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This paper is devoted to the spectral analysis of the Neumann realization of the 2D magnetic Laplacian with semiclassical parameter h > 0 in the case when the magnetic field vanishes along a smooth curve which crosses itself inside a bounded domain. We investigate the behavior of its eigenpairs in the limit h → 0. We show that each crossing point acts as a potential well, generating a new decay scale of h 3/2 for the lowest eigenvalues, as well as exponential concentration for eigenvectors around the set of crossing points. These properties are consequences of the nature of associated model problems in R 2 for which the zero set of the magnetic field is the union of two straight lines. In this paper we also analyze the spectrum of model problems when the angle between the two straight lines tends to 0.

INTRODUCTION

1.1. The magnetic Laplacian. Let Ω be a bounded, smooth and simply connected open set of R 2 , and A ∈ C ∞ (Ω, R 2 ) be a regular potential vector. For h > 0, we consider the self-adjoint operator P A h,Ω = (-ih∇ + A) 2 , with domain Dom(P A h,Ω ) = {u ∈ H 2 (Ω), (-ih∇ + A)u • ν = 0 on ∂Ω}, where ν is the outward pointing normal at the boundary of Ω.

The operator P A h,Ω has compact resolvent and is associated with the quadratic form Q A h,Ω defined on the form domain Dom(Q A h,Ω ) = H 1 (Ω) by (1.1)

Q A h,Ω (u) = Ω |(-ih∇ + A)u(x)| 2 dx .
Here x = (x 1 , x 2 ) denotes Cartesian coordinates in R 2 . We have the gauge invariance

(1.
2) e -iφ/h (-ih∇ + A) 2 e iφ/h = (-ih∇ + A + ∇φ) 2 , for any φ ∈ H 2 (Ω). Therefore, the spectrum of P A h,Ω only depends on the magnetic field (1.3)

B = ∇ × A = ∂ 2 A 1 -∂ 1 A 2 .
Notation 1.1. We denote by λ n (h) the n-th eigenvalue (with multiplicity) of P A h,Ω . In all of the paper, S(P) denotes the spectrum of any operator P.

We are interested in the behavior of the eigenvalues λ n (h) and their associated eigenfunctions in the semiclassical limit h → 0 for special configurations of the magnetic field B.

1.2. Motivations and context. The spectral analysis of the magnetic Laplacian comes from the theory of superconductivity in which the magnetic Laplacian appears in the study of the third critical field of the Ginzburg-Landau functional (see for instance [START_REF] Saint-James | Type II Superconductivity, International series of monographs in natural philosophy[END_REF] and also the books [START_REF] Fournais | Spectral methods in surface superconductivity[END_REF] and [START_REF]Bound states of the magnetic Schrödinger operator[END_REF], and the references therein). The regime when h goes to 0 (called the semiclassical limit) is equivalent to the strong magnetic field limit which is often involved in applications. In this paper, we restrict to dimension two. 1.2.1. Overview of the literature. In the past two decades, most of the contributions dealt with non-vanishing magnetic fields. We can refer for instance to the works by Bolley & Helffer [START_REF] Bolley | The Ginzburg-Landau equations in a semi-infinite superconducting film in the large κ limit[END_REF], Bauman, Phillips & Tang [START_REF] Bauman | Stable nucleation for the Ginzburg-Landau system with an applied magnetic field[END_REF], del Pino, Felmer & Sternberg [START_REF] Pino | Boundary concentration for eigenvalue problems related to the onset of superconductivity[END_REF], Helffer & Morame [START_REF] Helffer | Magnetic bottles in connection with superconductivity[END_REF], Bonnaillie-Noël [START_REF] Bonnaillie | On the fundamental state energy for a Schrödinger operator with magnetic field in domains with corners[END_REF], Lu & Pan [START_REF] Pan | Eigenvalue problems of Ginzburg-Landau operator in bounded domains[END_REF], Raymond [START_REF] Raymond | Sharp asymptotics for the Neumann Laplacian with variable magnetic field: case of dimension 2[END_REF], Bonnaillie-Noël & Dauge [START_REF] Ël | Asymptotics for the low-lying eigenstates of the Schrödinger operator with magnetic field near corners[END_REF], Bonnaillie-Noël & Fournais [START_REF] Ël | Superconductivity in domains with corners[END_REF], Raymond & Vu-Ngoc [START_REF] Raymond | Geometry and spectrum in 2D magnetic wells[END_REF].

The present paper is devoted to the case of vanishing magnetic fields. Such an investigation was initially motivated by a paper of Montgomery [START_REF] Montgomery | Hearing the zero locus of a magnetic field[END_REF], followed by the contributions of Helffer & Morame [START_REF]Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells[END_REF], Helffer & Kordyukov [START_REF] Helffer | Spectral gaps for periodic Schrödinger operators with hypersurface magnetic wells: analysis near the bottom[END_REF][START_REF] Helffer | Aspects théoriques et appliqués de quelques EDP issues de la géométrie ou de la physique[END_REF], and Dombrowski & Raymond [START_REF] Dombrowski | Semiclassical analysis with vanishing magnetic fields[END_REF]. The aforementioned papers do not investigate the case when the zero set of the magnetic field B intersects the boundary. This was the purpose of the work by Pan & Kwek [START_REF] Kwek | Schrödinger operators with non-degenerately vanishing magnetic fields in bounded domains[END_REF] and [START_REF] Miqueu | Eigenstates of the Neumann magnetic Laplacian with vanishing magnetic field[END_REF]. We can find in [START_REF] Kwek | Schrödinger operators with non-degenerately vanishing magnetic fields in bounded domains[END_REF] a one term asymptotics of the first eigenvalue λ 1 (h). The paper [START_REF] Miqueu | Eigenstates of the Neumann magnetic Laplacian with vanishing magnetic field[END_REF] establishes a sharper result by giving an explicit control of the remainder as well as expansions of all the eigenvalues and eigenfunctions, as the semiclassical parameter h goes to 0, under suitable assumptions when the zero set of B does not self-intersect. 1.2.2. When the zero set of B self-intersects. In the present paper, we want to include nondegenerate quadratic cancellations inside the domain, which is a new configuration in the investigations about vanishing magnetic fields. Assumption 1.2. Let Γ = {x ∈ Ω : B(x) = 0} , and assume that Γ = ∅. We work under the following assumptions i) The set Σ = {x ∈ Γ, ∇B(x) = 0} is non-empty, finite and such that ∂Ω ∩ Σ = ∅. ii) For any x ∈ Σ, the Hessian matrix Hess B(x) of the magnetic field at the point x has two non-zero eigenvalues with opposite signs. iii) The set Γ ∩ ∂Ω is finite, and in each of these intersection points, Γ is non tangent to ∂Ω.

Note that assumptions i)-ii) imply that the set Γ is a simple curve in a neighborhood of each of its intersection points with ∂Ω. Moreover, the set Σ is made of isolated points which are locally the intersection point of two smooth curves. Notation 1.3. Choose x 0 ∈ Σ.

i) B x 0 denotes the second order Taylor expansion of the magnetic field at x 0 . So B x 0 (x) = 1 2 (x -x 0 ) Hess B(x 0 )(x -x 0 ) . ii) A x 0 denotes the Taylor expansion of the magnetic potential A to the third order at the point x 0 . Thus B x 0 = ∇ × A x 0 . iii) Let α(x 0 ), β(x 0 ) be the eigenvalues of 1 2 Hess B(x 0 ), agreeing that |α(x 0 )| ≤ |β(x 0 )|. Set ε(x 0 ) = |α(x 0 )|/|β(x 0 )| and Ξ(x 0 ) = |β(x 0 )| , so that in a suitable local system of orthogonal coordinates y = (s, t) centered at x 0

B x 0 (x) = α(x 0 )s 2 + β(x 0 )t 2 = -β(x 0 ) ε 2 (x 0 )s 2 -t 2 .
Hence the zero set of B x 0 has the equation ε 2 (x 0 )s 2 -t 2 = 0: It is the union of the two lines {t = ±ε(x 0 )s}. These lines are the two tangents to the set Γ at the point x 0 .

The main novelty in this paper is related to the presence of Σ and to the role of the following family of model operators indexed by ε and acting on L 2 (R 2 ), defined as (1.4)

X ε = D σ - τ 3 3 + ε 2 σ 2 τ 2 + D 2 τ , (σ, τ ) =: Y ∈ R 2 ,
with D σ = -i∂ σ and D τ = -i∂ τ . Note that the magnetic field associated with the operator

X ε is B(σ, τ ) = -τ 2 + ε 2 σ 2 .
That is why the operator X ε for ε = ε(x 0 ) will serve as a model magnetic operator at point x 0 . As a consequence of [START_REF] Helffer | Caractérisation du spectre essentiel de l'opérateur de Schrödinger avec un champ magnétique[END_REF][START_REF] Helffer | Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs[END_REF], the operator X ε has a compact resolvent in R 2 . Then it follows that the eigenfunctions of X ε have an exponential decay (see [START_REF] Agmon | Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of N -body Schrödinger operators[END_REF], [START_REF]Bounds on exponential decay of eigenfunctions of Schrödinger operators[END_REF], [START_REF] Fournais | Spectral methods in surface superconductivity[END_REF]Theorem B.5.1] and the example in [30, p. 100]). To sum up: Proposition 1.4. Let ε > 0. The spectrum of the operator X ε is formed by a non-decreasing unbounded sequence of positive eigenvalues denoted by (κ n (ε)) n≥1 . Moreover, for any eigenfunction

Ψ ε of X ε , there exists c > 0 such that e c|Y | Ψ ε ∈ L 2 (R 2 ).
1.3. Semiclassical expansions of the magnetic eigenvalues. The model operators X ε have the following homogeneity property, due to their magnetic potential of degree 3. By rescaling, we find immediately: Lemma 1.5. Set A ε := (-τ 3 3 + ε 2 σ 2 τ, 0) the magnetic potential of X ε . Let (κ, Ψ) be a normalized eigenpair of X ε . Setting for h > 0 and Ξ > 0

ψ h (y) = Ξ 1/4 h -1/4 Ψ(Ξ 1/4 h -1/4 Y)
we obtain that (h 3/2 Ξ 1/2 κ, ψ h ) is a normalized eigenpair for the semiclassical magnetic operator (-ih∇ + ΞA ε ) 2 on R 2 .

After the scale h for non-vanishing magnetic fields, the scale h 4/3 for magnetic field vanishing at order 1, we note the apparition of the new scale h 3/2 .

Since for each crossing point x 0 ∈ Σ the operator (-ih∇ + Ξ(x 0 )A ε(x 0 ) ) 2 is unitarily equivalent to the "tangent" magnetic operator (-ih∇ + A x 0 ) 2 , we can guess that the behavior of the low lying spectrum of the operator P A h,Ω corresponds to the low lying spectrum of the operator

(1.5) P A,Σ h := x∈Σ -ih∇ + Ξ(x)A ε(x) 2 , on L 2 (R 2 ) Σ
, where Σ is the cardinal of the finite set Σ. Lemma 1.5 then gives that

S(P A,Σ h ) = x∈Σ h 3/2 Ξ(x) 1/2 S(X ε(x) ).
This leads to introduce, for all x ∈ Σ and all n ∈ N * , the enumeration of the eigenvalues

(1.6a) Λ x n = Ξ(x) 1/2 κ n (ε(x)
) , and the ordered set

(1.6b) Λ B n , n ∈ N * = x∈Σ {Λ x n , n ∈ N * } ,
for which the same value can possibly appear several times (for instance, if we have

Λ x n = Λ x n for (n, x) = (n , x ))
. Note in particular that the smallest element of this set is given by

(1.7) Λ B 1 = min x∈Σ Ξ(x) 1/2 κ 1 (ε(x)) ,
where we recall that κ 1 (ε) is the first eigenvalue of X ε and ε(x) is defined in Notation 1.3. We are ready to state the main two results relating to the low lying spectrum of the operator P A h,Ω . The first result provides a localized estimate from below of the energy functional

Q A h,Ω
(defined in (1.1)) and exponential decay estimates for the eigenvectors of P A h,Ω . The second result states an asymptotic expansion for the eigenvalues of P A h,Ω . 1.3.1. Estimate from below of the energy and Agmon estimates. Let the function x → d(x, Σ) be the Euclidean distance between the point x ∈ Ω and the set Σ.

Theorem 1.6. Under Assumption 1.2, for any exponent d ∈ ( 3 16 , 1 4 ), there exist c d , C d > 0, h d > 0, such that for all u ∈ Dom(Q A h,Ω
) and all h ∈ (0, h d ),

(1.8a) Q A h,Ω (u) ≥ Ω I Σ h,d (x) |u(x)| 2 dx, with (1.8b) I Σ h,d (x) = Λ B 1 h 3/2 -C d h min{2-2d, 3/4+4d} if d(x, Σ) ≤ h d c d h 4/3+2d/3 if d(x, Σ) > h d ,
where [START_REF] Ël | Asymptotics for the low-lying eigenstates of the Schrödinger operator with magnetic field near corners[END_REF]. Note that the exponents present in the definition of I Σ h,d satisfy (1.9) min{2 -2d, ). There exist C, h d > 0 such that for all h ∈ (0, h d ), and all eigenpair (λ(h), ψ h ) of P A h,Ω with λ(h) ≤ Lh 3/2 , we have

Λ B 1 is defined in (1.
(1.10) Ω e 2d(x,Σ)/h d |ψ h (x)| 2 dx + h -3/2 Q A h,Ω e d(•,Σ)/h d ψ h ≤ C ψ h 2 .
In fact estimate (1.10) would also hold for the relaxed condition λ(h) ≤ Lh 4/3+2d/3 if L < c d .

1.3.2. Expansion of lowest eigenvalues. Let us recall that

λ 1 (h) ≤ λ 2 (h) ≤ . . . ≤ λ n (h) . . .
denote the increasing sequence of the eigenvalues of the operator

P A h,Ω while Λ B 1 ≤ Λ B 2 ≤ . . . ≤ Λ B n .
. . denote the elements defined in (1.6a)-(1.6b) from the eigenvalues of the model operators X ε .

Theorem 1.8. Under Assumption 1.2, for all N ∈ N * , there exist C N > 0 and h 0 > 0 such that, for all h ∈ (0, h 0 ) and all n = 1, . . . , N

|λ n (h) -h 3/2 Λ B n | ≤ C N h 7/4
. In Section 3, an extended version of this theorem is proved, providing full expansions of all lowest eigenvalues λ n (h), see Theorem 3.6.

1.4. Low lying eigenvalues of the magnetic cross in the small angle limit. When ε tends to 0, the angle between the two lines {τ = ±εσ} tends to 0. It is interesting to understand the behavior of κ n (ε) in such a limit. One could naively expect that, when ε goes to 0, inf S(X ε ) goes to inf S(M [2] ) where

M [2] = D 2 τ + D σ - τ 3 3 2 acting on L 2 (R 2 ).
The operator M [2] is sometimes called Montgomery operator of order two. By Fourier transform, we have inf S(M [2] ) = inf

ξ∈R inf S(M [2] ξ ) , where M [2] ξ = D 2 τ + ξ - τ 3 3 2 acting on L 2 (R).
The quantity inf S(M [2] ) has been numerically estimated, see [23, Table 1]. Actually, the limit ε → 0 is singular: The operator X ε is partially semiclassical. Indeed, after the scaling σ = ε -1 s, τ = t, the operator X ε becomes (1.11)

D 2 t + εD s - t 3 3 + s 2 t 2 with D t = -i∂ t , D s = -i∂ s .
The operator (1.11) is the Weyl quantization Op w ε (X α,ξ ) of the symbol X α,ξ where (1.12)

X α,ξ = D 2 t + ξ - t 3 3 + α 2 t
2 is a self-adjoint operator acting on L 2 (R) depending on the two real parameters α and ξ. In the small angle regime, the spectral analysis of the operator X ε is related to the spectral analysis of the family (X α,ξ ) (α,ξ)∈R 2 . The asymptotic expansions of the first eigenvalues of X ε is related to the"band function" 1 defined by the ground state energy of X α,ξ 1 (α, ξ) = min S(X α,ξ ) , (α, ξ) ∈ R 2 , see for instance [START_REF]Breaking a magnetic zero locus: asymptotic analysis[END_REF] and [START_REF] Ël | Magnetic WKB Constructions[END_REF], where such operators and reductions are considered. One of the requirements to apply the theory developed in [START_REF] Ël | Magnetic WKB Constructions[END_REF] (and that relates 1 to the eigenvalue asymptotic expansions when ε → 0 for the operator X ε ) is that 1 has a minimum. Theorem 1.9. The function 1 reaches its infimum S 0 in R 2 , so

S 0 = min (α,ξ)∈R 2 1 (α, ξ),
and this minimum is reached on the set

(α, ξ) ∈ R 2 , |ξ| ≤ 2 3 |α| 3 .
By construction, S 0 ≤ inf S(M [2] ). The numerical simulations that we have performed provide the upper bound (1.13) S 0 ≤ 1 (α 0 , 0) 0.4941 for α 0 = 0.786.

We note that the value given in [23, Table 1] for inf S(M [2] ) is 0.66, corresponding to the value ξ = 0 of the Fourier parameter. Hence we have obtained the strict inequality S 0 < inf S(M [2] ).

Our numerical results for the band function 1 , see Figures 1 and2, suggest that the minimum S 0 is attained at the sole two values ±(α 0 , 0) of (α, ξ).

The following result gives the convergence of the eigenvalues κ n (ε) of the model operator X ε as ε → 0. Theorem 1.10. For all n ≥ 1, there exist C > 0 and ε 0 > 0 such that for all ε ∈ (0, ε 0 )

|κ n (ε) -S 0 | ≤ Cε.
1.5. Organization of the paper. In Section 2, we prove the preliminary Theorems 1.6 and 1.7. In Section 3, we establish the full asymptotic expansions of the eigenvalues and eigenfunctions. Section 4 is devoted to the proofs of Theorems 1.9 and 1.10 and to the presentation of numerical simulations concerning the band function 1 and the eigenpairs of X ε as ε → 0.

BOUNDS FROM BELOW AND EXPONENTIAL DECAY

In this section we prove the preliminary bounds from below (1.8a)-(1.8b) and the Agmon estimates (1.10). We will use several times a perturbation formula for the magnetic Laplacian which we first state.

2.1. Perturbation of the magnetic potential. Let A be another smooth magnetic potential defined on Ω. In practice A will be the Taylor expansion of A at some point x 0 and to various orders (2, 3 or 4). By expanding the square, we get (2.1)

Q A h,Ω (u) = Q A h,Ω (u) + 2 Re (-ih∇ + A )u, (A -A )u + (A -A )u 2 .
This yields

Q A h,Ω (u) ≥ Q A h,Ω (u) -2Q A h,Ω (u) 1/2 (A -A )u by Cauchy-Schwarz inequality, leading to the parametric estimate (based on the inequality 2ab ≤ ηa 2 + η -1 b 2 , for all η > 0) (2.2) ∀η > 0, Q A h,Ω (u) ≥ (1 -η)Q A h,Ω (u) -η -1 (A -A )u 2 .
Such a lower bound is used, for instance, in the seminal paper [20, p. 51], and in the book [START_REF] Fournais | Spectral methods in surface superconductivity[END_REF]Chap. 8].

2.2.

Lower bound. The proof of (1.8a) is based on a quadratic partition of unity. Let us recall that such a partition is given for each relevant h > 0 by a finite collection of smooth cutoff functions (χ h j ) satisfying on Ω

(2.3) j |χ h j | 2 = 1 .
Then we have the following well-known localization formula (see [START_REF] Cycon | Schrödinger operators with application to quantum mechanics and global geometry[END_REF])

(2.4) Q A h,Ω (u) = j Q A h,Ω (χ h j u) -h 2 j u |∇(χ h j )| 2 L 2 (Ω) .
We introduce three sets Σ [1] , Σ [2] (h) and Σ [3] (h) covering Ω.

Notation 2.1. Let B(x 0 , r) denote the open ball of center x 0 and radius r and [START_REF] Berezin | Wick and anti-Wick symbols of operators[END_REF] ) and introduce (i) Σ [1] = Ω \ B(Σ, R 1 ). (ii) Σ [2] 

B(Σ, r) = x∈Σ B(x, r). Let R 1 > 0 such that B(Σ, 3R 1 ) ⊂ Ω. Choose d ∈ ( 3 16 , 1 
(h) = B(Σ, 2R 1 ) \ B(Σ, 1 2 h d ). (iii) Σ [3] (h) = B(Σ, h d ).
Then we consider a partition of unity composed of three cutoff functions (X [1] , X h, [2] , X h, [3] ) associated with this covering of Ω in the sense that

|X [1] | 2 + |X h,[2] | 2 + |X h,[3] | 2 = 1,

and

supp X [1] ⊂ Σ [1] , supp X h, [2] ⊂ Σ [2] (h), supp X h, [3] ⊂ Σ [3] (h). The distance between ∂Σ [2] (h) ∩ Σ [1] (h) and ∂Σ [1] (h) ∩ Σ [2] (h) is R 1 . The distance between ∂Σ [3] (h) and ∂Σ [2] (h) ∩ Σ [3] (h) is 1 2 h d . Hence we can choose the cutoff functions so that (2.5)

|∇X [1] | 2 ≤ K loc , |∇X h,[2] | 2 ≤ K loc h -2d , |∇X h,[3] | 2 ≤ K loc h -2d .
with a constant K loc independent of h and d. Combined with the localization formula (2.4) associated with the partition (X [1] , X h, [2] , X h, [3] ), the estimates (2.5) yield for all u ∈ H 1 (Ω), [2] u and u 3 = X h, [3] u, and are going to bound each

(2.6) Q A h,Ω (u) ≥ Q A h,Ω (X [1] u) + Q A h,Ω (X h,[2] u) + Q A h,Ω (X h,[3] u) -K loc h 2-2d u 2 L 2 (Ω) , We set u 1 = X [1] u, u 2 = X h,
Q A h,Ω (u k ) from below (for k = 1, 2, 3).
Lemma 2.2 (Lower bound on Σ [1] ). There exist c 1 and h 0 > 0 such that for all 0 < h < h 0

Q A h,Ω (u 1 ) ≥ c 1 h 4/3 u 1 2 .
Proof. This result is a consequence of [26, Theorem 1.9].

Lemma 2.3 (Lower bound on Σ [2] (h)). There exist c 2 and h 0 > 0 such that for all 0 < h < h 0

Q A h,Ω (u 2 ) ≥ c 2 h 4/3+2d/3 u 2 2 .
Proof. Set ρ = 1 4 . We introduce a second partition of unity (χ h j ) j∈J on Σ [2] (h) associated with a family of balls B(x j , d j h ρ ) for some constants d j . We first cover the zero set Γ ∩ Σ [2] (h) and choose the centers x j ∈ Γ with d j = 1 so that the distances between consecutive points along Γ is 1 2 h ρ . Hence, setting Σ [2] (h) = Σ [2] (h) \

x j ∈Γ B(x j , h ρ )
we obtain that the distance between Γ and Σ [2] (h) is larger than 1 2 h ρ . We then cover Σ [2] (h) with balls B(x j , d j h ρ ) choosing d j = 1 4 and the mutual distances between the centers bounded from below by 1 8 h ρ . Finally we can choose the functions χ h j so that |∇χ h j | 2 ≤ C 2,loc h 2ρ and the localization formula (2.4) yields

(2.7) Q A h,Ω (u 2 ) ≥ j Q A h,Ω (χ h j u 2 ) -C 2,loc h 2-2ρ u 2 2 .
We have, by [START_REF] Miqueu | Eigenstates of the Neumann magnetic Laplacian with vanishing magnetic field[END_REF]Lemma 2.3] (for the case

( ) = (3) of Table 2.1), (2.8) Q A h,Ω (χ h j u 2 ) ≥ 1 2 M 0 |∇B(x j )| 2/3 h 4/3 -2Ch 6ρ χ h j u 2 2 (x j ∈ Γ).
As a consequence of the non degeneracy of ∇B on Γ outside Σ (namely ∇B| = 0 on Γ\Σ) and the non degeneracy of Hess B on Σ (meaning that the eigenvalues of the Hessian matrix are not equal to 0, according to Assumption 1.2) there exists a positive constant C(B) such that

|∇B(x)| ≥ C(B) d(x, Σ), ∀x ∈ Ω .
Since d(x j , Σ) is larger than 1 2 h d by construction, from (2.8) we get

Q A h,Ω (χ h j u 2 ) ≥ 1 4 M 0 C(B) 2/3 h 4/3+2d/3 -2Ch 6ρ χ h j u 2 2 .
We note that, with ρ = 1 4 and d < 1 4 , the exponent 6ρ = 3 2 is (strictly) larger than 4 3 + 2 3 d. Therefore, for h small enough (2.9)

Q A h,Ω (χ h j u 2 ) ≥ 1 8 M 0 C(B) 2/3 h 4/3+2d/3 χ h j u 2 2 (x j ∈ Γ).
When x j does not belong to Γ, in the ball B(x j , d j h ρ ) we use the lower bound (see [START_REF] Fournais | Spectral methods in surface superconductivity[END_REF]Lemma 1.4.1])

(2.10)

Q A h,Ω (χ h j u 2 ) ≥ inf x∈B(x j ,d j h ρ ) |B(x)| h χ h j u 2 2 (x j ∈ Γ).
For any x ∈ B(x j , d j h ρ ), its distance to Γ is larger than

1 2 h ρ by construction. Let g ∈ Γ be such that d(x, Γ) = d(x, g). Then d(g, Σ) is larger than 1 2 h d . As a consequence of the Morse lemma |B(x)| ≥ C (B) d(x, g) d(g, Σ) ≥ Ch ρ+d .
Hence, with (2.10) we obtain (2.11)

Q A h,Ω (χ h j u 2 ) ≥ Ch 1+ρ+d χ h j u 2 2 (x j ∈ Γ). With ρ = 1 4 and d < 1 4 , the exponent 1 + ρ + d is < 4 3 + 2 3 d.
Therefore, for h small enough, as a result of (2.9) and (2.11) we have, for a positive constant c independent of h

Q A h,Ω (χ h j u 2 ) ≥ ch 4/3+2d/3 χ h j u 2 2 (∀j ∈ J).

With (2.7) this yields

Q A h,Ω (u 2 ) ≥ ch 4/3+2d/3 j χ h j u 2 2 -C 2,loc h 2-2ρ u 2 2 ≥ c 2 h 4/3+2d/3 u 2 2 ,
since 2 -2ρ = 3 2 > 4/3 + 2d/3 for any d < 1 4 . The lemma is proved. Lemma 2.4 (Lower bound on Σ [3] ). There exist C 3 and h 0 > 0 such that for all 0 < h < h 0

Q A h,Ω (u 3 ) ≥ Λ B 1 h 3/2 -C 3 h 3/4+4d u 3 2 .
Proof. For h small enough the set Σ [3] is the union of the balls B(x 0 , h d ), with x 0 spanning Σ. It suffices to consider each point x 0 separately. We denote by u x 0 3 the restriction of u 3 to B(x 0 , h d ) and use the perturbative lower bound (2.2) with A = A x 0 the third order Taylor expansion of

A at x 0 : ∀η > 0, Q A h,Ω (u x 0 3 ) ≥ (1 -η)Q A x 0 h,Ω (u x 0 3 ) -η -1 (A -A x 0 )u x 0 3 2 .
Recall from the introduction that the magnetic field associated with A x 0 is B x 0 , and that the magnetic operator

(-ih∇ + A x 0 ) 2 is unitarily equivalent to (-ih∇ + Ξ(x 0 )A ε(x 0 ) ) 2 whose first eigenvalue is h 3/2 Λ x 0 1 . Besides, |A(x) -A x 0 (x)| ≤ Ch 4d , ∀x ∈ B(x 0 , h d ). So we have ∀η > 0, Q A h,Ω (u x 0 3 ) ≥ (1 -η)h 3/2 Λ x 0 1 -η -1 Ch 8d u x 0 3 2 .
Choosing η = h 4d-3/4 to equalize the remainders, we deduce the inequality

Q A h,Ω (u x 0 3 ) ≥ h 3/2 Λ x 0 1 -Ch 3/4+4d u x 0 3 2 .
Taking the infimum over all the points of the finite set Σ gives the result.

We can now conclude with the proof of Theorem 1.6.

Proof of Theorem 1.6. We gather the estimates provided by Lemmas 2.2-2.4 and combine them with the localization estimate (2.6) and obtain that

Q A h,Ω (u) is bounded from below by c 1 h 4/3 u 1 2 + c 2 h 4/3+2d/3 u 2 2 + Λ B 1 h 3/2 -C 3 h 3/4+4d u 3 2 -K loc h 2-2d u 2 .
Since d < 1 4 , then h 2-2d h 4/3+2d/3 and the lower bound above can be replaced by

ch 4/3+2d/3 ( u 1 2 + u 2 2 ) + Λ B 1 h 3/2 -C 3 h 3/4+4d -K loc h 2-2d u 3 2 ≥ ch 4/3+2d/3 (1 -χ)u 2 + Λ B 1 h 3/2 -Ch min{3/4+4d,2-2d} χu 2 with χ the characteristic function of the set {x ∈ Ω, d(x, Σ) < h d }. The theorem is proved. 2.3. Agmon estimates. Let d ∈ ( 3 16 , 1 4 
) and L > 0. We consider an eigenpair (λ(h), ψ h ) of

P A h,Ω such that λ(h) ≤ Lh 3/2 . For all function Φ ∈ W 1,∞ (Ω), we have e Φ ψ h ∈ Dom(Q A h,Ω ) and
(2.12)

Q A h,Ω (e Φ ψ h ) = λ(h) e Φ ψ h 2 + h 2 |∇Φ| e Φ ψ h 2 . Defining Φ(x) = d(x, Σ)h -d , we have |∇Φ(x)| 2 = h -2d . Hence (2.13) h 2 |∇Φ| e Φ ψ h 2 ≤ h 2-2d e Φ ψ h 2 .
We denote

Z near h = {x ∈ Ω, d(x, Σ) ≤ h d } and Z far h = {x ∈ Ω, d(x, Σ) > h d } . We introduce δ such that δ = min{3/4 + 4d, 2 -2d} -3 2 . Since d ∈ ( 3 16 , 1 4 
), the number δ is positive. Using (1.8a)-(1.8b) we obtain

Q A h,Ω (e Φ ψ h ) ≥ c d h 4/3+2d/3 e Φ ψ h 2 L 2 (Z far h ) + Λ B 1 h 3/2 -C d h 3/2+δ ) e Φ ψ h 2 L 2 (Z near h ) ≥ c d h 4/3+2d/3 e Φ ψ h 2 L 2 (Z far h ) -C d h 3/2+δ e Φ ψ h 2 L 2 (Z near h ) .
Combining the latter inequality with (2.12) and (2.13), we obtain (using the fact that λ(h) ≤ Lh 3/2 )

c d h 4/3+2d/3 -Lh 3/2 -h 2-2d e Φ ψ h 2 L 2 (Z far h ) ≤ (Lh 3/2 + h 2-2d + C d h 3/2+δ ) e Φ ψ h 2 L 2 (Z near h )
from which we immediately deduce that for h small enough

e Φ ψ h 2 L 2 (Z far h ) ≤ e Φ ψ h 2 L 2 (Z near h ) . Since by construction |Φ| is bounded by 1 on Z near h , there holds e Φ ψ h 2 L 2 (Z near h ) ≤ ψ h 2 L 2 (Z near h ) , we finally get e Φ ψ h 2 L 2 (Ω) ≤ ψ h 2 L 2 (Ω)
, which implies the Agmon estimates (1.10).

ASYMPTOTIC EXPANSIONS OF EIGENVALUES

In this section, we prove Theorem 1.8 in two steps. First, the localization around each crossing point x 0 ∈ Σ, and, second, a perturbation argument for the magnetic potential around each crossing point. We conclude the section by stating a full asymptotic expansion for eigenvalues and a sketch of the proof.

3.1.

Preliminaries. We will use several times an argument based on reciprocal quasimodes between two operators. We state this in a general form. Lemma 3.1. Let P and P two positive operators with discrete spectra associated with sesquilinear forms a and a , respectively. Let (µ n ) and (µ n ) be the increasing sequences of their eigenvalues (counted with multiplicity). Let (ϕ n ) be an associated orthonormal basis of eigenvectors for P. Let N be a positive integer and assume that for each n = 1, . . . , N , there exists ϕ n ∈ Dom(a ) such that

(3.1a) ϕ n , ϕ m = ϕ n , ϕ m + ν n,m and a (ϕ n , ϕ m ) = a(ϕ n , ϕ m ) + µ n,m
and set

(3.1b) ν = max n,m |ν n,m | and µ = max n,m |µ n,m | Assume that ν < 1 N . Then (3.2) µ n ≤ µ n + nµ 1 -nν , n = 1, . . . , N.
Proof. Let M ≤ N . By the min-max formula,

µ M ≤ max ϕ∈span{ϕ n , n=1,...,M } a (ϕ, ϕ) ϕ, ϕ
We write ϕ as a sum n γ n ϕ n . Then

a (ϕ, ϕ) = n,m γ n γm a (ϕ n , ϕ m ) = n |γ n | 2 µ n + n,m γ n γm µ n,m ≤ (µ M + M µ) n |γ n | 2 . Likewise ϕ, ϕ = n,m γ n γm ϕ n , ϕ m = n |γ n | 2 + n,m γ n γm ν n,m ≥ (1 -M ν) n |γ n | 2 .
Whence formula (3.2)

We will also need a simple but useful consequence of Agmon estimates.

Lemma 3.2. Assume that the family of function (ψ h ) h>0 satisfies (for some γ and δ > 0) the estimate

R 2 e γ|y|/h δ |ψ h (y)| 2 dy ≤ C ψ h 2 ,
for h small enough and C independent of h. Then for all m > 0, there exists C m such that for h > 0 small enough

R 2 |y| m |ψ h (y)| 2 dy ≤ C m h mδ ψ h 2 .
Proof. It suffices to write

R 2 |y| m |ψ h (y)| 2 dy ≤ max ρ>0 ρ m e -γρ/h δ R 2 e γ|y|/h δ |ψ h (y)| 2 dy
and notice that max ρ>0 ρ m e -γρ/h δ = max ρ>0 (h δ ρ) m e -γρ = h mδ max ρ>0 ρ m e -γρ .

3.2.

Localization. Introduce a positive radius r 0 such that the collection of balls B(x 0 , r 0 ), x 0 ∈ Σ, are pairwise disjoint. Then consider the collection of operators P A h,B(x 0 ,r 0 ) for x 0 ∈ Σ. The main result of this section is: Lemma 3.3. Recall that λ n (h) is the increasing sequence of eigenvalues of P A h,Ω (counted with multiplicity). Denote by λ loc n (h) the increasing sequence of eigenvalues of

x 0 ∈Σ P A h,B(x 0 ,r 0 ) . Let d ∈ ( 3 16 , 1 4 
) and let N be a positive integer. If λ loc N (h) ≤ Lh 3/2 for h > 0 small enough, then there exist C N and h N > 0 such that for all h ∈ (0, h N )

|λ n (h) -λ loc n (h)| ≤ C N e -r 0 /h d , ∀ n = 1, .
. . , N. Proof. Choose for each x 0 ∈ Σ a smooth cut-off function χ x 0 with support in B(x 0 , r 0 ) and equal to 1 on B(x 0 , 1 2 r 0 ). i) Use Lemma 3.1 with P = P A h,Ω and P = ⊕ x 0 ∈Σ P A h,B(x 0 ,r 0 ) (acting on ⊕ x 0 ∈Σ L 2 (B(x 0 , r 0 ))): For each eigenvector ϕ n of P, one crossing point x 0 ∈ Σ is selected and we set

ϕ n = χ x 0 ϕ n defined on Ω.
Relying on the assumption that λ loc n (h) ≤ Lh 3/2 for n = 1, . . . , N , we may apply the Agmon estimates (1.10) to the operator P A h,B(x 0 ,r 0 ) . This yields conditions (3.1a)

-(3.1b) considering ν = µ = Ce -r 0 /h d . Hence λ n (h) ≤ λ loc n (h) + C N e -r 0 /h d .
ii) Conversely, we swap the roles of the two operators: P = P A h,Ω and P = ⊕ x 0 ∈Σ P A h,B(x 0 ,r 0 ) . For each eigenvector ϕ n of P, we consider

ϕ n := χ x 0 ϕ n x 0 ∈Σ defined on x 0 ∈Σ B(x 0 , r 0 ) .
Note that, as a consequence of the previous step of the proof, we have that λ n (h) ≤ 2Lh 3/2 for all n = 1, . . . , N . As above, we conclude with the help of Agmon estimates for the operator

P A h,Ω that λ loc n (h) ≤ λ n (h) + C N e -r 0 /h d .
The lemma is proved.

3.3.

Taylor approximation of a localized operator. With Lemma 3.3 at hand, we can assume that Ω = B(x 0 , r 0 ). Thus Σ is reduced to one element, x 0 . Recall that A x 0 denotes the third order Taylor expansion of A at the point x 0 . We are going to consider the operator P A x 0 h := (-ih∇ + A x 0 ) 2 posed on R 2 . We have seen in the introduction that the eigenvalues of P A x 0 h are the h 3/2 Λ x 0 n , see (1.6a), and that its eigenvectors ψ x 0 h,n are scaled from the eigenvectors of X ε with ε = ε(x 0 ) and Ξ = Ξ(x 0 ). As a consequence of the exponential decay of the eigenvectors of X ε (Proposition 1.4) and the scaling provided by Lemma 1.5, we find that, for some positive constant γ

(3.3) R 2 e 2γ|y|/h 1/4 |ψ x 0 h,n (y)| 2 dy + h -3/2 Q A x 0 h e γ|y|/h 1/4 ψ x 0 h,n ≤ C ψ x 0 h,n 2 .
Lemma 3.4. With Ω = B(x 0 , r 0 ), we denote by λ x 0 n (h) the eigenvalues of P A h,Ω . The eigenvalues of P A x 0 h are given by h 3/2 Λ x 0 n . For any d 0 < 1 4 and any positive integer N , there exist C N and h N > 0 such that for all h ∈ (0, h N )

(3.4) h 3/2 Λ x 0 n -C N h 3/2+d 0 ≤ λ x 0 n (h) ≤ h 3/2 Λ x 0 n + C N h 7/4 , n = 1, . . . , N.
Proof. The proof combines Lemma 3.1 with the perturbation identity (2.1). We still use the cut-off function χ x 0 as in the proof of Lemma 3.3.

i) Use Lemma 3.1 with P = P A x 0 h and P = P A h,Ω . For each eigenvector ϕ n of P, we consider the quasimode ϕ n = χ x 0 ϕ n for P A x 0 h . The localization error is exponentially decaying thanks to (3.3) but the principal part of the discrepancy for the quasimodes arises from the difference between A and A x 0 . Thus the bound ν in (3.1b) satisfies (for some r 0 > 0)

ν ≤ Ce -r 0 /h 1/4 .
For estimate the diagonal terms µ n,n in (3.1a), we use the identity (2.1) for A = A x 0 . Then

Q A h,Ω (χ x 0 ψ x 0 h,n ) = Q A x 0 h (χ x 0 ψ x 0 h,n ) + 2 Re (-ih∇ + A x 0 )χ x 0 ψ x 0 h,n , (A -A x 0 )χ x 0 ψ x 0 h,n + (A -A x 0 )χ x 0 ψ x 0 h,n 2 .
Hence the difference µ n,n :

= Q A h,Ω (χ x 0 ψ x 0 h,n ) -Q A x 0 h (χ x 0 ψ x 0 h,n ) is estimated by |µ n,n | ≤ 2 Q A x 0 h (χ x 0 ψ x 0 h,n ) 1/2 (A -A x 0 )χ x 0 ψ x 0 h,n + (A -A x 0 )χ x 0 ψ x 0 h,n 2 
Using the Agmon estimates (3.3) and Lemma 3.2 with δ = 1 4 and m = 8, we find

|µ n,n | ≤ C(h 3/4 h + h 2 ).
The reasonning is similar for µ n,m , n = m. Hence the right part of inequalities (3.4).

ii) For the left part of (3.4), we swap the roles of P A 4 and any positive integer N , there exist C N > 0 and h 0 > 0 such that, for all h ∈ (0, h 0 ) and all n = 1, . . . , N

(3.5) h 3/2 Λ B n -C N h 3/2+d ≤ λ n (h) ≤ h 3/2 Λ B n + C N h 7/4
, n = 1, . . . , N. To go further, we are going to exhibit, for each n, series expansions of eigenpairs. Owing to the exponential localization given by Lemma 3.3, it suffices to restrict the construction to any chosen localized operator P A h,B(x 0 ,r 0 ) . In order to alleviate notations, we will remove the mention of x 0 in general, and work in the Cartesian coordinates y for which the crossing point is at the origin. Then the domain Ω is the ball B(0, r 0 ) and the magnetic field cancels to the order 2 at 0. After a possible change of gauge, we can assume that the magnetic potential A cancels to the order 3 at 0. We write its Taylor formal series as A ∼ j≥0 A j where A j is polynomial and homogeneous of degree 3 + j.

The first nonzero term is A 0 formerly denoted by A x 0 . We retrieve the principal part of P A h,Ω at 0, and its natural expansion in powers of h 1/4 by considering, via the change of variables Y = y/h 1/4 :

h -3/2 P A h,Ω [y, ∇ y ] = h -3/2 P A h,Ω/h 1/4 [h 1/4 Y, h -1/4 ∇ Y ] .
We expand the right hand side as a formal series of operators j h j/4 L j [Y, ∇ Y ] defined on R 2 . We have

j h j/4 L j [Y, ∇ Y ] = h -3/2 -ih 3/4 ∇ Y + j≥0 h (3+ )/4 A j (Y) 2 .
Hence the series j h j/4 L j starts with L 0 given by

L 0 = -i∇ Y + A 0 (Y) 2
and the other terms L j for j ≥ 1 are partial differential operators of degree 1 with polynomial coefficients. The main term L 0 is isospectral to (-i∇ + Ξ(x 0 )A ε (x 0 )) 2 , see (1.5), and its eigenvalues are given by the Λ x 0 n (n ∈ N * ), see (1.6a). Choose a normalized eigenpair of L 0 , which we denote by ( 0 , Ψ 0 ). We look for j ∈ R and Ψ j ∈ Dom(L 0 ), j = 1, 2, . . .

solving j h j/4 L j k h k/4 Ψ k = j h j/4 j k h k/4
Ψ k in the sense of formal series, i.e., solving the sequence of equations,

m j=0 L j Ψ m-j = m j=0 j Ψ m-j m = 1, 2, . . . .
We write the first equation (for m = 1) as

(L 0 -0 )Ψ 1 = 1 Ψ 0 -L 1 Ψ 0 ,
and the next ones as

(L 0 -0 )Ψ m = m Ψ 0 -L m Ψ 0 + m-1 j=1 ( j -L j )Ψ m-j .
If 0 is a simple eigenvalue of L 0 , the solution of such a sequence of equations is classical, resulting from the Fredholm alternative for the self-adjoint operator L 0 . For instance, we get

(3.6) 1 = L 1 Ψ 0 , Ψ 0 if m = 1.
If 0 is a multiple eigenvalue of L 0 , we cannot choose a priori an associated eigenvector, but have to work in the whole associated eigenspace E 0 . Then identity (3.6) is replaced by an eigen-equation for a finite dimensional hermitian matrix acting on the eigenspace E 0 . The process can be pursed as well, see [START_REF] Dauge | Eigenmode asymptotics in thin elastic plates[END_REF] for details on this procedure. The terms Ψ m belong to the domain of L 0 and have, furthermore, exponential decay. Setting for m ≥ 1

[m] (h) = h 3/2 m j=0 h j/4 j and ψ [m] h (y) = χ x 0 (y) m j=0 h j/4 Ψ j (y/h 1/4 )
we have constructed a quasimode for P A h,Ω to the order h 3/2+(m+1)/4 , i.e. P A h,Ω (ψ

[m] h ) = [m] (h)ψ [m] h + ρ [m+1] h with ρ [m+1] h ≤ C m h 3/2+(m+1)/4 ψ [m] h .
Combining this with (3.5), we deduce by the spectral theorem that there holds Theorem 3.6. Under Assumption 1.2, for all integers N ≥ 1 and M ≥ 0, there exist coefficients

Λ B n,m ∈ R + for 1 ≤ n ≤ N, 0 ≤ m ≤ M, with Λ B n,0 = Λ B n
and constants C N,M > 0 and h 0 > 0 such that, for all h ∈ (0, h 0 ) and all n = 1, . . . , N

λ n (h) -h 3/2 M m=0 h m/4 Λ B n,m ≤ C N h 3/2+(M +1)/4 .
Of course, Theorem 1.8 is a particular case of the above statement if we choose M = 0.

SMALL ANGLE LIMIT

The first part of this section is devoted to theoretical results on the band function (α, ξ) → 1 (α, ξ) and to their numerical illustration. In the second part, we rely on these results to prove the convergence of eigenvalues of X ε in the small angle limit and present the computations of their first eigenstates for a set of small values of ε.

4.1.

Operator symbol and band function. Here we study the behavior of the first eigenvalue

1 (α, ξ) of the operator symbol X α,ξ , for (α, ξ) ∈ R 2 X α,ξ = D 2 t + ξ + α 2 t - t 3 3 2 ,
acting on L 2 (R), see (1.12).

4.1.1. Preliminaries. Let us introduce the potential V α,ξ of X α,ξ and its generating polynomial P α,ξ :

P α,ξ (t) = ξ + α 2 t - t 3 3 and V α,ξ (t) = P α,ξ (t) 2 . V α,ξ (t) = ξ 2 + 2ξα 2 t -2ξ t 3 3 + α 4 t 2 -2α 2 t 4 3 + t 6 9
The potential V α,ξ depends smoothly on the parameters (α, ξ) and is confining for each value of (α, ξ). So there holds Proposition 4.1. For all (α, ξ) ∈ R 2 , the operator X α,ξ has a compact resolvent and the family (X α,ξ ) with (α, ξ) ∈ R 2 is analytic (of type (B) according to Kato theory, see [START_REF] Kato | Perturbation theory for linear operators[END_REF]).

Since the X α,ξ are Sturm-Liouville operators, we obtain Corollary 4.2. For all (α, ξ), the eigenvalue 1 (α, ξ) is simple and depends analytically of α and ξ. The associated eigenfunctions do not vanish and the unique normalized and positive eigenfunction u α,ξ associated with 1 (α, ξ) depends analytically of (α, ξ).

As a consequence we have the following "Feynman-Hellmann" formulas. Corollary 4.3. For all (α, ξ) we have the following identities

(∂ α 1 )(α, ξ) = 4α R ξ + α 2 t - t 3 3 tu 2 α,ξ (t) dt, (∂ ξ 1 )(α, ξ) = 2 R ξ + α 2 t - t 3 3 u 2 α,ξ (t) dt.
The potential V α,ξ has the following obvious symmetry properties: V α,ξ (t) = V -α,ξ (t) and V α,-ξ (t) = V α,ξ (-t). Hence the band function 1 (α, ξ) is even with respect to each of the two variables α and ξ, so its analysis can be restricted to the first quadrant {α ≥ 0, ξ ≥ 0}. The following lemma gives an expression of the roots of the generating polynomial P α,ξ , depending on the sign of its discriminant. Lemma 4.4. For all α ≥ 0 and all ξ ≥ 0, denote by t k (α, ξ) the three roots of the polynomial P α,ξ , agreeing that Re t 1 (α, ξ) ≤ Re t 2 (α, ξ) ≤ Re t 3 (α, ξ). Then, if (α, ξ) = (0, 0), t 3 (α, ξ) is a positive simple real root. More precisely we have • For ξ < 2 3 α 3 , the polynomial P α,ξ admits three distinct real roots (that we denote t 1 (α, ξ) < t 2 (α, ξ) < t 3 (α, ξ)) given (for all k ∈ {1, 2, 3}) by

(4.1a) t k (α, ξ) = j 3-k 3 1 2 3ξ + i 4α 6 -9ξ 2 + j k-3 3 1 2 3ξ -i 4α 6 -9ξ 2 ,
where j is the complex number defined by j = e 2iπ/3 = -

1 2 + i √ 3 
2 .

• For ξ = 2 3 α 3 , the polynomial P α,ξ admits a simple real root and a double real root respectively given by

(4.1b) t 3 (α, ξ) = 2α and t 2 (α, ξ) = t 1 (α, ξ) = -α.
• For ξ > 2 3 α 3 , the polynomial P α,ξ admits a unique real root given by

(4.1c) t 3 (α, ξ) = 3 1 2 3ξ + -4α 6 + 9ξ 2 + 3 1 2 3ξ --4α 6 + 9ξ 2 .
The next result shows that the minimum cannot be reached on the set {ξ ≥ 2 3 α 3 > 0}. Its proof uses Corollary 4.3 and the fact that, if ξ ≥ 2 3 α 3 > 0, the polynomial t → (t -t 3 )P α,ξ (t) is negative. Proposition 4.5. For all (α, ξ) such that ξ ≥ 2 3 α 3 > 0, we have

(∂ α 1 )(α, ξ) -2αt 3 (α, ξ)(∂ ξ 1 )(α, ξ) < 0.
In particular, there is no critical point on the set {ξ ≥ 2 3 α 3 > 0}. 4.1.2. Behavior of the band function at infinity. Now, the remaining part of this section is devoted to prove that 1 (α, ξ) tends to infinity as |α| + |ξ| tends to infinity, namely

(4.2) lim |α|+|ξ|→∞ 1 (α, ξ) = ∞ .
Note that Proposition 4.5 combined with (4.2) implies Theorem 1.9.

To prove (4.2), we split (for each R > 1) the region

A R := {(α, ξ) ∈ R 2 , α ≥ 0, ξ ≥ 0, and α + ξ > R}
into the three subregions

A • R := A R ∩ {(α, ξ) ∈ R 2 , α ∈ [0, 1] ξ > 2 3 α 3 } (4.3a) A R := A R ∩ {(α, ξ) ∈ R 2 , α ∈ [1, ∞) ξ > 2 3 α 3 } (4.3b) A R := A R ∩ {(α, ξ) ∈ R 2 , α ∈ [1, ∞) ξ ≤ 2 3 α 3 } (4.3c)
and are going to prove the next lemma. Lemma 4.6. We denote Q α,ξ the quadratic form associated with the operator X α,ξ . There exists constants R > 1 and B > 0 such that for all ψ ∈ C ∞ 0 (R) the following lower bounds hold

Q α,ξ (ψ) ≥ B ξ 2/3 ψ 2 L 2 (R) , ∀(α, ξ) ∈ A • R (4.4a) Q α,ξ (ψ) ≥ B ξ 2/9 ψ 2 L 2 (R) , ∀(α, ξ) ∈ A R (4.4b) Q α,ξ (ψ) ≥ B α 2/3 ψ 2 L 2 (R) , ∀(α, ξ) ∈ A R (4.4c)
We can see that

ξ 2/9 > 1 2 ξ 2/9 + 1 3 α 2/3 on A • R ∪ A R and α 2/3 > 1 2 (α 2/3 + ξ 2/9
) on A R . Therefore the bounds (4.4) imply (4.2).

We let Ω (1) = (-∞, α + ) and Ω (2) = (α -, +∞) and denote ψ 1 = χ 1 ψ and ψ 2 = χ 2 ψ. We will work out a lower bound of the quadratic form on each of these subdomains.

On both subdomains, using the factorization (4.5), we start from the expression of X α,ξ as (4.9)

X α,ξ = D 2 t + V α,ξ with V α,ξ = N α,ξ (t) 2 t -t 3 (α, ξ) 2 .
On Ω (1) , we bound from below the potential V α,ξ as

(4.10) V α,ξ ≥ B 1 (α, ξ) N α,ξ (t) 2 with B 1 (α, ξ) = min t≤α + t -t 3 (α, ξ) 2 .
Therefore, the quotient

Q α,ξ (ψ 1 )/ ψ 1 2 L 2 (R)
is bounded from below by the ground state energy of (4.11)

D 2 t + B 1 (α, ξ) N α,ξ (t) 2 on R.
Using the canonical form of the factor N α,ξ (4.12)

N α,ξ (t) = 1 3 t + t 3 (α, ξ) 2 - t 3 (α, ξ) 2 12 + ξ t 3 (α, ξ)
.

we find by translation and scaling that the operator (4.11) is isospectral to the operator (4.13)

( 4 9 ) 1/3 B 1 (α, ξ) 1/3 D 2 τ + τ 2 2 -η 2 2
on R, for a suitable real number η. We know from [START_REF]The Montgomery model revisited[END_REF] that the ground state energy γ(η) of the operator D 2 τ + τ 2 2 -η 2 as a function of η ∈ R reaches its minimum (for a positive value η 0 of η). Therefore this minimum is positive. We denote it by M 0 . Finally we bound Q α,ξ (ψ 1 ) from below as follows

(4.14) Q α,ξ (ψ 1 ) ≥ ( 4 9 ) 1/3 B 1 (α, ξ) 1/3 M 0 ψ 1 2 L 2 (R) .
On Ω (2) , we swap the roles of the two factors in P α,ξ and obtain the lower bound:

(4.15) V α,ξ ≥ B 2 (α, ξ) t -t 3 (α, ξ) 2 with B 2 (α, ξ) = min t≥α - N α,ξ (t) 2 . 
By translation and homogeneity, we get via the harmonic oscillator:

(4.16) Q α,ξ (ψ 2 ) ≥ B 2 (α, ξ) 1/2 ψ 2 2 L 2 (R) .
Finally, combining (4.14) and (4.16) with (4.8) we find

(4.17) Q α,ξ (ψ) ≥ min ( 4 9 ) 1/3 B 1 (α, ξ) 1/3 M 0 , B 2 (α, ξ) 1/2 - K 2 loc (α + -α -) 2 ψ 2 L 2 (R) .
It remains to choose α + and α -so that we can find suitable lower bounds for the constants B 1 (α, ξ) and B 2 (α, ξ). This will be done finding upper and lower bounds for t 3 (α, ξ).

Proof of (4.4b). In the region A , we have ξ > 2 3 α 3 (and α > 1). With the aim of finding bounds for t 3 (α, ξ) we calculate the derivative of expression (4.1c) with respect to α:

∂ α t 3 (α, ξ) = - 4α 5 -4α 6 + 9ξ 2 1 2 3ξ + -4α 6 + 9ξ 2 -2/3 + 4α 5 -4α 6 + 9ξ 2 1 2 3ξ --4α 6 + 9ξ 2 -2/3
. 4.1.3. Numerical simulations. We have computed an approximation of the band function 1 on a grid Σ of values of (α, ξ) covering the square (-2, 2) 2 . The grid points of Σ are (α k , ξ l ) with α k = -2 + k/100 and ξ l = -2 + l/100, for k, l ∈ {0, . . . , 400}. In Figure 1, we plot the level lines of 1 above the grid Σ and in Figure 2, we plot the same band function restricted on the axis ξ = 0. The computations for Figures 1 and2 are performed by the finite element method 1 and are based on a Galerkin projection on the interval (-5, 5) t with natural boundary conditions at the ends, discretized by 10 elements with polynomial degree 10. With this number of elements the degree 10 saturates the double precision, see Table 1. Enlarging the domain yields numbers 1 All our computations are preformed with the FEM library XLiFE++ under a GNU GPL licence. with the same first 13 digits, which proves that (-5, 5) is large enough to capture the numerical support of the first eigenvectors when (α, ξ) belongs to [-2, 2] 2 .

According to the analysis of [START_REF] Helffer | Spectral properties of higher order anharmonic oscillators[END_REF], the bottom of the spectrum inf S(M [2] ) of the Montgomery operator of order two coincides with 1 (0, 0). We can see in Figure 2, that α = 0 is a local maximum of the function α → 1 (α, 0). Table 1 provides the value 0.660952004868639 for 1 (0, 0) (with presumably 13 correct digits), and the value 0.786 for α 0 with 3 correct digits. Refining the sampling of α by 101 values in the interval [0.786, 0.787] yields α 0 = 0.78628 and 1 (α 0 , 0) = 0.49410921120. 1. Computed values of 1 (α 0 , 0) and 1 (α 0 , 0) with polynomial degree Q on 10 elements in (-5, 5). The numerical value of α 0 is also provided. 4.2. Asymptotic analysis in the small angle limit. In this section, we prove Theorem 1.10. The presentation is mostly inspired by [9, Section 2] and we just highlight the most important steps and differences. 4.2.1. Changes of variables. We are interested in the behavior of the first eigenpair of X ε (defined in (1.4)) as ε → 0. To investigate this, we perform two changes of variables. First, the scaling (4.18) (σ, τ ) -→ (s, t) so that s = εσ, t = τ, brings the spectral analysis of the operator X ε to the following unitarily equivalent operator (4. [START_REF] Helffer | Caractérisation du spectre essentiel de l'opérateur de Schrödinger avec un champ magnétique[END_REF])

Q 1 (0, 0) α 0 1 (α 0 , 0) 1 0.
L ε = D 2 t + εD s + s 2 t - t 3 3 2 .
Second, we localize in s around a point α 0 such that there exists a value ξ 0 for which 1 reaches its minimum S 0 in (α 0 , ξ 0 ). By the new change of variable (4.20) (s, t) -→ (s, t) so that s = α 0 + ε 1/2 s, t = t, and a gauge transform, the operator L ε becomes (4.21)

L ε = D 2 t + ξ 0 + ε 1/2 D s + εs 2 t + 2ε 1/2 α 0 st + α 2 0 t - t 3 3 2 .
Thus the above three operators have the same eigenvalues

S(X ε ) = S(L ε ) = S(L ε ).
Proposition 4.7. For all N ≥ 1, there exist C N > 0 and ε N > 0 such that for all ε ∈ (0, ε N ) there exist at least N eigenvalues (counted with multiplicity) of the operator X ε contained in the ball of radius C N ε centered at S 0 .

Proof. We can write

L ε = L 0 + ε 1/2 L 1 + O(ε), with L 0 = X α 0 ,ξ 0 and L 1 = 2 ξ 0 + α 2 0 t - t 3 3 (D s + 2α 0 st) .
We are looking for quasimodes in the form

ψ = ψ 0 + ε 1 2 ψ 1 and κ = κ 0 + ε 1 2 κ 1 , such that L ε ψ = κψ + O(ε) is satisfied.
Gathering the terms in ε 0 we get the equation

X α 0 ,ξ 0 ψ 0 = κ 0 ψ 0 .
Thus κ 0 is in the spectrum of X α 0 ,ξ 0 and that ψ 0 is an associated eigenfunction. We choose κ 0 = S 0 , and we take ψ 0 (unitary) in the following form (4.22) ψ 0 (s, t) = f 0 (s) u 0 (t) , with u 0 = u α 0 ,ξ 0 and f 0 in the Schwartz class. Gathering the terms in ε 1/2 , we get the equation

(4.23) (L 0 -S 0 )ψ 1 = -(L 1 -κ 1 )ψ 0 .
A careful check of the proof of [19, Théorème (1.1)], involving only commutators of analytic vector fields with respect to ε, shows that C 2 does not depend on ε ∈ (0, 1). The extension of this estimate to the form domain follows by density.

We can reformulate Lemma 4.8 in terms of the operator L ε and deduce the following.

Proposition 4.9. There exists C 2 > 0 such that, for all ε ∈ (0, 1), and all ψ in the form domain of L ε ,

(4.27) |s 2 -t 2 | + 2|t| 1/4 ψ 2 ≤ C 2 L ε ψ, ψ + ψ 2 .
In particular, for all S * 0 > S 0 there exists R * > 0 such that, for all ε ∈ (0, 1), L Dir,R * ε ≥ S * 0 , where L Dir,R * ε is the Dirichlet realization of the operator L ε outside the ball of center 0 and radius R * .

Proof. To deduce the second assertion, it suffices to note that lim

|s|+|t|→+∞ |s 2 -t 2 | + 2|t| = +∞.
It is classical to deduce from Proposition 4.9 that the eigenfunctions associated with the low lying eigenvalues satisfy Agmon estimates with respect to (s, t) (see, for instance, [9, Section 2.2]). By taking derivatives of the eigenvalue equation, we finally get the following corollary.

Corollary 4.10. Let C 0 and k, l, d ∈ N. There exist ε 0 > 0, C > 0, and c 0 > 0 such that for all ε ∈ (0, ε 0 ) and all eigenpairs (κ, ψ) of the operator L ε with κ ≤ S 0 + C 0 ε, we have

t k s l ψ ≤ C ψ , Q ε (t k s l ψ) ≤ C ψ 2 , (D t ) d s l t k ψ ≤ C ψ , (εD s ) d s l t k ψ) ≤ C ψ .
4.2.3. Coherent states. Following a classical formalism, see [START_REF] Berezin | Wick and anti-Wick symbols of operators[END_REF][START_REF] Combescure | Coherent states and applications in mathematical physics[END_REF] for instance, we introduce the annihilation operator a and the creation operator a

* a = 1 √ 2 (s + ∂ s ) , a * = 1 √ 2 (s -∂ s ) .
We have the following identities

(4.28) s = a + a * √ 2 , ∂ s = a -a * √ 2
, and [a, a * ] = 1.

Setting g 0 (s) = π -1/4 e -s 2 /2 , we introduce the coherent states for any u ∈ R and p ∈ R,

f u,p (s) = e ips g 0 (s -u) ,
and for all ψ ∈ L 2 (R), the associated projection defined by

Π u,p ψ = ψ, f u,p L 2 (R,ds) f u,p .
We have the resolution of the identity

ψ = R 2 Π u,p ψ dudp ,
and the Parseval formula

ψ 2 = R R 2
|Π u,p ψ| 2 dudp ds .

Lemma 4.11 ([4]

). For all n, m ∈ N, we have

(a) m (a * ) n = R 2 u + ip √ 2 m u -ip √ 2 n Π u,p dudp.
Now we have all tools at hand to end the proof of Theorem 1.10. Taking Proposition 4.7 into account, it remains to prove the following lemma: Lemma 4.12. Consider an eigenfunction Ψ ε of X ε associated with an eigenvalue κ(ε) ≤ S 0 + C 0 ε. Then there exists C only depending on C 0 such that

(4.29) κ(ε) Ψ ε 2 = X ε Ψ ε , Ψ ε ≥ (S 0 -Cε) Ψ ε 2 .
Proof. In view of (4.19), it suffices to prove (4.29) for an eigenpair (κ(ε), ψ ε ) of the operator L ε . By the scaling s = ε 1 2 s, L ε becomes the unitarily equivalent operator

L ε = D 2 t + ε 1/2 D s + εs 2 t - t 3 3 
2 , which we expand as

L ε = L 0 + ε 1/2 L 1 + ε L 2 + ε 3/2 L 3 + ε 2 L 4 , where 
L 0 = D 2 t + t 6 9 , L 1 = - 2t 3 3 D s , L 2 = - 2 3 t 4 s 2 + D 2 s , L 3 = t s 2 D s + D s s 2 , L 4 = s 4 t 2 .
We use (4.28) and we commute a and a * to put all the a * on the right. With Lemma 4.11, we get that there exist (γ, δ) ∈ R 2 , a homogeneous polynomial of order 1, L(X, Y ), and a non-commutative homogeneous polynomial of order 2, P (X, Y ), such that (4.30)

L ε = L W ε + εL 2,rem + ε 3/2 L 3,rem + ε 2 L 4,rem , where L W ε = R 2 X u √ ε, p √ ε Π u,p dudp ,
and L 2,rem = γt 4 + δ, L 3,rem = tL(a, a * ), L 4,rem = t 2 P (a, a * ) .

Consider an eigenfunction ψ ε of L ε associated with an eigenvalue κ(ε) ≤ S 0 + C 0 ε. From (4.30) and using the quadratic forms

Q ε of L ε and Q α,ξ of X α,ξ , we get (4.31) Q ε ( ψ ε ) ≥ R R 2 Q u √ ε, p √ ε (Π u,p ψ ε ) dudp ds -ε (γt 4 + δ) ψ ε ψ ε -ε 3/2 L(a, a * ) ψ ε t ψ ε -ε 2 P (a, a * ) ψ ε t 2 ψ ε .
Since S 0 is a minimum for the band function of X α,ξ , we have, for each (u, p) ∈ R 2 and s ∈ R, the bound from below

Q u √ ε, p √ ε (Π u,p ψ ε )(s, •) ≥ S 0 Π u,p ψ ε (s, •) 2 L 2 (R,dt) . Thus by Parseval formula (4.32) R R 2 Q u √ ε, p √ ε (Π u,p ψ ε ) dudp ds ≥ S 0 ψ ε 2 L 2 (R 2 ,dsdt) .
Let us estimate the remainder terms in (4.31). The homogeneity of the polynomials P and L yields ε 3/2 L(a, a * ) ψ ε = εL(ε 1/2 a, ε 1/2 a * ) ψ ε and ε 2 P (a, a * ) ψ ε = εP (ε 1/2 a, ε 1/2 a * ) ψ ε .

Thus, using the scaling s = ε 1/2 s and Corollary 4.10, we find ε (γt 4 + δ) ψ ε ψ ε + ε 3/2 L(a, a * ) ψ ε t ψ ε + ε 2 P (a, a * ) ψ ε t 2 ψ ε ≤ Cε ψ ε 2 .

From this, combined with (4.31) and (4.32), follows that

κ(ε) ψ ε 2 = Q ε ( ψ ε ) ≥ (S 0 -Cε) ψ ε 2 .
Coming back to the operator L ε and finally to the operator X ε , this ends the proof of Lemma 4.12, and thus of Theorem 1.10.

4.2.4.

Computation of the ground states of X ε . In the last section of this paper, we present computations of the first eigenpair of the operator X ε for a decreasing sequence of values of ε.

Let us agree that ε = 2 -1-/2 , ≥ 0 so that ε 0 = 1/2, ε 1 = √ 2/4, ε 2 = 1/4, etc. . . We have computed the first eigenpair of X ε for ε = ε , ∈ {0, 1, . . . , 12} with natural boundary conditions on the domain [-a , a ] × [-8, 8] (with a = 4/ε = 8 • 2 /2 ) by a finite element discretization on a uniform rectangular grid of 48 × 6 elements of partial degree 10 in each variable.

Theorem 1.10 yields the convergence of κ 1 (ε) to S 0 at a rate of O(ε). Our computations (see Figures 1 and2) suggest that S 0 0.4941. In Figure 3 we plot the difference κ 1 (ε ) -0.4941 versus ε (here we use a log -log scale in base 2). Figure 4 gives the modulus of the first eigenvector of the operator X ε and a numerical value of the eigenvalue κ 1 (ε), for ε = ε with = 0, . . . , 5. For ε = ε , the horizontal scale (variable σ) is [-a , a ] with a = 5 • 2 /2 and the vertical scale (variable τ ) is always [-5, 5]. The proportion between the two scales is kept, which makes the plot of the vertical scale shrink as increases.

In Figure 5, we zoom some region around the point α 0 /ε of the plot of the first eigenvector of X ε when ε = ε with = 3, . . . , 10. When = 6, . . . , 10, we have computed the eigenvector on the smaller region [-a 2 , a 2 ] × [-4, 4] on a uniform rectangular grid of 48 × 6 elements of partial degree 10 in each variable. We represent the modulus of the eigenvector on the region

α 0 ε - 2 √ ε , α 0 ε + 2 √ ε × [-3, 3] .
This choice is driven by the structure of the first term (s, t) → ψ 0 (s, t) = f 0 (s)u 0 (t) (4.22) of a possible eigenvector asymptotics for the operator L ε (4.21). We note that with ξ 0 = 0, we do not need any gauge transform to go from L ε to L ε . Thus, using the change of variables (4.20), we find that ψ 0 (s, t) = f 0 s -α 0 √ ε u 0 (t).

Going back to the "physical variables" σ, τ with (4.18), we find ψ 0 (s, t) = f 0 εσ -α 0 √ ε u 0 (τ ).

Taking σ ∈ [ α 0 ε -2 √ ε , α 0 ε + 2 √ ε ],
we see that εσ-α 0 √ ε spans the fixed interval [-2, 2]. Hence we expect that the zoom can yield the image of a convergence as ε → 0. Indeed, this is exactly what we can detect from Figure 5.

Thus, in the small angle limit ε → 0, there are two centers of localization that are spread at the scale ε -1/2 and go away at the order 1 ε . The "area of localization" of the first eigenfunctions goes to infinity. This fact is quite understandable. Considering that the limit ε = 0 is singular (the two lines of cancellation become identical and we recover the Montgomery operator M [2] whose essential spectrum is non-empty); it is rather natural to observe a "loss of mass at infinity", characteristic of Weyl sequences.

x 0 h, 1 4 ) 4 .

 044 and P A h,Ω . The sole difference consists in Agmon estimates for the truncated eigenvectors of P A h,Ω . Thanks to the right part of (3.4), Agmon estimates (1.10) hold and then Lemma 3.2 with δ = d ∈ ( 3 16 and m = 8, from which we deduce |µ n,n | ≤ C(h 3/4 h 4d + h 8d ). Choosing d = 3 16 + d 0 4 , we obtain the left part of (3.4). 3.Expansion of eigenvalues. Putting together Lemmas 3.3 and 3.4, we can see that Lemma 3.4 provides the bound λ loc n (h) ≤ Lh 3/2 which validates the application of Lemma 3.3. Therefore, we have now proved: Lemma 3.5. Under Assumption 1.2, for any d < 1
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 81 FIGURE 1. Contour lines for the numerical values of 1 (α, ξ) on the grid Σ, with a zoom in a neighborhood of the two points where the minimum is attained. The curves {α → ξ = ± 2 3 α 3 } are also represented.
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 42 FIGURE 2. Numerical values for 1 (α, ξ) on the axis ξ = 0.
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 13 FIGURE 3. Plot of log 2 (κ 1 (ε ) -0.495) versus log 2 (ε ).
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 4 FIGURE 4. Modulus of the first eigenvector of X ε for = 0, . . . , 5. The white cross represents the two lines of cancellation of the magnetic field and the black dots mark the two points (±α 0 /ε , 0). The rectangular boxes in the second row indicate the zoom region displayed in Figure 5.
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 15 FIGURE 5. Modulus of the first eigenvector of X ε for = 3, . . . , 10. The white cross represents the two lines of cancellation of the magnetic field and the black dot marks the point (α 0 /ε , 0).

  Agmon estimates are an a priori result of exponential decay of the eigenfunctions. The following theorem states that the eigenfunctions associated with eigenvalues of order h 4/3+2d/3 are localized near Σ.

	3 4 + 4d} > 3 2	and 4 3 + 2d 3 < 3 2 .
	Theorem 1.7. Let L > 0 and d ∈ ( 3 16 , 1 4	

Proof of (4.4a). We recall that, on the set {ξ > 2 3 α 3 ≥ 0}, the polynomial P α,ξ admits a unique real root, denoted t 3 (α, ξ). Using that P α,ξ (t 3 (α, ξ)) = 0, we immediately check that we have the factorization (4.5) P α,ξ (t) = -N α,ξ (t) t -t 3 (α, ξ) with N α,ξ (t) = 1 3 t 2 + t 3 (α, ξ) 3 t + ξ t 3 (α, ξ) .

The factor N α,ξ (t) is positive for all t when ξ > 2 3 α 3 and we have ∂ t N α,ξ (t) = 0 for t = -t 3 (α,ξ) 2 . Therefore, for all ξ > 2 3 α 3 , we have the lower bound

.

is bounded from below by the ground state energy of the operator

By considering the expression of t 3 (α, ξ) given in (4.1c), we get, uniformly in α ∈ [0, 1],

Hence, there exist constants B > 0 and K > 0 such that for all ξ > K (with ξ > 2 3 α 3 and 0 ≤ α ≤ 1)

For all ξ > K,

is bounded from below by the ground state energy of D 2 t + B 2 ξ 4/3 (t -t 3 (α, ξ)) 2 on R. By translation and homogeneity, we get (using the harmonic oscillator):

. This concludes the proof of the estimate (4.4a).

Preliminaries for the proof of (4.4b) and (4.4c). For the proof of estimates (4.4b) and (4.4c), we use a quadratic partition of unity (χ 1 , χ 2 ) on R in order to isolate the root t 3 (α, ξ) from the other two roots of P α,ξ . For this we choose two real numbers α -and α + such that

and we take the two functions χ 1 and χ 2 such that χ 2 1 + χ 2 2 = 1 on R and

with the control of their derivatives

The localization formula (see (2.4)) gives, for all function ψ in the form domain,

We can see that the modulus of the second term is larger than the modulus of the first term. Hence the positivity of the derivative ∂ α t 3 (α, ξ). Therefore

, ξ , ∀ξ > 0. With (4.1c) (and using again that ξ > 2 3 α 3 ), we deduce

We choose

α -= 0 and α + = α.

Thus, we get for the constants B 1 (α, ξ) and B 2 (α, ξ) appearing in (4.10) and (4.15):

Then (4.17) yields

Proof of (4.4c). In the region A , 2 3 α 3 ≥ ξ and the polynomial P α,ξ has three real roots. We note that P α,ξ (t) → -∞ as t → +∞ and P α,ξ (t) → +∞ as t → -∞. We check that

Now we choose α -= 1 2 α and α + = α, and we get for the constants B 1 (α, ξ) and B 2 (α, ξ):

Then (4.17) yields

The proof of Lemma 4.6 is now achieved, hence Theorem 1.9 is proved.

We have

At this point, we introduce the notation

Taking the derivative of the equation X α,ξ u α,ξ = 1 (α, ξ) u α,ξ with respect to α and ξ, we obtain

In particular, for (α, ξ) equal to the critical point (α 0 , ξ 0 ) we find that

3 u α 0 ,ξ 0 . Thus we have obtained explicit solutions of equation (4.23) as:

Therefore, for any function ψ in the form

where ψ 0 and ψ 1 are respectively given by in (4.22) and (4.25), we have

In the construction procedure of ψ 0 and ψ 1 , the function f 0 is left undetermined. Therefore the above estimate holds on finite dimensional spaces of arbitrary dimensions, which ends the proof of the proposition. 

where m ε (σ, τ ) = |ε 2 σ 2 -τ 2 | + 2|σ|ε 2 + 2|τ | .

Proof. The lemma follows from [START_REF] Helffer | Caractérisation du spectre essentiel de l'opérateur de Schrödinger avec un champ magnétique[END_REF]Théorème (1.1)]. We only have to check the assumptions of the theorem and the uniformity with respect to ε. Here the magnetic field has one component B = ε 2 σ 2 -τ 2 . We take the integer r used there as 1. The condition [19, (1.9)] is trivially satisfied for C 1 = 8 2ε 2 + 2 ≤ C 1 (m(σ, τ ) + 1) . Then [19, (1.11)] tells us that ∀ψ ∈ C ∞ 0 (R 2 ), m(σ, τ ) 1/4 ψ 2 ≤ C 2 X ε ψ, ψ + ψ 2 .