this simple approximation, the more complex situation is the following. In brief, a photometric instrument like LSST measures integrated fluxes in a few frequency bands (6 for LSST) and from these few values one infers the redshift. This is performed with the help of some external catalogues where the spectral energy distributions (SED) of a sample of galaxies has been precisely measured, for instance with a spectrometer. Since the effect of redshift is to shift the SED, the idea is to determine the redshift (noted z rec) by measuring the displacement of the observations to match the catalogue SED. This can be performed with template-fitting or Machine Learning algorithms (see for instance [START_REF] Salvato | The many flavours of photometric redshifts[END_REF]; [START_REF] Pasquet | Photometric redshifts from SDSS images using a convolutional neural network[END_REF]). But, some