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Introduction.

In this paper we deal with the incompressible Navier-Stokes equations in two space dimensions, (1.1) ∂ t u N S + ∇ • (u N S ⊗ u N S ) + ∇P N S = ν∆u N S , ∇ • u N S = 0, with (t, x) ∈ [0, +∞) × T 2 , and initial data (1.2) u N S (0, x) = u 0 (x), ∇ • u 0 = 0.

In (1.1), u N S and ∇P N S are respectively the velocity field and the gradient of the pressure term, and ν > 0 is the viscosity coefficient. Here we consider a vector-BGK model for the incompressible Navier-Stokes equations, i.e. a dicrete velocities BGK system endowed with a vectorial structure, whose general formulation has been introduced in [START_REF] Carfora | A discrete kinetic approximation for the incompressible Navier-Stokes equations[END_REF], while further developments were presented in [START_REF] Bouchut | Second-order entropy satisfying BGK-FVS schemes for incompressible Navier-Stokes equations[END_REF] from the numerical side and in [START_REF] Bianchini | Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations, to appear on Kinetic and Related Models[END_REF] from the analytical point of view. Precisely, we study the following five velocities (15 equations) vector-BGK approximation to the incompressible Navier-Stokes equations, (1.3)

               ∂ t f ε 1 + λ ε ∂ x f ε 1 = 1 τ ε 2 (M 1 (w ε ) -f ε 1 ), ∂ t f ε 2 + λ ε ∂ y f ε 2 = 1 τ ε 2 (M 2 (w ε ) -f ε 2 ), ∂ t f ε 3 -λ ε ∂ x f ε 3 = 1 τ ε 2 (M 3 (w ε ) -f ε 3 ), ∂ t f ε 4 -λ ε ∂ y f ε 4 = 1 τ ε 2 (M 4 (w ε ) -f ε 4 ), ∂ t f ε 5 = 1 τ ε 2 (M 5 (w ε ) -f ε 5 ),
where (1.4)

w ε = (ρ ε , ερ ε u ε 1 , ερ ε u ε 2 ) = (ρ ε , ερ ε u ε ) = (ρ ε , q ε ) = 5 i=1 f ε i .
Its main properties are as follows:

• f ε i , M i (w ε ), i = 1, • • • 5, are vector-valued functions taking values in R 3 ; • ρ ε (t, x) on R + × T 2 is the approximating density, taking values in R + ; • u ε (t, x) = (u ε 1 (t, x), u ε 2 (t, x)) on R + × T 2 is the approximating vector field, taking values in R 2 . Precise compatibility conditions to be satisfied by the constant parameters of the model and the Maxwellian functions, together with their explicit expressions, will be provided in details in Section 2. BGK models were introduced by Bhatnagar, Gross and Krook as a modified version of the Boltzmann equation, characterized by the relaxation of the collision operator. Since they present most of the basic properties of hydrodynamics, they are considered interesting models even though they do not contain all of the relevant features of the Boltzmann equation. Essentially, vector-BGK models are inspired by the hydrodynamic limits of the Boltzmann equation [START_REF] Bardos | Fluid dynamic limits of hyperbolic equations. I. Formal derivations[END_REF][START_REF] Bardos | Fluid dynamic limits of kinetic equations -II Convergence proofs for the Boltzmann-equation[END_REF][START_REF] Cercignani | The Mathematical Theory of Dilute Gases[END_REF][START_REF] Demasi | Incompressible Navier-Stokes and Euler Limits of the Boltzmann equation[END_REF][START_REF] Golse | The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels[END_REF], but later they have been generalized as approximating equations for different kinds of systems. In this regard, one of the main directions has been the approximation of hyperbolic systems with discrete velocities BGK models, as in [START_REF] Brenier | Averaged multivalued solutions for scalar conservation laws[END_REF][START_REF] Jin | The relaxation schemes for system of conservation laws in arbitrary space dimensions[END_REF][START_REF] Natalini | A discrete kinetic approximation of entropy solutions to multidimensional scalar conservation laws[END_REF][START_REF] Bouchut | Construction of BGK Models with a Family of Kinetic Entropies for a Given System of Conservation Laws[END_REF][START_REF] Perthame | Kinetic Formulation of Conservation Laws, Oxford Lecture Series in Mathematics and its Applications 21[END_REF]. Similar results have been obtained for convection-diffusion systems under the diffusive scaling [START_REF] Lions | Diffusive limits for finite velocity Boltzmann kinetic models[END_REF][START_REF] Bouchut | Diffusive BGK Approximations for Nonlinear Multidimensional Parabolic Equations[END_REF][START_REF] Lattanzio | Relative entropy in diffusive relaxation[END_REF][START_REF] Aregba-Driollet | Diffusive kinetic explicit schemes for nonlinear degenerate parabolic systems[END_REF][START_REF] Jin | Diffusive relaxation schemes for multiscale discrete-velocity kinetic equations[END_REF][START_REF] Gosse | Space localization and well-balanced scheme for discrete kinetic models in diffusive regimes[END_REF]. Originally, they presented continuous velocities, see [START_REF] Perthame | Kinetic Formulation of Conservation Laws, Oxford Lecture Series in Mathematics and its Applications 21[END_REF], but later on discrete velocities BGK models inspired by the relaxation method have been introduced, see [START_REF] Mascia | Twenty-eight years with Hyperbolic Conservation Laws with Relaxation[END_REF] for a survey. In the spirit of the relaxation approximations, the main advantage of discrete velocities BGK models is to deal with semilinear systems, see [START_REF] Natalini | A discrete kinetic approximation of entropy solutions to multidimensional scalar conservation laws[END_REF][START_REF] Brenier | On a relaxation approximation of the incompressible Navier-Stokes equations[END_REF][START_REF] Hachicha | Approximations hyperboliques des équations de Navier-Stokes[END_REF]. Now, let us present our main result. We prove the strong convergence in the Sobolev spaces, for any interval of time [0, T ], T > 0, of the vector-BGK model presented in (1.3) to the incompressible Navier-Stokes equations on the two-dimensioanl torus. To achieve this result, the novelty relies in using local in time H s -estimates from a previous work, see [START_REF] Bianchini | Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations, to appear on Kinetic and Related Models[END_REF], combined with the L 2 -relative entropy estimate and the standard interpolation theorem. More precisely, part of the results of [START_REF] Bianchini | Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations, to appear on Kinetic and Related Models[END_REF] provides uniform (in ε) estimates of Gronwall type in the Sobolev spaces, which hold in [0, T * ], where T * > 0 is depending on a fixed constant M > 0 and on the norm of the initial data. These local bounds guarantee the existence, the minimality and dissipative property of the kinetic entropy, i.e. a convex entropy for (1.3), see [START_REF] Bouchut | Construction of BGK Models with a Family of Kinetic Entropies for a Given System of Conservation Laws[END_REF]. Next, the relative entropy allows us to get a precise rate of convergence of the solutions to our model to the Navier-Stokes equations, which holds for t ∈ [0, T * ], see Theorem 3.2. Thus, the interpolation theorem for Sobolev spaces applied to the relative entropy estimate provides a bound for the solutions to our system which is much more precise than the previous pessimistic Gronwall type estimates. This is the key point in order to close the argument and to prove the strong convergence for all times of the solutions to (1.3) to (1.1), together with the global in time boundedness of the approximating solution itself, in Theorem 3.1. In particular, Lemma 2.6 plays a crucial role in quantifying the dissipation term coming from the entropy inequality. At the best of our understanding, the expansions in Lemma 2.6 are the only way to establish the relative entropy inequality when, as in our case, the explicit dependency of the kinetic entropy on the singular parameter is not known. We point out that we start from initial data in (2.9) that are small perturbation of the Maxwellians and, thanks to the uniform bounds, in the end we prove that everything is done in a bounded set of the densities. This local setting perfectly fits the framework described in [START_REF] Bouchut | Construction of BGK Models with a Family of Kinetic Entropies for a Given System of Conservation Laws[END_REF]. The relative entropy method, [START_REF] Dafermos | Stability of motions of thermoelastic fluids[END_REF][START_REF] Diperna | Uniqueness of solutions to hyperbolic conservation laws[END_REF], represents an efficient mathematical tool for studying stability and limiting process and it is based on a direct calculation of the relative entropy between a dissipative solution and a conservative smooth solution for the considered system, which provides a remarkable stability estimate. Far from being complete, we collect here a pair of references for hydrodynamic limits [START_REF] Golse | La méthode de l'entropie relative pour les limites hydrodynamiques de modèles cinétiques[END_REF][START_REF] Saint-Raymond | Hydrodynamic limits: some improvements of the relative entropy method[END_REF]. In the context of singular hyperbolic scaled systems, we remind to [START_REF] Tzavaras | Relative Entropy in Hyperbolic Relaxation[END_REF]. Let us point out that this procedure has been successfully applied to the vector-BGK model considered in this paper and presented below (1.3) to prove its convergence to the isentropic Euler equations under the hyperbolic scaling, see [START_REF] Sepe | Convergence of a BGK approximation of the isentropic Euler equations[END_REF]. Again, the relative entropy in hyperbolic relaxation has been used for one-dimensional discrete velocities Boltzmann schemes, see [START_REF] Berthelin | From Discrete Velocity Boltzmann Equations to Gas Dynamics Before Shocks[END_REF], while in the multidimensional case the question in this context seems to be open. On the other hand, the relative entropy method in diffusive relaxation is of course a more delicate issue, being the diffusive limit an order more precise approximation of the starting system in the Chapman-Enskog expansion, see [START_REF] Saint-Raymond | From the BGK model to the Navier-Stokes equations[END_REF]. Besides hydrodynamic limits of the Boltzmann equation, our main reference in this framework is [START_REF] Lattanzio | Relative entropy in diffusive relaxation[END_REF]. In this paper, the authors apply the relative entropy method to the equations of compressible gas dynamics with friction under the diffusive scaling, so obtaining precise estimates coming from the entropy of the limit hyperbolic system. However, in our case, further complications are due to the fact that the explicit dependency of the kinetic entropy on the singular parameter is not known for our model (1.3). The BGK framework in [START_REF] Bouchut | Construction of BGK Models with a Family of Kinetic Entropies for a Given System of Conservation Laws[END_REF] only guarantees the existence of such an entropy, whose expression is defined by means of the inverse function theorem. This difficulty requires a better understanding of the dissipative terms provided by the entropy inequality in diffusive relaxation, and new ideas are needed with respect to the existing works, for instance [START_REF] Lattanzio | Relative entropy in diffusive relaxation[END_REF][START_REF] Berthelin | From Discrete Velocity Boltzmann Equations to Gas Dynamics Before Shocks[END_REF]. The paper is organized as follows. In Section 2 we introduce the vector-BGK model and provide some preliminary results. Section 3 is devoted to the relative entropy inequality and the strong convergence of the model for all times, in the Sobolev spaces. In the last part of this section we also show the global in time boundedness of the solutions to our model.

Presentation of the model, formal limit, and intermediate results.

First, we aim at providing a relative entropy inequality for a vector-BGK model approximating the two-dimensional incompressible Navier-Stokes equations. After, this inequality will allow us to extend for long times the local convergence for smooth solutions achieved in [START_REF] Bianchini | Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations, to appear on Kinetic and Related Models[END_REF]. Let us introduce the setting that will be taken into account hereafter. Our approximating vector-BGK model has been presented in (1.3), together with a list of the main properties. We point out that, in order to get consistency with the incompressible Navier-Stokes equations, the Maxwellian functions M i (w ε ), i = 1, • • • , 5, need to satisfy the following compatibility conditions:

• 5 i=1 M i (w ε ) = w ε ; • 5 i=1 λ ij M i (w ε ) = A j (w ε ), j = 1, 2, with A j in (2.
2), with discrete velocities λ 1 = (λ, 0), λ 2 = (0, λ), λ 3 = (-λ, 0), λ 4 = (0, -λ), λ 5 = (0, 0), where λ is a positive constant value.

We provide here the explicit expressions of the Maxwellian functions (2.1)

M 1,3 (w ε ) = aw ε ± A 1 (w ε ) 2λ , M 2,4 (w ε ) = aw ε ± A 2 (w ε ) 2λ , M 5 (w ε ) = (1 -4a)w ε , (2.2) A 1 (w ε ) =    q ε 1 (q ε 1 ) 2 ρ ε + P (ρ ε ) q ε 1 q ε 2 ρ ε    , A 2 (w ε ) =    q ε 2 q ε 1 q ε 2 ρ ε (q ε 2 ) 2 ρ ε + P (ρ ε )    , (2.3) P (ρ ε ) = ((ρ ε ) 2 -ρ2 ) 2ρ ,
where ρ > 0 is constant value, and the following constraint has to be satisfied in order to get consistency with respect to (1.1), see [START_REF] Carfora | A discrete kinetic approximation for the incompressible Navier-Stokes equations[END_REF].

Assumptions 2.1. Let us assume

(2.4) a = ν 2λ 2 τ , 0 < a < 1 4 ,
where ν is the viscosity coefficient in (1.1). Moreover, we also take the parameter λ > 0, whose lower bound is defined in [[6], Assumption 2], big enough. This is necessary in order to:

• guarantee the positivity of the symmetrizer in [START_REF] Bianchini | Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations, to appear on Kinetic and Related Models[END_REF];

• satisfy the sub-characteristic condition, i.e. the positivity of the spectrum of the Jacobian matrices of the Maxwellians, see Section 2.2 and [START_REF] Bouchut | Construction of BGK Models with a Family of Kinetic Entropies for a Given System of Conservation Laws[END_REF][START_REF] Natalini | Convergence to equilibrium for the relaxation approximations of conservation laws[END_REF] for a detailed discussion.

The change of variables introduced in [6],

(2.5)

w ε = 5 i=1 f ε i , m ε = λ ε (f ε 1 -f ε 3 ), ξ ε = λ ε (f ε 2 -f ε 4 ), k ε = f ε 1 + f ε 3 , h ε = f ε 2 + f ε 4 .
allows us to recover the consistency with respect to (1.1) in a simple way at the formal level. This way, the vector-BGK model (1.3) reads:

(2.6)

               ∂ t w ε + ∂ x m ε + ∂ y ξ ε = 0, ∂ t m ε + λ 2 ε 2 ∂ x k ε = 1 τ ε 2 ( A1(w ε ) ε -m ε ), ∂ t ξ ε + λ 2 ε 2 ∂ y h ε = 1 τ ε 2 ( A2(w ε ) ε -ξ ε ), ∂ t k ε + ∂ x m ε = 1 τ ε 2 (2aw ε -k ε ), ∂ t h ε + ∂ y ξ ε = 1 τ ε 2 (2aw ε -h ε ).
Hereafter, we will drop the apex ε where there is no ambiguity. Moreover, we denote by M i (w) := f i the solutions to system (1.3) after taking the limit under the diffusive scaling. The relaxation formulation (2.6) of the system gives (2.7)

m = λ ε (f 1 -f 3 ) := λ ε (M 1 (w) -M 3 (w)) = A 1 (w) ε -τ λ 2 ∂ x k + O(ε 2 ), ξ = λ ε (f 2 -f 4 ) := λ ε (M 2 (w) -M 4 (w)) = A 2 (w) ε -τ λ 2 ∂ y h + O(ε 2 ), k = f 1 + f 3 = M 1 (w) + M 3 (w) = 2aw + O(ε 2 ), h = f 2 + f 4 = M 2 (w) + M 4 (w) = 2aw + O(ε 2 ).
Recalling that, from Assumptions 2.1 ν = 2aτ λ 2 , formally we get

∂ t w + ∂ x A 1 (w) ε + ∂ y A 2 (w) ε = ν∆w + O(ε 2 ). More explicitly, from the expressions of w, A 1 (w), A 2 (w) in (1.4)-(2.2), ∂ t   ρ - ρ ερu 1 ερu 2   + ∂ x   ρu 1 ερu 2 1 + ρ 2 -ρ2 2 ρε ερu 1 u 2   + ∂ y   ρu 2 ερu 1 u 2 ερu 2 2 + ρ 2 -ρ2 2 ρε   = ν∆   ρ - ρ ερu 1 ερu 2   + O(ε 2 ).
Dividing the last two lines by ε, this yields

∂ t (ρ -ρ) + ∇ • u = ν∆(ρ -ρ) + O(ε), ∂ t (ρu) + ∇ • (ρu ⊗ u) + ∇(ρ 2 -ρ2 ) 2 ρε 2 = ν∆(ρu) + O(ε),
which is the compressible approximation to the incompressible Navier-Stokes equations provided by the scaled isentropic Euler equations. Now we find an expression of the formal limit in terms of the original kinetic variables (1.3). The limit solution is obtained by solving the linear system (2.7) in the unknowns

M i (w), i = 1, • • • , 5, so providing (2.8) M 1 (w) = M 1 (w) -aελτ ∂ x w, M 2 (w) = M 2 (w) -aελτ ∂ y w, M 3 (w) = M 3 (w) + aελτ ∂ x w, M 4 (w) = M 4 (w) + aελτ ∂ y w, M 5 (w) = M 5 (w).
In order to avoid further complications due to the initial layer, in our convergence proof the two-dimensional vector-BGK model is endowed with the following initial data:

(2.9)

f ε i (0, x) = M i (ρ, ερū 0 ), i = 1, • • • , 5
, where u 0 is in (1.2) and ρ is a positive constant value.

Preliminary results.

Here we collect some preliminary results, which hold for local times, essentially due to our previous work [START_REF] Bianchini | Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations, to appear on Kinetic and Related Models[END_REF]. Let us start with the following remark.

Remark 2.2. We discuss some differences between [START_REF] Bianchini | Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations, to appear on Kinetic and Related Models[END_REF] and our current setting.

• In [START_REF] Bianchini | Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations, to appear on Kinetic and Related Models[END_REF], the compressible pressure

P (ρ ε ) in (2.3) is linear. More precisely, from [[6], (10)], P (ρ ε ) = ρ ε -ρ.
In this paper, we consider the case of a quadratic pressure P (ρ ε ) in (2.3). A simple remark shows that, from (2.3),

P (ρ ε ) = (ρ ε ) 2 -ρ2 2ρ = 2ρ(ρ ε -ρ) + (ρ ε -ρ) 2 2ρ = (ρ ε -ρ) + (ρ ε -ρ) 2 2ρ .
Thus, the estimates in [START_REF] Bianchini | Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations, to appear on Kinetic and Related Models[END_REF] still hold here: the quadratic pressure only provides an additional quadratic term in the fifth and the ninth line of the nonlinear vector N (w + w) in [ [START_REF] Bianchini | Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations, to appear on Kinetic and Related Models[END_REF], [START_REF] Jin | The relaxation schemes for system of conservation laws in arbitrary space dimensions[END_REF]]. These supplementary quadratic terms can be handled exactly as the other ones in the energy estimates in [START_REF] Bianchini | Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations, to appear on Kinetic and Related Models[END_REF]. However, we point out that the same argument holds exactly in the same way for a general compressible pressure

P (ρ ε ) = k γ-1 [(ρ ε ) γ -ργ ], γ > 1, k[ρ ε log(ρ ε ) -ρlog(ρ)], γ = 1,
where k is a positive constant value. • In [ [START_REF] Bianchini | Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations, to appear on Kinetic and Related Models[END_REF], ( 18)-( 19)], we consider a translated version of the relaxation system (2.6). Of course this is an equivalent formulation of the approximating model, and since the translation vector (ρ, 0, 0) in [ [START_REF] Bianchini | Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations, to appear on Kinetic and Related Models[END_REF], [START_REF] Demasi | Incompressible Navier-Stokes and Euler Limits of the Boltzmann equation[END_REF]] is constant in t and x, most of the energy estimates in [START_REF] Bianchini | Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations, to appear on Kinetic and Related Models[END_REF] can be used here.

• A further change of variables, involving the dissipative constant right sym- metrizer Σ in [[6], ( 28 
)] is defined in [[6], (30) 
]. However, here the energy estimates from [START_REF] Bianchini | Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations, to appear on Kinetic and Related Models[END_REF] are expressed in terms of the original relaxation variables Taking into account Remark 2.2, we state some results that will be applied below. Hereafter, we denote by T ε the maximum time of existence of the solution to the semilinear vector-BGK approximation (1.3) with initial data (2.9), see [START_REF] Majda | Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables[END_REF]. Of course T ε could depend on ε. In the following, we recall and adapt some results from [START_REF] Bianchini | Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations, to appear on Kinetic and Related Models[END_REF], showing that there exist ε 0 and a fixed and positive time T * , independent of ε and depending on the Sobolev norm of the initial data, such that, for ε ≤ ε 0 , some local in time H s -estimates on the solutions to the approximating system hold uniformly with respect to ε. In this context, we consider the constant vector (ρ, 0, 0) and the translated variables (2.10)

w * (t, x) = w(t, x) -(ρ, 0, 0), k * (t, x) = k(t.x) -2a(ρ, 0, 0), h * (t, x) = h(t.x) -2a(ρ, 0, 0).
Lemma 2.3. Consider the vector-BGK system (1.3) with initial data (2.9), and u 0 in (1.2) beloging to H s (T 2 ), for s > 3. Then, the following estimates hold true.

(2.11) w * (t) 2 s + ε 2 ( m(t) 2 s + ξ(t) 2 s ) + k * (t) 2 s + h * (t) 2 s + T 0 1 ε 2 w * (θ) 2 s + m(θ) 2 s + ξ(θ) 2 s + 1 ε 2 ( k * (θ) 2 s + h * (θ) 2 s ) dθ ≤ cε 2 ( u 0 2 s + ∇u 0 2 s ) + c(|ρ| L ∞ t L ∞ x , |u| L ∞ t L ∞ x ) T 0 w * (θ) 2 s + ε 2 ( m(θ) 2 s + ξ(θ) 2 s ) dθ + c(|ρ| L ∞ t L ∞ x , |u| L ∞ t L ∞ x ) T 0 k * (θ) 2 s + h * (θ) 2 s dθ, t < T ε .
(2.12)

w * (t) 2 s + ε 2 ( m(t) 2 s + ξ(t) 2 s ) + k * (t) 2 s + h * (t) 2 s ≤ cε 2 ( u 0 2 s + ∇u 0 2 s )e c(|ρ| L ∞ t L ∞ x , |u| L ∞ t L ∞ x )t , t < T ε . (2.13) ∂ t w * (t) 2 s-1 + ε 2 ( ∂ t m(t) 2 s-1 + ∂ t ξ(t) 2 s-1 ) + ∂ t k * (t) 2 s-1 + ∂ t h * (t) 2 s-1 ≤ cε 2 ( u 0 2 s-1 + ∇u 0 2 s-1 + ∇ 2 u 0 2 s-1 )e c(|ρ| L ∞ t L ∞ x , |u| L ∞ t L ∞ x )t , t < T ε .
Moreover, there exists ε 0 , M and T * < T ε fixed such that, for ε ≤ ε 0 ,

(2.14) |ρu(t)| ∞ ≤ M, |ρ(t) -ρ| ∞ ≤ εM, t ∈ [0, T * ],
(2.15)

|ρ(t)| ∞ ≤ ρ + εM, |u(t)| ∞ ≤ M ρ + εM , t ∈ [0, T * ].
(2.16)

T 0 |ρ(t) -ρ| ∞ dt ≤ c(M )ε 2 , T ∈ [0, T * ].
Proof. We discuss each result separately. 

L ∞ t L ∞ x , •) on |ρ| L ∞ t L ∞
x is a consequence of the quadratic pressure in (2. • For a fixed constant M > M 0 := ρ u 0 s+1 , let us define (2.17)

T * := sup t∈[0,T ε ) |ρ(t) -ρ| ∞ ε + |ρu(t)| ∞ ≤ M .
The Sobolev embedding theorem applied to (2.12) yields, thanks to the definition of w * in (2.10),

(2.18)

|ρ(t) -ρ| ∞ ε + |ρu(t)| ∞ ≤ cM 0 e c(|ρ| L ∞ t L ∞ x , |u| L ∞ t L ∞ x )t , t ≤ T * .
The 

Kinetic entropies and the relative entropy.

Here we recall the definition and the conditions that assure the existence of a kinetic entropy for a discrete velocities BGK model, see [START_REF] Bouchut | Construction of BGK Models with a Family of Kinetic Entropies for a Given System of Conservation Laws[END_REF] for a detailed discussion. Let E be a non-empty set of convex entropies for a given limit system. Assume also that E is separable. A general BGK model under the diffusive scaling reads as follows

(2.19) ∂ t f i + λ i ε • ∇ x f i = 1 ε 2 (M i (u ε ) -f i ), i = 1, • • • , L, where L ≥ d, for i = 1, • • • , L, f i (t, x) = (f 1 i , • • • , f N i ) : R × R d → R N , λ i = (λ 1 i , • • • , λ d i ), M i (u ε ) = (M 1 i , • • • , M N i ) : R N → R N ,
and, under precise consistency conditions, see [8, 13, 1, 2, 10] for a detailed discussion,

u ε = L i=1 f i ∈ R N
is the approximating vector field to the solution to the limit system. An important feature of these approximations is the existence, under some reasonable assumptions, of a kinetic entropy. Set D i := {M i (u) : u ∈ U}. Definition 2.4. A kinetic entropy for system (2. [START_REF] Diperna | Uniqueness of solutions to hyperbolic conservation laws[END_REF]) is a convex function

H(f) = L i=1 H i (f i ), with H i : D i → R, such that, for η(u) ∈ E, • (E1) H(M (u)) = η(u) for every u ∈ U, • (E2) H(M (u f )) ≤ H(f), where u f := L i=1 f i ∈ U, f i ∈ D i .
Such a property provides an energy inequality which gives robustness for the scheme. Indeed, it is easy to see that, multiplying the BGK system (2. [START_REF] Diperna | Uniqueness of solutions to hyperbolic conservation laws[END_REF]) by ∇ f H(f), the minimality (E2) together with the convexity property, provide the following entropy inequality

(2.20) ∂ t H(f) + Λ ε • ∇ x H(f) = 1 ε 2 ∇ f H(f) • (M (u) -f) ≤ 0,
which means that, according with the definition given in [START_REF] Hanouzet | Global Existence of Smooth Solutions for Partially Dissipative Hyperbolic Systems with a Convex Entropy[END_REF], the kinetic entropy H(f) is dissipative. More precisely, properties (E1)-(E2) under the hypothesis of [ [START_REF] Bouchut | Construction of BGK Models with a Family of Kinetic Entropies for a Given System of Conservation Laws[END_REF], Thm.

2.1] assure that, for any η(u) ∈ E, defining the projector P such that

(2.21) Pf = L i=1 = u, then (2.22) η(u) = min Pf=u H(f) = H(M (u)).
In this context, the Gibbs principle for relaxation and, in particular, [ [START_REF] Tzavaras | Relative Entropy in Hyperbolic Relaxation[END_REF], Prop. 2.1], imply that (2.23) ∇ f H(M (u)) ⊥ Ker(P).

Since f -M (u) ∈ Ker(P), the convexity property of H(f) together with condition (2.23) allow us to get the following inequality:

(2.24)

∇ f H(f) • (f -M (u)) ≤ -c|f -M (u)| 2 , c = c(|f| ∞ ),
meaning that the kinetic entropy H(M (u)) is strictly dissipative, according to the definition given in [START_REF] Hanouzet | Global Existence of Smooth Solutions for Partially Dissipative Hyperbolic Systems with a Convex Entropy[END_REF]. According to the theory developed by Bouchut [START_REF] Bouchut | Construction of BGK Models with a Family of Kinetic Entropies for a Given System of Conservation Laws[END_REF], the existence of a kinetic entropy for system (1.3) is subjected to the existence of a convex entropy for the limit solution to (1.3) under the hyperbolic scaling. The hyperbolic parameter of the vector-BGK approximation (1.3) is represented by τ and the limit equations approximated by (1.3) in the vanishing parameter of the hyperbolic scaling τ are the isentropic Euler equations. The convergence of the hyperbolic-scaled system is guaranteed by the structural properties of our vector-BGK model listed before, see [START_REF] Carfora | A discrete kinetic approximation for the incompressible Navier-Stokes equations[END_REF], while a rigorous proof is provided in [START_REF] Sepe | Convergence of a BGK approximation of the isentropic Euler equations[END_REF]. A convex entropy for the limit equation in hyperbolic scaling, i.e, the isentropic Euler equations, is given by

(2.25) η(w ε ) = 1 2 |q ε | 2 ρ ε + k(ρ ε ) 2 .
We can immediately state the following result.

Proposition 2.5. Consider the vector-BGK approximation (1.3) under Assumptions 2.1 and emanating from smooth initial data (2.9). Then there exists a kinetic entropy H(f ε ) = The relative entropy can be seen as a perturbation of the kinetic entropy near to the equilibrium represented by the solution to the limit system. A precise definition in the context of hyperbolic relaxation is provided in [START_REF] Tzavaras | Relative Entropy in Hyperbolic Relaxation[END_REF]. For diffusive relaxation, we will use the following

(2.26) H(f| f) = H(f) -H(M( w)) -∇ f H(M( w)) • (f -M( w)) = i H i (f i ) -H i (M i ( w)) -∇ fi H i (M i ( w)) • (f i -M i ( w)),
where H(f) is in Definition 2.4, and M( w) = (M i ( w)) i=1,••• ,5 are the perturbed Maxwellians in (2.8), evaluated in the solution w = (ρ, ερū) to the incompressible Navier-Stokes equations (1.1).

2.3.

Quantifying the dissipation. The aim of this part is to characterize and to quantify the dissipative terms resulting from the relative entropy estimate. Hereafter, we will drop the apex ε when there is no ambiguity. We start with two preliminary lemmas.

Lemma 2.6. Let η(w) be defined in (2.25). Let H(f) = 5 i=1 H i (f i ) be a kinetic entropy associated with the vector-BGK model in (1.3), such that H(M (w)) = η(w). Then the following entropy expansion is satisfied:

1 ε 2 T 0 5 i=1 ∇ fi H i (f i ) • (M i -f i ) dt dx dy = - T 0 ∇ 2 w η(w) 2aλ 2 τ • (m - A 1 (w) ε ) • (m - A 1 (w) ε ) dt dx dy - T 0 ∇ 2 w η(w) 2aλ 2 τ • (ξ - A 2 (w) ε ) • (ξ - A 2 (w) ε ) dt dx dy - T 0 ∇ 2 w η(w) 2aε 2 τ • (k -2aw) • (k -2aw) dt dx dy - T 0 ∇ 2 w η(w) 2aε 2 τ • (h -2aw) • (h -2aw) dt dx dy - T 0 ∇ 2 w η(w) (1 -4a)τ ε 2 • (4aw -(k + h)) • (4aw -(k + h)) dt dx dy + O(ε 3 ).
Proof. First of all, Proposition 2.5 guarantees the existence of a kinetic entropy for (1.3), such that

H(M (w)) = η(w) in (2.25), ∇ fi H i (M i (w)) = ∇ w η(w), i = 1, • • • , 5.
We point out that the spectrum of the Jacobian matrices of the Maxwellians in (2.1) is positive provided that the parameter a in the expressions (2.1) is positive and λ > 0 is big enough (Assumptions 2.1). This remark, together with the bounds in (2.15), assure the existence of a kinetic convex and dissipative entropy for our system, thanks to [[8], Theorem 2.1], as stated in Proposition 2.5. Notice that in the course of our computations, the densities f ε remain in a bounded set, close enough to the hyperbolic equilibrium. Now we consider the following expansion (2.27)

1 ε 2 5 i=1 ∇ fi H i (f i ) • (M i -f i ) = 1 ε 2 5 i=1 ∇ fi H i (M i ) • (f i -M i ) + 1 ε 2 5 i=1 ∇ 2 fi H i (M i ) • (f i -M i ) • (f i -M i ) + O( |f i -M i | 3 ε 2 ) = - 1 ε 2 5 i=1 ∇ 2 fi H i (M i ) • (f i -M i ) • (f i -M i ) + O( |f i -M i | 3 ε 2 ).
where the first term vanishes thanks to the orthogonality property [[40], Proposition 2.1]. For i = 1, • • • , 4, the first term of the last equality reads

- 1 ε 2 T 0 ∇ 2 fi H i (M i ) • (f i -M i ) • (f i -M i ) dt dx dy = - 1 ε 2 T 0 ∇ 2 H i (aw ± A i (w) 2λ ) • (f i -M i ) • (f i -M i ) dt dx dy.
Note that, from (1.4)-(2.2) and Lemma 2.3,

w =   ρ ερu 1 ερu 2   =   O(1) O(ε) O(ε)   , A 1 (w) =   ερu 1 ε 2 ρu 2 1 + ρ 2 -ρ2 2 ρ ε 2 ρu 1 u 2   =   O(ε) O(ε 2 ) O(ε 2 )   , A 2 (w) =   ερu 1 ε 2 ρu 1 u 2 ε 2 ρu 2 2 + ρ 2 -ρ2 2 ρ   =   O(ε) O(ε 2 ) O(ε 2 )   .
This way,

∇ fi H(M i (w)) = ∇ fi H aw ± A i (w) 2λ = ∇ fi H(aw) + O(ε).
Moreover, from [START_REF] Bouchut | Construction of BGK Models with a Family of Kinetic Entropies for a Given System of Conservation Laws[END_REF], it is also known that

∇ fi H(M i (w)) = ∇ w η(w).
Differentiating again the previous equivalent expressions,

(2.28)

∇ 2 fi H i (aw) = 1 a ∇ 2 w η(w) + O(ε).
Thus, the last equality yields

- 1 ε 2 T 0 ∇ 2 fi H i (aw ± A i (w) 2λ ) • (f i -M i ) • (f i -M i ) dt dx dy ≤ - 1 ε 2 T 0 1 a ∇ 2 w η(w) • (f i -M i ) • (f i -M i ) dt dx dy + c(|w| L ∞ t L ∞ x ) ε |f i -M i | 2 L ∞ t L ∞ x . Now, from (1.3)-(2.5),
(2.29)

M 1 -f 1 ε 2 = ∂ t f 1 + λ ε ∂ x f 1 = 1 2 (∂ t k + ∂ x m) + 1 2λε (ε 2 ∂ t m + λ 2 ∂ x k), M 3 -f 3 ε 2 = ∂ t f 3 - λ ε ∂ x f 3 = 1 2 (∂ t k + ∂ x m) - 1 2λε (ε 2 ∂ t m + λ 2 ∂ x k), M 2 -f 2 ε 2 = ∂ t f 2 + λ ε ∂ y f 2 = 1 2 (∂ t h + ∂ y ξ) + 1 2λε (ε 2 ∂ t ξ + λ 2 ∂ y h), M 4 -f 4 ε 2 = ∂ t f 4 - λ ε ∂ y f 4 = 1 2 (∂ t h + ∂ y ξ) - 1 2λε (ε 2 ∂ t ξ + λ 2 ∂ y h).
Lemma 2.3 and the previous equalities imply that

c(|w| L ∞ t L ∞ x ) ε |f i -M i | 2 L ∞ t L ∞ x = O(ε 3 ),
and so, by using the change of variables (2.5),

- 1 ε 2 T 0 4 i=1 ∇ fi H i (f i ) • (M i -f i ) dt dx dy = - 1 ε 2 T 0 4 i=1 1 a ∇ 2 w η(w) • (M i -f i ) • (M i -f i ) dt dx dy + O(ε 3 ) = T 0 ∇ 2 w η(w) 2aλ 2 τ • (m - A 1 (w) ε ) • (m - A 1 (w) ε ) dt dx dy - T 0 ∇ 2 w η(w) 2aλ 2 τ • (ξ - A 2 (w) ε ) • (ξ - A 2 (w) ε ) dt dx dy - T 0 ∇ 2 w η(w) 2aε 2 τ • (k -2aw) • (k -2aw) dt dx dy - T 0 ∇ 2 w η(w) 2aε 2 τ • (h -2aw) • (h -2aw) dt dx dy + O(ε 3 ).
The expansion

- 1 ε 2 T 0 H i (f 5 ) • (M 5 -f 5 ) dt dx dy = - T 0 ∇ 2 w η(w) (1 -4a)τ ε 2 • (4aw -(k + h)) • (4aw -(k + h)) dt dx dy + O(ε 3 )
is obtained in analogous way.

Lemma 2.7. Consider the limit solution M i , for i = 1, • • • , 4, in (2.8). Then

(2.30) ∇ fi H i (M i ) = ∇ fi H i (M i ) ∓ aελτ ∇ 2 fi H i (M i )∂ xj w + O(ε 3 ) = ∇ w η( w) ∓ λετ ∇ 2 w η( w)∂ xj w + O(ε 3 ), j = 1, 2.
Proof. The proof follows by Taylor expansions and (2.28), in the spirit of Lemma 2.6.

3.

Relative entropy estimate for the vector-BGK model. Our main result is stated here. Theorem 3.1. Consider the vector-BGK model in (1.3) for the two-dimensional incompressible Navier-Stokes equations in (1.1) on [0, +∞) × T 2 , endowed with a kinetic entropy H(f ε ), whose existence and properties are given by Lemma 2.6. Let ū = (ū 1 , ū2 ), ∇ P be a smooth velocity field and pressure satisfying the incompressible Navier-Stokes equations (1.1) on [0, +∞)×T 2 and {f ε } be a family of smooth solutions to (1.3) and emanating from smooth initial data u 0 in (1.2) and f 0 = (f i (0, x)) i=1,••• ,5 in (2.9). Then, defining w ε = i f ε i = (ρ ε , ερ ε u ε ), the following estimate holds for any T > 0 and for ε ≤ ε 0 , where ε 0 is fixed and it depends on

M 0 = ρ u 0 s+1 , sup t∈[0,T ] ρ ε (t) -ρ s ε + u ε (t) -ū(t) s ≤ cε 1 2 -δ ,
with s > 3, 0 < s < s and δ := s-s 2s . Moreover, for ε ≤ ε 0 , the solutions (ρ ε , u ε ) to the approximating system (1.3) are globally bounded in time, and for ε → 0,

∇((ρ ε ) 2 -ρ2 ) ε 2 ∇ P in L ∞ t H s-3 x .
The global in time convergence proof is based on the use of the relative entropy inequality, which is stated and proved here. Theorem 3.2. Under the hypothesis of Theorem 3.1, let T * be defined in (2.17). Then the relative entropy method provides the following estimate:

sup t∈[0,T * ] ρ ε (t) -ρ 0 ε + ρ ε u ε (t) -ρū(t) 0 ≤ c √ ε.
Proof. We start by recalling the definition of the relative entropy in (2.26),

H(f| f) = H(f) -H(M) -∇ f H(M) • (f -M) = i H i (f i ) -H i (M i ) -∇ fi H i (M i ) • (f i -M i ),
where the limit solutions

M i = M i (ρ, ερū), i = 1, • • • , 5, are in (2.8
), ρ is a constant density, ū is the smooth solution to (1.1), and the associated entropy-flux is given by

Q(f| f) = λ ε   H 1 (f 1 ) -H 3 (f 3 ) -(H 1 (M 1 ) -H 3 (M 3 )) H 2 (f 2 ) -H 4 (f 4 ) -(H 2 (M 2 ) -H 4 (M 4 ))   - λ ε   ∇ f1 H 1 (M 1 )(f 1 -M 1 ) -∇ f3 H 3 (M 3 )(f 3 -M 3 ) ∇ f2 H 2 (M 2 )(f 2 -M 2 ) -∇ f4 H 4 (M 4 )(f 4 -M 4 )   .
Hereafter, we adopt the following notation, H i := H i (M i ).

ROBERTA BIANCHINI

Now we proceed to get the desired inequality.

T 0 ∂ t H(f| f) + ∇ x • Q(f| f) dt dx dy = T 0 ∂ t H(f) + λ ε ∂ x (H 1 (f 1 ) -H 3 (f 3 )) + λ ε ∂ y (H 2 (f 2 ) -H 4 (f 4 )) dt dx dy - T 0 ∂ t H(M) + λ ε ∂ x (H 1 (M 1 ) -H 3 (M 3 )) dt dx dy - T 0 λ ε ∂ y (H 2 (M 2 ) -H 4 (M 4 )) dt dx dy - T 0 ∂ t (∇ f1 H 1 (M 1 )(f 1 -M 1 ) + ∇ f2 H 2 (M 2 )(f 2 -M 2 )) dt dx dy - T 0 ∂ t (∇ f3 H 3 (M 3 )(f 3 -M 3 ) + ∇ f4 H 4 (M 4 )(f 4 -M 4 )) dt dx dy - T 0 ∂ t (∇ f5 H 5 (M 5 )(f 5 -M 5 )) dt dx dy - T 0 λ ε ∂ x (∇ f1 H 1 (M 1 )(f 1 -M 1 ) -∇ f3 H 3 (M 3 )(f 3 -M 3 )) dt dx dy - T 0 λ ε ∂ y (∇ f2 H 2 (M 2 )(f 2 -M 2 ) -∇ f4 H 4 (M 4 )(f 4 -M 4 )) dt dx dy = I 1 + I 2 + I 3 + I 4 .
First of all, I 1 is already estimated in Lemma 2.3. Now, let us consider I 2 .

The following expansions are based on Lemma 2.7.

- T 0 ∂ t (H 1 + H 2 + H 3 + H 4 + H 5 ) dt dx dy - T 0 λ ε ∂ x (H 1 -H 3 ) + λ ε ∂ y (H 2 -H 4 ) dt dx dy = - T 0 (∇ w η( w) -aελτ ∇ 2 f1 H 1 ∂ x w)(∂ t M 1 + λ ε ∂ x M 1 ) dt dx dy - T 0 (∇ w η( w) + aελτ ∇ 2 f3 H 3 ∂ x w)(∂ t M 3 - λ ε ∂ x M 3 ) dt dx dy - T 0 (∇ w η( w) -aελτ ∇ 2 f2 H 2 ∂ y w)(∂ t M 2 + λ ε ∂ y M 2 ) dt dx dy - T 0 (∇ w η( w) + aελτ ∇ 2 f4 H 4 ∂ y w)(∂ t M 4 - λ ε M 4 ) dt dx dy - T 0 ∇ w η( w) • ∂ t M 5 dt dx dy - T 0 ∇ f1 H 1 (∂ t M 1 + λ ε ∂ x M 1 ) -∇ f3 H 3 (∂ t M 3 - ε ∂ x M 3 ) dt dx dy - T 0 ∇ f2 H 2 (∂ t M 2 + λ ε ∂ y M 2 ) -∇ f4 H 4 (∂ t M 4 - λ ε ∂ y M 4 ) dt dx dy + O(ε 3 ) = - T 0 ∇ w η( w) • ∂ t (M 1 + M 2 + M 3 + M 4 + M 5 ) dt dx dy - T 0 ∇ w η( w)[ λ ε ∂ x (M 1 -M 3 ) + λ ε ∂ y (M 2 -M 4 )] dt dx dy + 2aτ λ 2 T 0 (∇ 2 w η( w) • ∂ x w)∂ x w + (∇ 2 w η( w) • ∂ y w)∂ y w dt dx dy + O(ε 3 ) = - T 0 ∇ w η( w)[∂ t w + ∂ x A 1 ( w) ε + ∂ y A 2 ( w) ε -ν(∂ xx w + ∂ yy w)] dt dx dy + T 0 τ ∇ 2 w η( w) 2aλ 2 • (ε 2 ∂ t m + λ 2 ∂ x k) • (ε 2 ∂ t m + λ 2 ∂ x k) dt dx dy + T 0 τ ∇ 2 w η( w) 2aλ 2 • (ε 2 ∂ t ξ + λ 2 ∂ y h) • (ε 2 ∂ t ξ + λ 2 ∂ y h) dt dx dy + O(ε 3 ).
Remark 3.3. Notice that the last equalities follow by adding and subtracting terms of order (ε

2 ∂ t m) • ∂ x k, (ε 2 ∂ t ξ) • ∂ y h, |ε 2 ∂ t m| 2 , |ε 2 ∂ t ξ| 2 , where ∂ x k = 2a∂ x w = 2a∂ x   ρ ερū 1 ερū 2   = O(ε), ∂ y h = 2a∂ y w = O(ε), ε 2 ∂ t m = ε 2 ∂ t [ A 1 ( w) ε -ν∂ x w] = ε 2 ∂ t   ρū 1 ερū 2 1 + ε P ερū 1 ū2   -ν∂ x w = O(ε 2 ), ε 2 ∂ t ξ = ε 2 ∂ t [ A 2 ( w) ε -ν∂ y w] = ε 2 ∂ t   ρū 2 ερū 1 ū2 ερū 2 2 + ε P   -ν∂ y w = O(ε 2 ).
This way, every remainder term is O(ε 3 ).

Next, we consider I 3 .

I 3 = - T 0 ∂ t [∇ f1 H 1 (M 1 )(f 1 -M 1 ) + ∇ f2 H 2 (M 2 )(f 2 -M 2 )] dt dx dy - T 0 ∂ t [∇ f3 H 3 (M 3 )(f 3 -M 3 ) + ∇ f4 H 4 (M 4 )(f 4 -M 4 )] dt dx dy - T 0 ∂ t [∇ f5 H 5 (M 5 )(f 5 -M 5 )] dt dx dy = - T 0 ∂ t [∇ w η( w) • (w -w)] dt dx dy + ελτ T 0 ∂ t [∇ 2 w η( w) • ∂ x w • (f 1 -f 3 -(M 1 -M 3 ))] dt dx dy + ελτ T 0 ∂ t [∇ 2 η( w) • ∂ y w • (f 2 -f 4 -(M 2 -M 4 ))] dt dx dy + O(ε 3 ) = - T 0 ∂ t [∇ w η( w) • (w -w)] dt dx dy + ε 2 τ T 0 ∂ t [∇ 2 w η( w) • ∂ x w • (m - A 1 ( w) ε + 2aλ 2 τ ∂ x w)] dt dx dy + ε 2 τ T 0 ∂ t [∇ 2 w η( w) • ∂ y w • (ξ - A 2 ( w) ε + 2aλ 2 τ ∂ y w)] dt dx dy + O(ε 3 ) = T 0 ∇ 2 w η( w) • [∂ x A 1 ( w) ε + ∂ y A 2 ( w) ε -2aλ 2 τ ∂ xx w -2aλ 2 τ ∂ yy w] • (w -w) + ∇ w η( w) • [∂ x m + ∂ y ξ -∂ x A 1 ( w) ε -∂ y A 2 ( w) ε + 2aλ 2 τ ∂ xx w + 2aλ 2 ∂ yy w] + τ ∇ 2 w η( w) • ∂ x w • (ε 2 ∂ t m + λ 2 ∂ x k) -τ λ 2 ∇ 2 w η( w) • ∂ x w • ∂ x k + τ ∇ 2 w η( w) • ∂ y w • (ε 2 ∂ t ξ + λ 2 ∂ y h) -τ λ 2 ∇ 2 w η( w) • ∂ y w • ∂ y h dt dx dy + O(ε 3 ).
It remains to deal with the last term.

I 4 = - T 0 λ ε ∂ x [∇ f1 H 1 (M 1 )(f 1 -M 1 ) -∇ f3 H 3 (M 3 )(f 3 -M 3 )] dt dx dy - T 0 λ ε ∂ y [∇ f2 H 2 (M 2 )(f 2 -M 2 ) -∇ f4 H 4 (M 4 )(f 4 -M 4 )] dt dx dy = - T 0 λ ε ∂ x (∇ w η( w) -ελτ ∇ 2 w η( w)∂ x w)(f 1 -M 1 ) -(∇ w η( w) + ελτ ∇ 2 w η( w)∂ x w)(f 3 -M 3 ) dt dx dy - T 0 λ ε ∂ y (∇ w η( w) -ελτ ∇ 2 w η( w)∂ y w)(f 2 -M 2 ) -(∇ w η( w) + ελτ ∇ 2 w η( w)∂ y w)(f 4 -M 4 ) dt dx dy + O(ε 3 ) = - T 0 λ ε ∂ x [∇ w η( w) • ((f 1 -f 3 ) -(M 1 -M 3 ))] dt dx dy - T 0 λ ε ∂ y [∇ w η( w) • ((f 2 -f 4 ) -(M 2 -M 4 ))] dt dx dy + λ 2 τ T 0 ∂ x [∇ 2 w η( w) • ∂ x w • (f 1 + f 3 -(M 1 + M 3 ))] dt dx dy + λ 2 τ T 0 ∂ y [∇ 2 w η( w) • ∂ y w • (f 2 + f 4 -(M 2 + M 4 ))] dt dx dy + O(ε 3 ) = - T 0 ∂ x [∇ w η( w) • (m - A 1 ( w) ε + 2aτ λ 2 ∂ x w)] dt dx dy - T 0 ∂ y [∇ w η( w) • (ξ - A 2 ( w) ε + 2aτ λ 2 ∂ y w)] dt dx dy + λ 2 τ T 0 ∂ x [∇ 2 w η( w) • ∂ x w • (k -2a w)] dt dx dy + λ 2 τ T 0 ∂ y [∇ 2 w η( w) • ∂ y w • (h -2a w)] dt dx dy + O(ε 3 ) = - T 0 ∇ w η( w) • [∂ x m + ∂ y ξ - A 1 ( w) ε -∂ y A 2 ( w) ε + 2aτ λ 2 ∂ xx w + 2aτ λ 2 ∂ yy w] dt dx dy - T 0 ∇ 2 w η( w) • ∂ x w • (m - A 1 (w) ε ) dt dx dy - T 0 ∇ 2 w η( w) • ∂ x w • ( A 1 (w) ε - A 1 ( w) ε ) dt dx dy -2aτ λ 2 T 0 ∇ 2 w η( w) • ∂ x w • ∂ x w dt dx dy - T 0 ∇ 2 w η( w) • ∂ y w • (ξ - A 2 (w) ε ) dt dx dy - T 0 ∇ 2 w η( w) • ∂ y w • ( A 2 (w) ε - A 2 ( w) ε ) dt dx dy -2aτ λ 2 T 0 ∇ 2 w η( w) • ∂ y w • ∂ y w dt dx dy + λ 2 τ T 0 ∇ 2 w η( w) • ∂ x w • (∂ x k -2a∂ x w) + ∇ 2 w η( w) • ∂ xx w • (k -2a w) dt dx dy + λ 2 τ T 0 ∇ 2 w η( w) • ∂ y w • (∂ y h -2a∂ y w) + ∇ 2 w η( w) • ∂ yy w • (h -2a w) dt dx dy + λ 2 τ T 0 ∇ 3 w η( w)(∂ x w) 2 (k -2a w) + ∇ 3 w η( w)(∂ y w) 2 (h -2a w) dt dx dy + O(ε 3 ) = - T 0 ∇ w η( w) • [∂ x m + ∂ y ξ - A 1 ( w) ε -∂ y A 2 ( w) ε ] dt dx dy -2aτ λ 2 T 0 ∂ xx w + ∂ yy w dt dx dy + T 0 ∇ 2 w η( w) • ∂ x w • τ (ε 2 ∂ t m + λ 2 ∂ x k) dt dx dy - T 0 ∇ 2 w η( w) • ∂ x w • ( A 1 (w) ε - A 1 ( w) ε ) dt dx dy -4aτ λ 2 T 0 ∇ 2 w η( w) • ∂ x w • ∂ x w dt dx dy + T 0 ∇ 2 w η( w) • ∂ y w • τ (ε 2 ∂ t ξ + λ 2 ∂ y h) dt dx dy - T 0 ∇ 2 w η( w) • ∂ y w • ( A 2 (w) ε - A 2 ( w) ε ) dt dx dy -4aτ λ 2 T 0 ∇ 2 w η( w) • ∂ y w • ∂ y w dt dx dy + λ 2 τ T 0 ∇ 2 w η( w) • ∂ x w • ∂ x k + ∇ 2 w η( w) • ∂ y w • ∂ y h dt dx dy + λ 2 τ T 0 ∇ 2 w η( w) • ∂ xx w • (k -2aw) + 2a∇ 2 w η( w) • ∂ xx w • (w -w) dt dx dy + λ 2 τ T 0 ∇ 2 w η( w) • ∂ yy w • (h -2aw) + 2a∇ 2 w η( w) • ∂ yy w • (w -w) dt dx dy + λ 2 τ T 0 ∇ 3 w η( w)[(∂ x w) 2 (k -2a w) + (∂ y w) 2 (h -2a w)] dt dx dy + O(ε 3 ).
As an intermediate step, let us look at the sum

I 3 + I 4 = 2τ T 0 ∇ 2 w η( w) • ∂ x w • (ε 2 ∂ t m + λ 2 ∂ x k) dt dx dy + 2τ T 0 ∇ 2 w η( w) • ∂ y w • (ε 2 ∂ t ξ + λ 2 ∂ y h) dt dx dy - T 0 ∇ 2 w η( w) • ∂ x w • ( A 1 (w) ε - A 1 ( w) ε - A 1 ( w) ε (w -w)) dt dx dy - T 0 ∇ 2 w η( w) • ∂ y w • ( A 2 (w) ε - A 2 ( w) ε - A 2 ( w) ε (w -w)) dt dx dy + λ 2 τ T 0 ∇ 2 w η( w) • [∂ xx w • (k -2aw) + ∂ yy w • (h -2aw)] dt dx dy -4aτ λ 2 T 0 ∇ 2 w η( w) • [∂ x w • ∂ x w + ∂ y w • ∂ y w] dt dx dy + λ 2 τ T 0 ∇ 3 w η( w) • [(∂ x w) 2 (k -2a w) + (∂ y w) 2 (h -2a w)] dt dx dy + O(ε 3 ).
We analyse each line separately.

• The first one can be written as

τ 2aλ 2 T 0 ∇ 2 w η( w) • (ε 2 ∂ t m + λ 2 ∂ x k) • (ε 2 ∂ t m + λ 2 ∂ x k) dt dx dy + O(ε 3 ).
• Similarly for the second line.

• The third/fourth lines are equivalent to

|∇ 2 w η( w)| L ∞ t L ∞ x T 0 |w -w| 2 dt dx dy + O(ε 3 ).
• The fifth line can estimated by

c 1 (|∇ 2 w η( w)| L ∞ t L ∞ x ) T 0 ε 2 |∂ xx w| 2 + ε 2 |∂ yy w| 2 dt dx dy + c 2 (|∇ 2 w η( w)| L ∞ t L ∞ x ) T 0 |k -2aw| 2 ε 2 + |h -2aw| 2 ε 2 dt dx dy,
where the first term is O(ε 4 ), while the second one is absorbed by the dissipation in I 1 .

• The sixth term can be written as

- τ aλ 2 T 0 ∇ 2 w η( w) • (ε 2 ∂ t m + λ 2 ∂ x k) • (ε 2 ∂ t m + λ 2 ∂ x k) dt dx dy - τ aλ 2 T 0 ∇ 2 w η( w) • (ε 2 ∂ t ξ + λ 2 ∂ y h) • (ε 2 ∂ t ξ + λ 2 ∂ y h) dt dx dy + O(ε 3 ).
• The last term presents the following form

λ 2 τ T 0 ∇ 3 w η( w)(∂ x w) 2 (k -2a w) + ∇ 3 w η( w)(∂ y w) 2 (h -2a w) dt dx dy = λ 2 τ T 0 ∇ 3 w η( w)(∂ x w) 2 (k -2aw) -2a∇ 3 w η( w)(∂ x w) 2 (w -w) dt dx dy + λ 2 τ T 0 ∇ 3 w η( w)(∂ y w) 2 (h -2aw) -2a∇ 3 w η( w)(∂ y w) 2 (w -w) dt dx dy ≤ c(|∇ 2 w η( w)| L ∞ t L ∞ x ) T 0 |w -w| 2 + |k -2aw| 2 ε 2 + |h -2aw| 2 ε 2 dt dx dy + O(ε 3 ),
where the right-hand side is controlled by using the dissipation coming from I 1 .

Remark 3.4. Denoting by µ i (∇ 2 w η(w)), µ i (∇ 2 w η( w)) the eigenvalues of ∇ 2 w η(w), ∇ 2 w η( w) respectively, by simple calculations one gets that

T 0 |µ i (∇ 2 w η(w(t))) -µ i (∇ 2 w η( w(t)))| ∞ dt ≤ c T 0 |ρ(t) -ρ| ∞ dt = O(ε 2 ),
where the last equality follows from Lemma 2.3. Thus, we can write

1 2aλ 2 T 0 (∇ 2 w η(w) • (ε 2 ∂ t m + λ 2 ∂ x k)) • (ε 2 ∂ t m + λ 2 ∂ x k) dt dx dy + 1 2aλ 2 T 0 (∇ 2 w η(w) • (ε 2 ∂ t ξ + λ 2 ∂ y h)) • (ε 2 ∂ t ξ + λ 2 ∂ y h) dt dx dy = 1 2aλ 2 T 0 (∇ 2 w η( w) • (ε 2 ∂ t m + λ 2 ∂ x k)) • (ε 2 ∂ t m + λ 2 ∂ x k) dt dx dy + 1 2aλ 2 T 0 (∇ 2 w η( w) • (ε 2 ∂ t ξ + λ 2 ∂ y h)) • (ε 2 ∂ t ξ + λ 2 ∂ y h) dt dx dy + O(ε 3 ).
Now we consider the total sum, given by

I 1 + I 2 + I 3 + I 4 ≤ |∇ 2 w η( w)| L ∞ t L ∞ x T 0 |w -w| 2 dt dx dy - τ 2aλ 2 T 0 ∇ 2 w η( w) • (ε 2 ∂ t m + λ 2 ∂ x k) • (ε 2 ∂ t m + λ 2 ∂ x k) dt dx dy - τ 2aλ 2 T 0 ∇ 2 w η( w) • (ε 2 ∂ t ξ + λ 2 ∂ y h) • (ε 2 ∂ t ξ + λ 2 ∂ y h) dt dx dy + τ aλ 2 T 0 ∇ 2 w η( w) • (ε 2 ∂ t m + λ 2 ∂ x k) • (ε 2 ∂ t m + λ 2 ∂ x k) dt dx dy + τ aλ 2 T 0 ∇ 2 w η( w) • (ε 2 ∂ t ξ + λ 2 ∂ y h) • (ε 2 ∂ t ξ + λ 2 ∂ y h) dt dx dy - c(|∇ 2 w η(w)| L ∞ t L ∞ x (1 -1 δ )) 2aτ ε 2 T 0 |k -2aw| 2 + |h -2aw| 2 dt dx dy - c(|∇ 2 w η(w)| L ∞ t L ∞ x ) (1 -4a)τ ε 2 T 0 |4aw -(k + h)| 2 dt dx dy + O(ε 3 ).
The Gronwall inequality, together with the definition of w in (1.4), yields the following estimate (3.1) sup

t∈[0,T * ] ρ(t) -ρ 0 ε + ρu(t) -ρū(t) 0 ≤ c √ ε,
where the local time T * is defined in (2.17). Now we prove Theorem 3.1.

Proof. We start by using the interpolation properties of Sobolev spaces, see [START_REF] Taylor | Partial differential equations III[END_REF], for 0 < s < s and t ∈ [0, T * ], which gives (3.2) ρu(t) -ρū(t) s ≤ ρu(t) -ρū(t) 

(cεM 0 e c(|ρ| L ∞ t L ∞ x ,|u| L ∞ t L ∞ x )t ) s /s .
Recalling the definition of T * in (2.17) and taking M = 4M 0 , estimate (3.7) implies that there exists ε 0 fixed such that, for ε ≤ ε 0 and t ≤ T * ,

|u(t)| ∞ ≤ M 0 + cε 1 2 -δ < 2M 0 = M 2 ,
for 0 < δ = s 2s < 1 2 . Similarly, for t ≤ T * , (3.8)

|ρ(t) -ρ| ∞ ε + |ρu(t)| ∞ ≤ M 0 + cε 1 2 -δ < 2M 0 = M 2 .
Now let us assume T * < T ε . Then, by definition (2.17),

|ρ(T * ) -ρ| ∞ ε + |ρu(T * )| ∞ = 4M 0 = M.
On the other hand, estimate (3.8) implies that there exists a fixed ε 0 , depending on M 0 and small enough such that, for ε ≤ ε 0 ,

|ρ(T * ) -ρ| ∞ ε + |ρu(T * )| ∞ ≤ M 0 + cε 1 2 -δ < 2M 0 .
Now, by contradiction one gets that T * ≥ T ε for ε ≤ ε 0 , where T * is independent of ε. As a consequence, for ε ≤ ε 0 the solutions (ρ ε , u ε ) to the approximating system evaluated in T ε are bounded. This way, the Continuation Principle, see [START_REF] Majda | Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables[END_REF], implies that they are globally bounded in time. Moreover, since the uniform bounds in Lemma 2.3 are based on the L ∞ t L ∞ x boundedness of (ρ ε , u ε ), it turns out that they hold globally in time for ε ≤ ε 0 . In the end, we proved:

• the global in time existence and uniform boundedness of (ρ ε , u ε ) in H s (T 2 ) for a fixed ε ≤ ε 0 depending on M 0 ; • the strong convergence in [0, T ], for any T > 0, of the solutions (ρ ε , u ε ) to the approximating system (1.3) to the solutions (ρ, ū) to the incompressible Navier-Stokes equations in H s (T 2 ), for 0 < s < s and s > 3; • the rate of this strong convergence. Finally, the convergence to the gradient of the limit incompressible pressure ∇P N S in (1.1) is discussed in details in [START_REF] Bianchini | Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations, to appear on Kinetic and Related Models[END_REF].

  (2.5) to avoid further complications. The explicit change of variables is written in [[6], (78)].

5 i=1

 5 H i (f ε i ) for system(1.3), satisfying the properties listed in Definition 2.4 in a neighbourhood of the Maxwellians M (w ε ) in (2.1), with η(w ε ) in (2.25).Proof. First of all, the local in time estimates in Lemma 2.3 provide the boundedness of the densities f ε . This fact, together with Assumptions 2.1 and [[8], Theorem 2.1], allow us to prove the positivity of the spectrum of the Jacobian matrices of the Maxwellians (2.1). The result follows from [[8], Theorem 2.1].

  3), see Remark 2.2, and the estimates of the nonlinear term in [[6], Lemma 4.2]. • By applying Gronwall's inequality to (2.11), one gets (2.12). • Estimate (2.13) follows from [[6], Proposition 3 and (30)].

  where the last inequality follows by• the H s -bound of the solution to the incompressible Navier-Stokes equations on the two-dimensional torus, i.e. ρū(t) s ≤ ρu 0 s ≤ M 0 ;• the Gronwall inequality applied to estimate (2.11),ρu(t) s ≤ cM 0 e c(|ρ| L ∞ ∞ ≤ M 0 + cε s-s 2s (M 0 + cM 0 e c(|ρ| L ∞

						t L ∞ x ,|u| L ∞ t L ∞ x )t ) s /s .
	Similarly,				
		|ρ(t) -ρ| ∞ ≤ c S ρ(t) -ρ s
	(3.4)		≤ c S ρ(t) -ρ	1-s /s 0	ρ(t) -ρ s /s s
			≤ cε	3(s-s ) 2s	(cεM 0 e c(|ρ| L ∞ t L ∞ x ,|u| L ∞ t L ∞ x )t ) s /s ,
	i.e.				
	(3.5)	|ρ(t)| ∞ ≤ ρ + cε	3(s-s ) 2s	(cεM 0 e c(|ρ| L ∞ t L ∞ x ,|u| L ∞ t L ∞ x )t ) s /s .
	Now, since				
			u -ū =	1 ρ	(ρu -ρū) +	ū ρ	(ρ -ρ),
	then from (3.4)-(3.3)-(3.4),
	|u(t) -ū(t)| ∞ ≤	1 ρ		cε	s-s
	(3.6)				
			+ cε	3(s-s ) 2s	(cεM 0 e c(|ρ| L ∞ t L ∞ x ,|u| L ∞ t L ∞ x )t ) s /s ,
	i.e.,				
	|u(t)| ∞ ≤ M 0 +	1 ρ	cε	s-s 2s (M 0 + cM 0 e c(|ρ| L ∞ t L ∞ x ,|u| L ∞ t L ∞ x )t ) s /s
	(3.7)	+ cε	3(s-s ) 2s		1-s /s 0	ρu(t) -ρū(t) s /s s
				≤ cε	s-s
						t L ∞ x ,|u| L ∞ t L ∞ x )t .
	Taking s big enough, the Sobolev embedding theorem yields
	(3.3)				

2s (M 0 + cM 0 e t|u| L ∞ t L ∞ x ) s /s , |ρu(t) -ρū(t)| ∞ ≤ c S ρu(t) -ρū(t) s ≤ cε s-s 2s (M 0 + cM 0 e c(|ρ| L ∞ t L ∞ x ,|u| L ∞ t L ∞ x )t ) s /s ,

and so

|ρu(t)| 2s (M 0 + cM 0 e c(|ρ| L ∞ t L ∞ x ,|u| L ∞ t L ∞ x )t ) s /s
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