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MEAN VALUES FOR A CLASS OF ARITHMETIC FUNCTIONS
IN SHORT INTERVALS

JIE WU AND QIANG WU

Abstract. In this paper, we shall establish a rather general asymptotic formula in short
intervals for a classe of arithmetic functions and announce two applications about the
distribution of divisors of square-full numbers and integers representable as sums of two
squares.

1. Introduction

This is the third paper of our series on the Selberg-Delange method for short intervals.
Roughly speaking this method applies to evaluate mean values of arithmetic functions whose
associated Dirichlet series are close to complex powers of the Riemann ζ-function. In the first
part, by using a suitable contour (located to the left of the Korobov-Vinogradov zero-free
region of ζ(s)) instead of Hankel’s contour used in the original version of the Selberg-Delange
method, Cui and Wu [2] extended this method to handle mean values of arithmetic functions
over a short interval, when their corresponding Dirichlet series is close to a positive power of
ζ-function. In the second one, Cui, Lü and Wu [3] treated the complex power case with the
help of the well-known Hooley-Huxley-Motohashi contour. Some similar results have were
appeared in Ramachandra’s paper [14]. In this paper, we shall consider a more general case
and give some arithmetic applications.

1.1. Assumptions.

Let us fix some notation:

– ζ(s) is the Riemann ζ-function,
– L(s, χ) is the Dirichlet L-function of χ,
– ε is an arbitrarily small positive constant,
– r ∈ N, α > 0, δ > 0, A > 0, M > 0 (constants),
– z := (z1, . . . , zr) ∈ Cr and w := (w1, . . . , wr) ∈ Cr,
– κ := (κ1, . . . , κr) ∈ (R+∗)r with 1 6 κ1 < · · · < κr 6 2κ1,
– χ := (χ1, . . . , χr) with χi non principal Dirichlet characters,
– B := (B1, . . . , Br) ∈ (R+∗)r and C := (C1, . . . , Cr) ∈ (R+∗)r,
– The notation |z| 6 B means that |zi| 6 Bi for 1 6 i 6 r.

Let f : N→ C be an arithmetic function and its corresponding Dirichlet series is given by

(1.1) F(s) :=
∞∑
n=1

f(n)n−s.
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We say that this Dirichlet series F(s) is of type P(κ, z,w,B,C, α, δ, A,M) if the following
conditions are verified:

(a) For any ε > 0 we have

(1.2) |f(n)| �ε Mnε (n > 1),

where the implied constant depends only on ε;
(b) We have

∞∑
n=1

|f(n)|n−σ 6M(σ − 1/κ1)−α (σ > 1/κ1);

(c) The Dirichlet series F(s) has the expression

(1.3) F(s) = ζ(κs)zL(κs;χ)wG(s),

where

ζ(κs)z :=
∏

16i6r

ζ(κis)
zi ,(1.4)

L(κs;χ)w :=
∏

16i6r

L(κis, χi)
wi(1.5)

and the Dirichlet series G(s) is a holomorphic function in (some open set containing) σ >
(2κ1)−1 and, in this region, G(s) satisfies the bound

(1.6) |G(s)| 6M(|τ |+ 1)max{δ(1−κ1σ),0} logA(|τ |+ 3)

uniformly for |z| 6 B and |w| 6 C, where and in the sequel we implicitly define the real
numbers σ and τ by the relation s = σ + iτ and choose the principal value of the complex
logarithm.

As usual, we denote by N(σ, T ) and Nχ(σ, T ) the number of zeros of ζ(s) and L(s, χ)
in the region <e s > σ and |=ms| 6 T , respectively. It is well known that there are two
constants ψ and η such that

(1.7) N(σ, T ), Nχ(σ, T )� Tψ(1−σ)(log T )η

for 1
2
6 σ 6 1 and T > 2. Huxley [9] showed that

(1.8) ψ = 12
5

and η = 9

are admissible for ζ(s). It is not difficult to extend it for L(s, χ). The zero density hypothesis
is stated as

(1.9) ψ = 2.

1.2. Set-up and main results.
Our main aim of this paper is to establish, under the previous assumptions, an asymptotic

formula for the summatory function

(1.10)
∑

x<n6x+x1−1/κ1y

f(n)

where y := xϑ with ϑ ∈ (0, 1] as small as possible. In order to state our result, it is
necessary to introduce some notation. Obviously the function Z(κs; z) := {(κs− 1)ζ(κs)}z
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is holomorphic in the disc |s− 1/κ| < 1/κ, and admits, in the same disc, the Taylor series
expansion

Z(κs; z) =
∞∑
j=0

γj(z, κ)

j!
(s− 1/κ)j,

where the γj(z, κ)’s are entire functions of z satisfying the estimate

(1.11)
γj(z, κ)

j!
�B,κ,ε (1 + ε)j (j > 0, |z| 6 B)

for all B > 0, κ and ε > 0. Write κ∗ = (κ2, . . . , κr) and z∗ = (z2, . . . , zr). Under our
hypothesis, the function

G(s)Z(κ1s; z1)ζ(κ∗s)
z∗L(κs;χ)w

is holomorphic in the disc |s− 1/κ1| < 1/κ1 − 1/κ2 and

(1.12) |Z(κ1s; z1)ζ(κ∗s)
z∗L(κs;χ)wG(s)| �A,B,C,δ,ε M

for |s− 1/κ1| < 1/κ1 − 1/κ2 − ε, |z| 6 B and |w| 6 C. Thus we can write

(1.13) Z(κ1s; z1)ζ(κ∗s)
z∗L(κs;χ)wG(s) =

∞∑
`=0

g`(κ, z,w,χ)(s− 1/κ1)`

for |s− 1/κ1| 6 1
2
(1/κ1 − 1/κ2), where

(1.14) g`(κ, z,w,χ) :=
∑̀
j=0

γj(z1, κ1)

(`− j)!j!
· ∂

`−j(ζ(κ∗s)
z∗L(κs;χ)wG(s))

∂s`−j

∣∣∣∣
s=1/κ1

.

The main result of this paper is as follows.

Theorem 1.1. Let r ∈ N, κ ∈ (R+∗)r, z ∈ Cr, w ∈ Cr, B ∈ (R+∗)r, C ∈ (R+∗)r, χ, α > 0,
δ > 0, A > 0, M > 0 be given as before. Suppose that the Dirichlet series F(s) defined as
in (1.1) is of type P(κ, z,w,B,C,χ, α, δ, A,M). Then for any ε > 0, we have

(1.15)
∑

x<n6x+x1−1/κ1y

f(n) = y′(log x)z−1

{ N∑
`=0

λ`(κ, z,w,χ)

(log x)`
+O

(
MRN(x)

)}
uniformly for

x > 3, x(1−1/(ψ+δ))/κ1+ε 6 y 6 x1/κ1 , N > 0, |z| 6 B, |w| 6 C,

where

y′ := κ1((x+ x1−1/κ1y)1/κ1 − x1/κ1),

λ`(κ, z,w,χ) := κ−z11 g`(κ, z,w,χ)/Γ(z1 − `),

RN(x) :=
(c1N + 1

log x

)N+1

+
(c1N + 1)N+1

ec2(log x/ log2 x)1/3
+

y

x1/κ1 log x

for some constants c1 > 0 and c2 > 0 depending only on B,C, δ and ε. The implied constant
in the O-term depends only on κ,B,C,χ, A, α, δ and ε. In particular, ψ = 12

5
is admissible.
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The admissible length of short intervals in Theorem 1.1 depends only on the zero density
constant ψ of ζ(s) and δ in (1.6) (for which we take δ = 0 in most applications). Its
independence from the power z of ζ(s) in the representation of F(s) seems interesting.
Theorem 1.1 generalizes and improves [2, Theorem 1] to the case of complex powers and
intervals of shorter length.

Taking N = 0 in Theorem 1.1, we obtain readily the following corollary.

Corollary 1.1. Under the conditions of Theorem 1.1, for any ε > 0, we have

(1.16)
∑

x<n6x+x1−1/κ1y

f(n) = y′(log x)z−1

{
λ0(κ, z,w,χ) +O

(
M

log x

)}
uniformly for

x > 3, x(1−1/(ψ+δ))/κ1+ε 6 y 6 x1/κ1 , |z| 6 B, |w| 6 C,
where

λ0(κ, z,w,χ) :=
G(1/κ1)

κz11 Γ(z1)

∏
26i6r

ζ(κi/κ1)zi
∏

16i6r

L(κi/κ1, χi)
wi

and the implied constant in the O-term depends only on A,B,C, α, δ and ε. Note that
ψ = 12

5
is admissible.

Takning r = 2, κ = (1, 2), z = (z, w), w = (0, 0) in Theorem 1.1 and Corollary 1.1, we
can obtain Theorem 1.1 and Corollary 1.2 of Cui, Lü & Wu [3].

1.3. Distribution of divisors de certains integers.

In order to study the distribution of divisors of integers, Deshouillers, Dress & G. Tenen-
baum [5] introduced the random variable Dn, which takes the value (log d)/ log n, as d runs
through the set of the τ(n) divisors of n, with the uniform probability 1/τ(n), and consider
its distribution function

Fn(t) = Prob(Dn 6 t) =
1

τ(n)

∑
d|n, d6nt

1 (0 6 t 6 1).

It is clear that the sequence {Fn}n>1 does not converge pointwisely on [0, 1]. However
Deshouillers, Dress & Tenenbaum ([5] or [19, Theorem II.6.7]) proved that its Cesàro mean
converges uniformly to the arcsin law. More precisely, they showed that the asymptotic
formula

(1.17)
1

x

∑
n6x

Fn(t) =
2

π
arcsin

√
t+O

(
1√

log x

)
holds uniformly for x > 2 and 0 6 t 6 1. Here we shall announce two applications of
Corollary 1.1: the distribution of divisors of square-full numbers and of integers representable
as sums of two squares. The proof will be given in another paper [22].

A. Beta law on divisors of square-full numbers in short intervals

An integer n is called square-full if p | n ⇒ p2 | n. Denote by 1sf(n) the characteristic
function of such integers and define

(1.18) U(x, y) :=
∑

x<n6x+x1/2y

1sf(n).
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Our first result is as follows.

Theorem 1.2. For any ε ∈ (0, 5
48

), we have

(1.19)
1

U(x, y)

∑
x<n6x+x1/2y

1sf(n)Fn(t) = B(2
3
, 1

3
)−1

∫ t

0

w−
1
3 (1− w)−

2
3 dw +O

(
1

3
√

log x

)
uniformly for x > 3 and x19/48+ε 6 y 6 x1/2, where B(u, v) is the beta function defined by

(1.20) B(u, v) :=

∫ 1

0

wu−1(1− w)v−1 dw

for u > 0 and v > 0.

B. Beta law on divisors of integers representable as sums of two squares

Define

(1.21) 1�+�(n) :=

{
1 if n = �+�

0 otherwise
and V (x) :=

∑
n6x

1�+�(n).

They proved that the mean of Fn(t) over integers representable as sum of two squares
converges to the beta law [7, Theorem 1]: For x→∞, we have

(1.22)
1

V (x)

∑
n6x

1�+�(n)Fn(t) = B(1
4
, 1

4
)−1

∫ t

0

w−
3
4 (1− w)−

3
4 dw +O

(
1

4
√

log x

)
.

Here we shall generalise (1.22) to the short interval case. Put

(1.23) V (x, y) :=
∑

x<n6x+y

1�+�(n).

Our result is as follows.

Theorem 1.3. For any ε ∈ (0, 5
12

), we have

(1.24)
1

V (x, y)

∑
x<n6x+y

1�+�(n)Fn(t) = B(1
4
, 1

4
)−1

∫ t

0

w−
3
4 (1− w)−

3
4 dw +O

(
1

4
√

log x

)
uniformly for x > 3 and x19/24+ε 6 y 6 x.

2. The Hooley-Huxley-Motohashi contour

The Hooley-Huxley-Motohashi contour appeared in Ramachandra [14] and Motohashi
[13], independently. In [8], Hooley stated, without proof, his joint result with Huxley:∑

x<n6x+xθ

1�+�(n) ∼ 2−1/2
∏

p≡1(mod 4)

(1− p−2)−1/2 xθ√
log x

for x→∞, provided θ > 7
12

. According to Ramachandra [14, page 314], Hooley and Huxley
have educated him on their method and allowed him make some comments about their
method. A key point of this method is to use an ingeneous contour, which is called the
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Huxley-Hooley contour by Ramachandra. In [13], Motohashi constructed a essential same
contour to prove ∑

x<n6x+xθ

µ(n) = o(xθ) (x→∞)

provided θ > 7
12

. Here we shall follow Motohashi’s argument and construct a Hooley-Huxley-
Motohashi contour for our purpose.

2.1. Notation.

Let (κ,χ) be as before. First we write

ζ(κs)L(κs,χ) :=
∏

16i6r

ζ(κis)L(κis, χi) =:
∑
n>1

τκ(n;χ)n−s,(2.1)

(ζ(κs)L(κs,χ))−1 :=
∏

16i6r

(ζ(κis)L(κis, χi))
−1 =:

∑
n>1

τ 〈−1〉
κ (n;χ)n−s(2.2)

for σ > 1/κ1, respectively. Here and in the sequel, we define implicitly the real numbers σ
and τ by the relation s = σ + iτ . A simple computation shows that

τκ(n;χ) =
∑

m
κ1
1 ···m

κr
r n

κ1
1 ···n

κr
r =n

∏
16i6r

χi(ni),(2.3)

τ 〈−1〉
κ (n;χ) =

∑
m
κ1
1 ···m

κr
r n

κ1
1 ···n

κr
r =n

∏
16i6r

µ(mi)µ(ni)χi(ni).(2.4)

From these, we deduce that

(2.5) |τκ(n;χ)| 6 τκ,κ(n), |τ 〈−1〉
κ (n;χ)| 6 τκ,κ(n), τκ ∗ τ 〈−1〉

κ = 1{1}

for all n > 1, where

(2.6) τκ,κ(n) :=
∑

m
κ1
1 ···m

κr
r n

κ1
1 ···n

κr
r =n

1

and 1{1} is the unit with respect to the Dirichlet convolution.

2.2. Upper bounds for ζ(s)±1 and L(s, χ)±1 in their zero-free regions.

It is well known that there is an absolute positive constant c such that ζ(s) 6= 0 for

(2.7) σ > 1− c(log |τ |)−2/3(log2 |τ |)−1/3, |τ | > 3

(the zero-free region, due to Korobov and Vinogradov) and in this region we have

(2.8) ζ(s)±1 � (log |τ |)2/3(log2 |τ |)1/3

(see [21, page 135] or [19, page 162]). For the Dirichlet L-functions, Richert [15] has estab-
lished similar results.

Lemma 2.1. Let χ be a non-principal Dirichlet character module q and let L(s, χ) be the
corresponding Dirichlet L-function. Then we have

(2.9) |L(s, χ)| �

{
|τ |100(1−σ)3/2(log τ)4/3 if 1

2
6 σ 6 1 and |τ | > 3,

log |τ | if σ > 1 and |τ | > 3.
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Further there is a positive constant cχ depending on χ such that

(2.10) |L(s, χ)|−1 � (log |τ |)2/3(log2 |τ |)1/3

for σ > 1 − 500cχ(log |τ |)−2/3(log2 |τ |)−1/3 and |τ | > 3. Here the implied constants depend
on χ only.

Proof. Let s = σ + iτ . Without loss of generality, we can suppose that τ > 2. For σ :=
<e s > 1 and 0 < w 6 1, the Hurwitz ζ-function is defined by

ζ(s, w) :=
∞∑
n=0

(n+ w)−s.

This function can be extended to a meromorphic function over Cr{1}. According to [15,
Satz], there is a absolute constant c > 0 such that we have

(2.11)
∣∣ζ(s, w)− w−s

∣∣ 6 c|τ |100(1−σ)3/2
(
log |τ |

)2/3

uniformly for 0 < w 6 1, 1
2
6 σ 6 1 and |τ | > 3.

Since χ(n) is of period q, we can write, for σ > 1,

L(s, χ) =

q∑
a=1

∞∑
n=0

χ(a+ nq)(nq + a)−s

= q−s
q∑

a=1

χ(a)
{
ζ(s, a/q)− (a/q)−s

}
+

q∑
a=1

χ(a)a−s.

This relation also holds for all s ∈ Cr{1} by analytic continuation. Inserting (2.11), we
immediately get the first inequality in (2.9). The second one is classical.

In view of (2.9), we can prove (2.10) exactly as [21, Theorem 3.11] with the choice of

θ(τ) =
( log2 τ

100 log τ

)2/3

and φ(τ) = log2 τ.

This completes the proof of Lemma 2.1.
�

2.3. Definition of the Hooley-Huxley-Motohashi contour LT .

Let (ε,κ,χ) be as before and let T0 = T0(ε,κ,χ), c0 = c0(κ,χ) be two large constants
and let C0 = C0(κ,χ) be a suitable positive constant. For T > T0, put

(2.12) δT := C0(log T )−2/3(log2 T )−1/3.

According to (2.8), (2.9) and (2.10) where such that

(2.13) (log |τ |)−c0r � |ζ(κs)L(κs,χ)| � (log |τ |)c0r

for σ > (1− 100δT )/κ1 and 3 6 |τ | 6 100T , where the implied constants depend on (κ,χ).

For T > T0, write

(2.14) JT := [(1
2
− δT ) log T ] and KT := [T (log T )−1].

For each pair of integers (j, k) with 0 6 j 6 JT and 0 6 k 6 KT , we define

(2.15) σj := (1
2

+ j(log T )−1)/κ1, τk := (1 + k log T )/κ1
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and

(2.16) ∆j,k := {s = σ + iτ : σj 6 σ < σj+1 and τk 6 τ < τk+1}.

Define

Mx(s) = Mx(s;κ,χ) :=
∑
n6x

τ
〈−1〉
κ (n;χ)

ns
,(2.17)

M(ς, T ) = M(ς, T ;κ) := max
σ>ς

16|τ |6T

|ζ(κs)|2.(2.18)

Let A′ be a fix large integer, and put

(2.19) Nj :=
(
A′(log T )5 M(4σj − 3/κ1, 8T )

)1/2(1/κ1−σj).

We divide ∆j,k into two classes (W ) and (Y ) as follows.

• The case of σj 6 (1− ε)/κ1.

∆j,k ∈ (W ) if ∆j,k contains at least one zero of ζ(κs)L(κs,χ), and ∆j,k ∈ (Y ) otherwise.

• The case of (1− ε)/κ1 < σj 6 (1− δT )/κ1.

We write

(2.20) ∆j,k ∈ (W ) ⇔ ∃ s ∈ ∆j,k such that |ζ(κs)L(κs,χ)MNj(s)| < 1
2

and

(2.21) ∆j,k ∈ (Y ) ⇔
∣∣ζ(κs)L(κs,χ)MNj(s)

∣∣ > 1
2

for all s ∈ ∆j,k.

For each k, we define jk := max{j : ∆j,k ∈ (W )} and put

(2.22) D ′ := ∪
06k6KT

∪
06j6jk

∆j,k and D0 := ∪
06k6KT

∪
jk<j6JT

∆j,k.

Clearly D0 consists of ∆j,k of class (Y ) only.

The Hooley-Huxley-Motohashi contour LT = LT (ε,κ,χ) is sysmmetric about the real
axe. Its supérieur part is the path in D0 consisting of horizontal and vertical line segments
whose distances away from D ′ are respectively dh and dv, where dh and dv are defined by

(2.23)

dh := (log2 T )/κ1,

dv :=

{
ε2/κ1 if σ 6 (1− ε)/κ1,

(log T )−1/κ1 if (1− ε)/κ1 < σ < (1− δT )/κ1.

Clearly LT is symmetric about the real axis. The following figure shows its upper part
[from the point ((1− ε)/κ1, 0) to the point ((1− δT )/κ1, T )].
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T

∆j,k

σj σj+1

τk

τk+1

∆j0,0

∆jk,k

∆jK ,K

MT

r

dv

dh

D ′ D0

(1− δT )/κ1

(1− ε)/κ11/2κ1 b1/κ1 σ

τ

O

Figure 1 – Superieur part of the contour LT
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3. Lower and upper bounds of |ζ(κs)L(κs,χ)| on LT

The aim of this section is to prove the following proposition.

Proposition 3.1. Under the previous notation, we have

(3.1) T−544
√

2ε(1−κ1σ)(log T )−4 � |ζ(κs)L(κs,χ)| � T 136
√

2ε(1−κ1σ)(log T )4.

for all s ∈ LT , where the implied constants depend on (ε,κ,χ).

First we establish two preliminary lemmas.

Lemma 3.1. Under the previous notation, we have

(3.2) e−(log T )1−ε
2

� |ζ(κs)L(κs,χ)| � e(log T )1−ε
2

for s ∈ LT with σ 6 (1− ε)/κ1, or s with (1− ε)/κ1 < σ 6 1
κ1

(1− ε+ ε2) on the horizontal

segments in LT that intersect the vertical line <e s = (1− ε)/κ1. Here the implied constant
depends only on ε.

Proof. Let s = σ + iτ satisfy the conditions in this lemma. Without loss of generality, we
can suppose that τ > T0(ε,κ,χ). Let us consider the four circles C1, C2, C3 and C4, all
centered at s0 := log2 τ + iτ , with radii

r1 := log2 τ − (1 + η)/κ1,

r2 := log2 τ − σ,
r3 := log2 τ − σ + ε2/(2κ1),

r4 := log2 τ − σ + ε2/κ1,

respectively. Here η > 0 is a parameter to be chosen later. We note that these four circles
pass through the points (1 + η)/κ1 + iτ , σ + iτ , σ − ε2/(2κ1) + iτ and σ − ε2/κ1 + iτ ,
respectively.

Clearly ζ(κs)L(κs,χ) 6= 0 in a region containing the disc |s − s0| 6 r4. Thus we can
unambiguously define log(ζ(κs)L(κs,χ)) in this region. We fix a branch of the logarithm
throughout the remaining discussion.

Let Mi denote the maximum of | log(ζ(κs)L(κs,χ))| on Ci relative to this branch. By
Hadamard’s three-circle theorem and the fact that s = σ + iτ is on C2, we have

(3.3) | log(ζ(κs)L(κs,χ))| 6M2 6M1−φ
1 Mφ

3 ,

where

φ =
log(r2/r1)

log(r3/r1)

=
log(1 + (1 + η − κ1σ)/(κ1 log2 τ − 1− η))

log(1 + (1 + η − κ1σ + ε2/2)/(κ1 log2 τ − 1− η))

=
1 + η − κ1σ

1 + η − κ1σ + ε2/2
+O

( 1

log2 τ

)
.

On taking η = κ1σ − 1
2

(
1 + ε2 + ε2

1+ε2

)
(η > ε4

2(1+ε2)
, since σ > 1

κ1
(1

2
+ ε2)), we have

(3.4) φ = 1− ε2 − ε4 +O((log2 τ)−1).
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On the circle C1, we have

(3.5) M1 6 max
<e s>(1+η)/κ1

∞∑
n=2

∣∣∣∣ Λ(n)

nκ1s log n

∣∣∣∣ 6 ∞∑
n=2

1

n1+η
� 1

η
,

where Λ(n) is the von Mangoldt function.
In order to bound M3, we shall apply the Borel-Carathéodory theorem to the function

log(ζ(κs)L(κs,χ)) on the circles C3, C4. On the circle C4, it is well known that

<e
(

log(ζ(κs)L(κs,χ))
)

= log |ζ(κs)L(κs,χ)| � log τ

thanks to the convexity bounds of ζ(s) and of L(s, χ). Hence the Borel-Carathéodory
theorem gives

(3.6)

M3 6
2r3

r4 − r3

max
|s−s0|6r4

log |ζ(κs)L(κs,χ)|+ r4 + r3

r4 − r3

| log(ζ(κs0)L(κs0,χ))|

� 2(log2 τ − σ + ε2/(2κ1))

ε2/(2κ1)
log τ +

2(log2 τ − σ + ε2/(2κ1))

ε2/(2κ1)

� (log2 τ) log τ.

From (3.3), (3.4), (3.5) and (3.6), we deduce that

| log(ζ(κs)L(κs,χ))| � (η−1)1−φ((log2 τ) log τ)φ

�ε ((log2 τ) log τ)1−ε2−ε4

�ε (log τ)1−ε2 .

This leads to the required estimates. �

Lemma 3.2. Under the previous notation, we have

(3.7) T−544r(1−κ1σj)3/2(log T )−c0r � |ζ(κs)L(κs,χ)| � T 136r(1−κ1σj)3/2(log T )c0r

for s ∈ LT with (1− ε)/κ1 < σj 6 σ < σj+1. Here the implied constants depend on (κ,χ).
In particular we have

(3.8) T−544r
√

2ε(1−κ1σj)(log T )−c0r � |ζ(κs)L(κs,χ)| � T 136r
√

2ε(1−κ1σj)(log T )c0r

for s ∈ LT with (1− ε)/κ1 < σj 6 σ < σj+1. All the implied constants are absolute.

Proof. By (2.11) with w = 1 and Lemma 2.1, we have

(3.9) |ζ(κs)L(κs,χ)| � τ 100r(1−κ1σ)3/2(log τ)c0r ( 1
2κ1
6 σ 6 1

κ1
, τ > 2).

This immediately implies the second inequality in (3.7).
Next we consider the first inequality in (3.7). Let s ∈ LT with (1−ε)/κ1 < σj 6 σ < σj+1.

Since 1/κ1 > 4σj − 3/κ1 > (1− 4ε)/κ1 6 1/2κ1, the inequality (2.11) with w = 1 allows us
to derive that

(3.10)

N
2(1/κ1−σj)
j = A′(log T )5 max

σ>4σj−3/κ1
16|τ |68T

|ζ(κs)|2

� T 200
√

2r(1−κ1σj)3/2(log T )c0r.
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According to the definition of LT , there is an integer k such that s ∈ ∆j,k and this ∆j,k

must be in (Y ) and (2.21) holds for all s of this ∆j,k. On the other hand, (2.5) and (3.10)
imply that for σj 6 σ < σj+1,

|MNj(s)| 6
∑
n6Nj

τκ,κ(n)n−σj � (1− κ1σj)
−2N

1/κ1−σj
j

� T 544(1−κ1σj)3/2(log T )c0r.

Combining this with (2.21) immediately yields

|ζ(κs)L(κs,χ)| > (2|MNj(s)|)−1 � T−544(1−κ1σj)3/2(log T )−c0r

for s ∈ LT with (1− ε)/κ1 < σj 6 σ < σj+1.
Finally we note (3.8) is a simple consequence of (3.7) since (1− ε)/κ1 < σj implies that

(1− κ1σj)
1/2 6

√
ε. �

Now we are ready to prove Proposition 3.1.

Proof. When s ∈ LT with |τ | 6 1, the estimations (3.1) are trivial.
Next suppose that s ∈ LT with |τ | > 1. Then there is a j such that σj 6 σ < σj+1. We

consider the three possibilities.

• The case of (1− ε)/κ1 < σj.

The inequality (3.1) follows immediately from (3.8) of Lemma 3.2.

• The case of σj 6 σ 6 (1− ε)/κ1.

In this case, the first part of Lemma 3.1 shows that (3.1) holds again since
√
ε(1−κjσ) >

ε3/2 > (log T )−ε
2

for T > T0(ε,κ,χ).

• The case of σj 6 (1− ε)/κ1 < σ.

In this case, s must be on the horizontal segment in LT , because the vertical segment
keeps the distance ε2 from the line <e s = σj and σj < σ < σj+1. Thus we can apply the
second part of Lemma 3.1 to get (3.1) as before. �

4. Montgomery’s method

4.1. Montgomery’s mean value theorem.

Let τκ,κ(n) and M(ς, T ) be defined as in (2.6) and (2.18), respectively. The following
proposition is a variant of [12, Theorem 8.4] for our purpose, which will play a key role in
the proof of Proposition 5.1 below.

Proposition 4.1. Let σ0 > 0, % > 0 and T > 2 three real numbers. Let r ∈ N and κ be as
before. Let S = ST (σ0, %) be a finite set of complex numbers s = σ + iτ such that

(4.1) σ > σ0, 1 6 |τ | 6 T

for all s ∈ S and

(4.2) |τ − τ ′| > %
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for any distinct points s = σ + iτ and s′ = σ′ + iτ ′ in S. For any sequence of complex
numbers {an} verifying

(4.3) an 6= 0 ⇒ τκ,κ(n) > 1,

real numbers θ ∈ (1/κ2, 1/κ1) and N > 1, we have

(4.4)

∑
s∈S

∣∣∣∑
n6N

ann
−s
∣∣∣2

�
{

(1 + %−1)N1/κ1 +

(
M(θ, 4T ) +

1

(1− κ1θ)(κ2θ − 1)

)
N θ|S|

}∑
n6N

|an|2

n2σ0
,

where the implied constant depends on κ only.

First we prove two preliminary lemmas. The first one is due to Bombieri (see also [12,
Lemma 5.1]). For the convenience of reader, we give a direct proof.

Lemma 4.1. Let S be a finite set of complex numbers s. For any {an}16n6N ⊂ C, we have

(4.5)
∑
s∈S

∣∣∣∑
n6N

ann
−s
∣∣∣2 6 (∑

n6N

|an|2b−1
n

)
max
s∈S

∑
s′∈S

|B(s+ s′)|

where

B(s) :=
∑
n>1

bnn
−s

is absolutely convergent at the points s + s′, and the bn are non-negative real numbers for
which bn > 0 whenever an 6= 0. Here the implied constant is absolute.

Proof. According our hypothesis on an and bn, we can write an = anb
−1/2
n b

1/2
n for all n 6 N .

Introducing the notation

A(s) :=
∑
n6N

ann
−s,

then we can write ∑
s∈S

|A(s)|2 =
∑
s∈S

∑
n6N

anb
−1/2
n b1/2

n n−s
∑
m6N

amm
−s

=
∑
n6N

(anb
−1/2
n )

(
b1/2
n

∑
s∈S

n−s
∑
m6N

amm
−s
)
.

By the Cauchy inequality, it follows that

(4.6)

(∑
s∈S

|A(s)|2
)2

6
(∑
n6N

|an|2b−1
n

)
Υ,

where

Υ :=
∑
n6N

bn

∣∣∣∑
s∈S

n−s
∑
m6N

amm
−s
∣∣∣2.
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Since B(s) is absolutely convergent at the points s+ s′, we can deduce

Υ 6
∑
n>1

bn

∣∣∣∑
s∈S

n−s
∑
m6N

amm
−s
∣∣∣2

=
∑
n>1

bn
∑
s′∈S

n−s
′∑
d6N

add
−s′
∑
s∈S

n−s
∑
m6N

amm
−s

=
∑
s∈S

∑
s′∈S

∑
d6N

add
−s′
∑
m6N

amm
−sB(s+ s′).

On the other hand, the trivial inequality |ab| 6 1
2
(|a|2 + |b|2) allows us to write∣∣∣∑

d6N

add
−s′
∑
m6N

amm
−s
∣∣∣ 6 1

2

(
|A(s)|2 + |A(s′)|2

)
.

Thus

Υ 6
∑
s∈S

∑
s′∈S

1

2

(
|A(s)|2 + |A(s′)|2

)
|B(s+ s′)|

6
1

2

∑
s∈S

∑
s′∈S

|A(s)|2|B(s+ s′)|+ 1

2

∑
s∈S

∑
s′∈S

|A(s′)|2|B(s+ s′)|

6
1

2

∑
s∈S

|A(s)|2 max
s∈S

∑
s′∈S

|B(s+ s′)|+ 1

2

∑
s′∈S

|A(s′)|2 max
s′∈S

∑
s∈S

|B(s+ s′)|.

Noticing that

|B(s+ s′)| = |B(s+ s′)| = |B(s+ s′)| = |B(s+ s′)|,
the precede inequality becomes

Υ 6
∑
s∈S

|A(s)|2 max
s∈S

∑
s′∈S

|B(s+ s′)|.

Inserting it into (4.6), we get the required result. �

The next lemma is an analogue of [12, page 157, Theorem II.2].

Lemma 4.2. Let r, κ, τκ,κ(n) and M(θ, T )be as before. For any s = σ+ iτ with σ > 0 and
|τ | > 1, real numbers θ ∈ (1/κ2, 1/κ1) and N > 1, we have

(4.7)

∣∣∣∣∑
n>1

τκ,κ(n)

ns
(
e−n/(2N) − e−n/N

)∣∣∣∣
� N1/κ1e−|τ | +

{
M(θ, 2|τ |) + (1− κ1θ)

−1(κ2θ − 1)−1
}
N θ,

where the implied constant depends on κ only.

Proof. Denote by SN(s) = SN(s;κ,χ) the series on the left-hand side of (4.7). By the
Perron formula [21, page 151, Lemma], we can write

(4.8) SN(s) =
1

2πi

∫ 2/κ1+i∞

2/κ1−i∞
ζ(κ(w + s))2Γ(w)

(
(2N)w −Nw

)
dw,
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where ζ(κs) is defined as in (2.1) above. We take the contour to the line <ew = θ−σ with
1/κ2 − σ < θ − σ < 1/κ1 − σ, and in doing so we pass a simple pole at w = 1/κ1 − s. Put

G(w) :=
∏

26j6r

ζ(κj(w + s))2Γ(w)
(
(2N)w −Nw

)
.

The residue of the integrand at this pole is, in view of the hypothesis σ > 0,

Res
w=1/κ1−s

ζ(κ(w + s))2Γ(w)
(
(2N)w −Nw

)
=
(
γG(1/κ1 − s) +G′(1/κ1 − s)/κ1

)
/κ1

� N1/κ1e−|τ |,

where we have used the Stirling formula [20, page 151]:

(4.9) |Γ(s)| =
√

2π e−(π/2)|τ ||τ |σ−1/2

{
1 +O

( | tan(arg s
2

)|
|τ |

+
|a|2 + |b|2

|τ |2
+
|a|3 + |b|3

|τ |3

)}
valable uniformly for a, b ∈ R with a < b, a 6 σ 6 b and |τ | > 1, where the implied
O-constant is absolute.

On the other hand, by using the Stirling formula again it is easy to see that for <ew = θ−σ
and |=mw| 6 |τ |, the integrand in (4.8) is

�
{
M(θ, 2|τ |) + (1− κ1θ)

−1(κ2θ − 1)−1
}
N θ−σe−|=mw|,

while otherwise the Stirling formula and the convexity bounds of ζ-function imply that

� N θ−σe−|=mw| �
(
M(θ, 2|τ |) + (1− κ1θ)

−1(κ2θ − 1)−1
)
N θ−σe−|=mw|.

The required result follows from this. �

Now we are ready to prove Proposition 4.1.

Proof. We shall apply Lemma 4.1 with the choice of

bn := τκ,κ(n)n2σ0
(
e−n/(2N) − e−n/N

)
.

In view of the simple fact that e−n/(2N) − e−n/N � 1 for N 6 n 6 2N and the hypothesis
(4.3), we have

(4.10)
∑
s∈S

∣∣∣ ∑
N6n62N

ann
−s
∣∣∣2 � ( ∑

N6n62N

|an|2n−2σ0
)

max
s∈S

∑
s′∈S

|B(s+ s′)|,

where

B(s) :=
∑
n>1

τκ,κ(n)

ns−2σ0

(
e−n/(2N) − e−n/N

)
.

In view of (4.1) and (4.2), we can apply Lemma 4.2 to deduce

|B(s+ s′)| =
∣∣∣∣∑
n>1

τκ,κ(n)

nσ+σ′−2σ0+i(τ ′−τ)

(
e−n/(2N) − e−n/N

)∣∣∣∣
� N1/κ1e−|τ

′−τ | +
{
M(θ, 2|τ ′ − τ |) + (1− κ1θ)

−1(κ2θ − 1)−1
}
N θ
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for any distinct points s = σ + iτ ∈ S and s′ = σ′ + iτ ′ ∈ S. By (4.2), the contribution of
the term N1/κ1e|τ

′−τ | to the sum
∑

s′∈S
s′ 6=s
|B(s+ s′)| is

� N1/κ1
∑
s′∈S

|τ−τ ′|>%

e−|τ−τ
′| � N1/κ1

∑
n>0

e−n
∑
s′∈S

n<|τ−τ ′|6n+1

1� (1 + %−1)N1/κ1 .

Thus

(4.11)

∑
s′∈S, s′ 6=s

|B(s+ s′)|

� (1 + %−1)N1/κ1 +
{
M(θ, 2|τ ′ − τ |) + (1− κ1θ)

−1(κ2θ − 1)−1
}
N θ|S|.

When s = s′, we have

(4.12) B(s+ s′) = B(2σ) 6
∑
n>1

τκ,κ(n)
(
e−n/(2N) − e−n/N

)
� N1/κ1 .

Now the required result follows from (4.10), (4.11) and (4.12). �

5. Density estimation of small value points

In [12], Montgomery developed a new method for studying zero-densities of the Riemann
ζ-function and of the Dirichlet L-functions. Subsequently by modifying this method, Huxley
[9] established his zero-density estimation (1.8). In [13], Motohashi noted that Montgomery’s
method can be adapted to estimate the density of “small value points” of ζ(s) (see [3,
Section 2.3] for a detail description). Here we shall adapt this method to prove the following
proposition.

Proposition 5.1. Under the previous notation, for j = 0, 1, . . . , JT we have

(5.1)
∣∣{k 6 KT : ∆j,k ∈ (W )

}∣∣� Tψ(1−κ1σj)(log T )η

if κ1σj 6 1− ε, and

(5.2)
∣∣{k 6 KT : ∆j,k ∈ (W )

}∣∣� T 500r(1−κ1σj)3/2(log T )10r

if 1− ε 6 κ1σj 6 1− δT . Here the implied constants depend on κ and ε only.

Proof. When κ1σj 6 1− ε, the number of ∆j,k of type (W ) does not exceed the number of
non-trivial zeros of ζ(κs)L(κs,χ). Thus

|{k 6 KT : ∆j,k ∈ (W )}| 6
∑

16i6r

(
N(κiσj, 2T ) +Nχi(κiσj, 3T )

)
.

Now the required bound follows from (1.7).
Next we suppose 1− ε 6 κ1σj 6 1− δT .

Let Kj(T ) be a subset of the set {log T 6 k 6 KT : ∆j,k ∈ (W )} such that the difference
of two distinct integers of Kj(T ) is at least 3A′, where A′ is the large integer specified in
(2.17). Obviously

|{(log T )2 6 k 6 KT : ∆j,k ∈ (W )}| 6 3A′|Kj(T )|.
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Therefore it suffices to show that

(5.3) |Kj(T )| �ε T
170(1−κ1σj)3/2(log T )13

for T > T0(ε,κ,χ).
Let Mx(s) be defined as in (2.17) and write

(5.4) Φx(s) := ζ(κs)L(κs,χ)Mx(s).

Let φx(n) be the nth coefficient of the Dirichlet series Φx(s), then

(5.5) φx(n) =
∑

d|n, d6x

τ 〈−1〉
κ (d;χ)τκ(n/d;χ).

By the Perron formula [21, Lemma, page 151], we can write∑
n>1

φx(n)

ns
e−n/y =

1

2πi

∫ 2/κ1+i∞

2/κ1−i∞
Φx(w + s)Γ(w)yw dw

for y > x > 3 and s = σ + iτ ∈ C with σj 6 σ < σj+1. We take the contour to the line
<ew = αj − σ < 0 with αj := 4σj − 3/κ1 < σj < 1/κ1, and in doing so we pass two simple
poles at w = 0 and w = 1/κ1 − s. Our equation becomes∑

n>1

φx(n)

ns
e−n/y = Φx(s) + Ψx,y(s) + I(s;x, y),

where

Ψx,y(s) :=
∏

26j6r

ζ(κj/κ1)L(κ/κ1,χ)Mx(1/κ1)Γ(1/κ1 − s)y1/κ1−s,

I(s;x, y) :=
1

2π

∫ +∞

−∞
Φx(αj + iτ + iu)Γ(αj − σ + iu)yαj−σ+iu du.

In view of (5.5) and (2.5), we have

(5.6) φx(n) =

{
1 if n = 1,

0 if 1 < n 6 x,

and

(5.7) |φx(n)| 6 (τκ,κ ∗ τκ,κ)(n) (n > x),

where τκ,κ(n) is defined as in (2.6) above. It is easy to see that∑
n6t

(τκ,κ ∗ τκ,κ)(n)� t1/κ1(log t)3.

By a simple partial integration, we can deduce that∣∣∣ ∑
n>y2

φx(n)

ns
e−n/y

∣∣∣ 6 ∫ ∞
y2

t−σe−t/y d
(∑
n6t

(τκ,κ ∗ τκ,κ)(n)
)

� e−yy1−2σ(log y)3 + y−1

∫ ∞
y2

e−t/yt1/κ1−σ(log t)3 dt

� e−y/2
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for σ > 1/(2κ1). Inserting it into the precedent relation, we find that

(5.8) e−1/y +
∑

x<n6y2

φx(n)

ns
e−n/y +O(e−y/2) = Φx(s) + Ψx,y(s) + I(s;x, y)

for s ∈ C with σj 6 σ < σj+1 and y > x > 3.
If k ∈ Kj(T ), then there is at least a sk := vk + itk ∈ ∆j,k such that

(5.9) |ΦNj(sk)| = |ζ(κsk)L(κsk;χ)MNj(sk)| 6 1
2
·

By the definition of Kj(T ), we have

σj 6 vk 6 σj+1, (log T )2 6 tk 6 T and |tk1 − tk2| > 3A′ log T (k1 6= k2).

Since |tk| > (log T )2, the Stirling formula (4.9) allows us to deduce

(5.10)

|Ψx,y(sk)| =
∣∣∣ ∏

26j6r

ζ(κj/κ1)L(κ/κ1,χ)Mx(1/κ1)Γ(1/κ1 − sk)y1/κ1−sk
∣∣∣

� (log x)y1/2−vke−(π/2)|tk||tk|1/2−vk

6 1
10

for all 3 6 x 6 y 6 T 100.
Similarly, using the estimates

ζ(κ(αj + itk + iu))� (T + |u|)r,
L(κ(αj + itk + iu),χ)� (T + |u|)r,
Mx(αj + itk + iu)� x1/κ1−αj log x� T 100

and the Stirling formula (4.9), we derive that

(5.11)

∫
|u|>A′ log T

∣∣Φx(αj + itk + iu)Γ(αj − vk + iu)
∣∣yαj−vk du 6 1

10

for all 3 6 x 6 y 6 T 100.
Taking (s, x) = (sk, Nj) in (5.8) and combining with (5.9), (5.10) and (5.11), we easily

see that

(5.12)

∣∣∣∣ ∑
Nj<n6y2

φNj(n)

nsk
e−n/y

∣∣∣∣ > 1

6

or

(5.13)

∣∣∣∣ ∫ A′ log T

−A′ log T

ΦNj(αj + itk + iu)Γ(αj − vk + iu)yα−vk+iu du

∣∣∣∣ > 1

6

or both.
Let K′j(T ) and K′′j (T ) be the subsets of Kj(T ) for which (5.12) and (5.13) hold respectively.

Then

(5.14) |Kj(T )| 6 |K′j(T )|+ |K′′j (T )|.
First we bound |K′j(T )|. By a dyadic argument, there is a U ∈ [Nj, y

2] such that

(5.15)

∣∣∣∣ ∑
U<n62U

φNj(n)

nsk
e−n/y

∣∣∣∣ > 1

18 log y
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holds for � |K′j(T )|(log y)−1 integers k ∈ K′j(T ). Let S′ be the set of corresponding points
sk. With the help of (5.6), it is easy to see that φNj(n) 6= 0 ⇒ τκ,κ(n) > 1. Thus we can
apply Proposition 4.1 with an = φNj(n) and θ = αj := 4σj − 3/κ1. In view of the bound∑

U<n62U

(τκ,κ ∗ τκ,κ)(n)2

n2σj
e−2n/y � e−2U/y

∫ 2U

U

t−2σj d
( ∑
U<n6t

(τκ,κ ∗ τκ,κ)(n)2
)

� U1/κ1−2σj(log T )3e−2U/y,

it follows that

(5.16)

∑
sk∈S′

∣∣∣∣ ∑
U<n62U

φNj(n)

nsk
e−n/y

∣∣∣∣2
�
(
U2(1/κ1−σj) + |S′|U−2(1/κ1−σj)M(αj, 4T )

)
e−2U/y(log T )3.

Since U > Nj, we have

U−2(1/κ1−σj)(log T )3 M(αj, 4T ) 6 A′−1(log T )−2.

On the other hand, the inequality (5.15) implies that the member on the left-hand side of
(5.16) is

> |S′|(18 log y)−2 > |S′|(1800 log T )−2.

Since A′ is a fixed large integer, the last term on the right-hand side of (5.16) is smaller
than this lower bound. Thus it can be simplified as

|S′|(log T )−2 � U2(1/κ1−σj)(log T )3e−2U/y

for all Nj 6 y 6 T 100 and some U ∈ [Nj, y
2]. Noticing that

|S′| � |K′j(T )|(log T )−1,

we obtain

(5.17)
|K′j(T )| � y2(1/κ1−σj)(log T )6 (for all Nj 6 y 6 T 100)

� N
(10/3)(1/κ1−σj)
j (log T )7/3 (for y given by (5.19)).

Next we bound |K′′j (T )|. Let uk ∈ [−A′ log T,A′ log T ] such that

ΦNJ (s′k) = max
|u|6A log T

|ΦNj(αj + i(tk + u))|

where s′k := αj + it′k and t′k := tk + uk. Thus from (5.13) we deduce that

1

6
6

∣∣∣∣ ∫ A′ log T

−A′ log T

ΦNj(αj + i(tk + u))Γ(αj − vk + iu)yαj−vk+iu du

∣∣∣∣
6 yαj−vk

∣∣ΦNj(s
′
k)
∣∣ ∫ A′ log T

−A′ log T

∣∣Γ(αj − vk + iu)
∣∣ du.

Since Γ(s) has a simple pole at s = 0 and |αj − vk| � (log T )−1, we can derive, via (4.9),
that ∫ A′ log T

−A′ log T

∣∣Γ(αj − vk + iu)
∣∣ du� log T
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and thus

1� yαj−σj
∣∣MNj(s

′
k)
∣∣M(αj, 8T ) log T,

or equivalently ∣∣MNj(s
′
k)
∣∣� yσj−α

(
M(αj, 8T ) log T

)−1
.

Hence there is a V ∈ [1, Nj] such that∣∣∣ ∑
V <n62V

τ 〈−1〉
κ (n;χ)n−s

′
k

∣∣∣� yσj−αM(αj, 8T )−1(log T )−2

holds for� |K′′j (T )|(log T )−1 integers k ∈ K′′j (T ). Let S′′ be the corresponding set of points
s′k. We note |t′k| 6 2T and

|t′k1 − t
′
k2
| > |tk1 − tk2| − |uk1 − uk2| > A′ log T.

Using Proposition 4.1 with θ = αj := 4σj − 3/κ1 and an = τ
〈−1〉
κ (n;χ) and in view of the

bound ∑
V <n62V

τκ,κ(n)2n−2αj � V 1/κ1−2αj(log V )3 � V 7/κ1−8σj(log V )3,

it follows that

(5.18)
∑
s′k∈S′′

∣∣∣ ∑
V <n62V

τ 〈−1〉
κ (n;χ)n−s

′
k

∣∣∣2 � (
V 8(1/κ1−σj) + |S′′|M(αj, 8T )V 4(1/κ1−σj)

)
(log V )3.

Take y such that

(5.19)
y2(σj−αj) = A′

3
N

4(1/κ1−σj)
j M(αj, 8T )3(log T )4

= N
10(1/κ1−σj)
j (log T )−11.

The left-hand side of (5.18) is

> |S′′|y2(σj−αj)M(αj, 8T )−2(log T )−4.

Hence the inequality (5.18) can be simplified as

|S′′|y2(σj−αj)M(αj, 8T )−2(log T )−4 � N
8(1/κ1−σj)
j .

With

|S′′| � |K′′j (T )|(log T )−1,

we deduce that

(5.20)
|K′′j (T )| � N

8(1/κ1−σj)
j y2(αj−σj)M(αj, 8T )2(log T )5

� N
2(1/κ1−σj)
j (log T )7.

On combining (5.14), (5.17) and (5.20), it follows that

|Kj(T )| � N
(10/3)(1/κ1−σj)
j (log T )3.

Now the required inequality follows from (3.10). This completes the proof. �
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6. Proof of Theorem 1.1

We shall conserve the notation in Section 2. First we prove a lemma.

Lemma 6.1. Let r ∈ N, κ := (κ1, . . . , κr) ∈ Nr with 1 6 κ1 < · · · < κr 6 2κ1, z :=
(z1, . . . , zr) ∈ Cr, B := (B1, . . . , Br) ∈ (R+∗)r, and let α > 0, δ > 0, A > 0, M > 0 be some
constants. Suppose that the Dirichlet series

F(s) :=
∞∑
n=1

f(n)n−s

is of type P(κ, z,w,B,C, α, δ, A,M). Then there is an absolute positive constant D and a
constant B = B1 + · · ·+Br + C1 + · · ·+ Cr such that we have

(6.1) F(s)�MDBT (δ+B
√
ε)(1−κ1σ)(log T )A+B

for all s ∈ LT , where the implied constant depends only on ε.

Proof. Since we have chosen the principal value of complex logarithm, we can write∣∣ζ(κs)zL(κs,χ)w
∣∣ =

∏
16i6r

|ζ(κis)|<e zi |L(κis, χi)|<ewie−(=mzi) arg ζ(κis)−(=mwi) argL(κis,χi)

6 eπ(B1+···+Br+C1+···+Cr)
∏

16i6r

|ζ(κis)|<e zi |L(κis, χi)|<ewi

for all s ∈ C verifying
∏

16i6r ζ(κis)L(κis, χi) 6= 0. Invoking Proposition 3.1, we see that
there is a suitable absolute constant D and a constant B = B(B,C) depending on (B,C)
such that

(6.2)
∣∣ζ(κs)zL(κs,χ)w

∣∣�ε,χ D
BTB

√
ε(1−κ1σ)(log T )B

for all s ∈ LT , where the implied constant depends only on (ε,χ).
Finally the required bound (6.1) follows from (6.2) and the hypothesis (1.6). �

Now we are ready to prove Theorem 1.1.
Since the Dirichlet series F(s) is of type P(κ, z,w,B,C, α, δ, A,M), we can apply [19,

Corollary II.2.2.1] with the choice of parameters σa = 1/κ1, α = α, σ = 0 to write

∑
x<n6x+x1−1/κ1y

f(n) =
1

2πi

∫ b+iT

b−iT

F(s)
(x+ x1−1/κ1y)s − xs

s
ds+Oε

(
M
x1/κ1+ε

T

)
,

where b = 1/κ1 + 1/ log x and e
√

log x 6 T 6 x is a parameter to be chosen later.
Denote by ΓT the path formed from the circle |s− 1/κ1| = r0 := 1/(2κ1 log x) excluding

the point s = 1/κ1− r0, together with the segment [(1− δT )/κ1, 1/κ1− r0] traced out twice
with respective arguments +π and −π. By the residue theorem, the path [b − iT, b + iT ]
is deformed into ΓT ∪ [(1 − δT )/κ1 − iT, (1 − δT )/κ1 + iT ] ∪ [(1 − δT )/κ1 ± iT, b ± iT ]. In
view of Lemma 6.1, for any a ∈ (1/(2κ1), 1/κ1), the integral over the horizontal segments
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[a± iT, b± iT ] is∫ b±iT

a±iT

∣∣∣∣F(s)
(x+ x1−1/κ1y)s − xs

s

∣∣∣∣| ds|
� MDC(log T )A+B

T

∫ b

a

Tmax{(δ+B
√
ε)(1−κ1σ), 0}xσ dσ

�MDC x
1/κ1

T
(log T )A+B

(∫ 1/κ1

a

(
x1/κ1

T δ+B
√
ε

)κ1σ−1

dσ + 1

)
�MDC x

1/κ1

T
(log T )A+B,

provided

(6.3) T δ+B
√
ε 6 x1/κ1 .

Thus

(6.4)
∑

x<n6x+x1−1/κ1y

f(n) = I +O

(
MDC x

1/κ1+ε

T

)
,

where

I :=
1

2πi

∫
ΓT∪[(1−δT )/κ1−iT, (1−δT )/κ1+iT ]

F(s)
(x+ x1−1/κ1y)s − xs

s
ds.

and the implied constant depends on (ε,χ) only.
Let LT be the Motohashi contour defined as in Section 2. Consider the two symmetric

simply connected regions bounded by LT , the segment [(1− δT )/κ1 − iT, (1− δT )/κ1 + iT ]
and the two line segments [σj0+1 + dv, (1 − δT )/κ1] with respective arguments +π and −π
measured from the real axis on the right of 1− δT . It is clear that F(s) is analytic in these
two simply connected regions. Denote by Γ∗T the path joining (the two end-points of) ΓT
with the two line segments [σj0+1 +dv, (1− δT )/κ1] of the symmetric regions. Thanks to the
residue theorem, we can write

(6.5) I = I1 + I2,

with

I1 :=
1

2πi

∫
Γ∗T

F(s)
(x+ x1−1/κ1y)s − xs

s
ds,

I2 :=
1

2πi

∫
LT

F(s)
(x+ x1−1/κ1y)s − xs

s
ds.

A. Evaluation of I1

According to our hypothesis, the function s 7→ Z(κ1s; z1)ζ(κ∗s)
z∗L(κs,χ)wG(s) is holo-

morphic in the disc |s−1/κ1| < 1/κ1−1/κ2. In view of (1.12), the Cauchy integral formula
implies that

(6.6) g`(κ, z,w,χ)�Mc−` (` > 0, |z| 6 |B|, |w| 6 |C|),
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where g`(κ, z,w,χ) is defined as in (1.14) and c := 2
3
(1/κ1 − 1/κ2). From this and (1.13),

we deduce that for any integer N > 0 and |s− 1/κ1| 6 1
2
(1/κ1 − 1/κ2),

Z(κ1s; z1)ζ(κ∗s)
z∗L(κs,χ)wG(s) =

N∑
`=0

g`(κ, z,w,χ)
(
s− 1

κ1

)`
+O

(
M(|s− 1

κ1
|/c)N+1

)
.

Thus we have

(6.7) I1 =
N∑
`=0

κ−z11 g`(κ, z,w,χ)M`(x, y) +O
(
Mc−NEN(x, y)

)
,

where

M`(x, y) :=
1

2πi

∫
Γ∗T

(s− 1/κ1)`−z1
(x+ x1−1/κ1y)s − xs

s
ds,

EN(x, y) :=

∫
Γ∗T

∣∣∣∣(s− 1/κ1)N+1−z1 (x+ x1−1/κ1y)s − xs

s

∣∣∣∣| ds|.
Firstly we evaluate M`(x, y). Using the formula

(6.8)
(x+ x1−1/κ1y)s − xs

s
=

∫ x+x1−1/κ1y

x

ts−1 dt

and Corollary II.5.2.1 of [19], we write

M`(x, y) =

∫ x+x1−1/κ1y

x

(
1

2πi

∫
Γ∗T

(s− 1/κ1)`−z1ts−1 ds

)
dt

=

∫ x+x1−1/κ1y

x

t1/κ1−1(log t)z1−1−`
{

1

Γ(κ1 − `)
+O

(
(c1`+ 1)`

tδT /2

)}
dt,

where we have used the following inequality

47|z1−`|Γ(1 + |z1 − `|)�B1 (c1`+ 1)` (` > 0, |z1| 6 B1).

The constant c1 and the implied constant depend at most on B1. Besides for |z1| 6 B1, an
elementary computation shows that∫ x+x1−1/κ1y

x

t1/κ1−1(log t)z1−1−` dt =

∫ x1−1/κ1y

0

(x+ t)1/κ1−1(log(x+ t))z1−1−` dt

= y′(log x)z1−1−`
{

1 +OB1

(
(`+ 1)y

x1/κ1 log x

)}
.

Inserting this into the preceeding formula, we obtain

(6.9) M`(x, y) = y′(log x)z1−1−`
{

1

Γ(z1 − `)
+OB1

(
(`+ 1)y

Γ(z1 − `)x1/κ1 log x
+

(c1`+ 1)`

xδT /2

)}
for ` > 0 and |z1| 6 B1.

Next we estimate EN(x, y). In view of the trivial inequality

(6.10)

∣∣∣∣(x+ x1−1/κ1y)s − xs

s

∣∣∣∣� yxσ−1/κ1 ,
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we deduce that

(6.11)

EN(x, y) �
∫ 1/κ1−1/ log x

1/2κ1+ε2
(1/κ1 − σ)N+1−<e z1xσ−1/κ1y dσ +

y

(log x)N+2−<e z1

� y

(log x)N+2−<e z1

(∫ ∞
1

tN+1−<e z1e−t dt+ 1

)
� y(log x)<e z1−1

(
c1N + 1

log x

)N+1

uniformly for x > y > 2, N > 0 and |z1| 6 B1, where the constant c1 > 0 and the implied
constant depends only on B1.

Inserting (6.9) and (6.11) into (6.7) and using (6.6) and the fact that y′ � y, we find that

(6.12) I1 = y′(log x)z−1

{ N∑
`=0

λ`(κ, z,w,χ)

(log x)`
+OB1

(
E∗N(x, y)

)}
,

where

E∗N(x, y) :=
y

x1/κ1

N+1∑
`=1

`|λ`−1(κ, z,w,χ)|
(log x)`

+
(c1N + 1)N+1

xδT /2
+M

(
c1N + 1

log x

)N+1

.

B. Evaluation of I2

Let L ′
T be the union of those vertical line segments of LT whose real part is equal to

1
2κ1

+ ε2 and L ′′
T := LTrL ′

T . Denote by I ′2 and I ′′2 the contribution of L ′
T and L ′′

T to I2,
respectively. Using the trivial inequality∣∣∣∣(x+ x1−1/κ1y)s − xs

s

∣∣∣∣� x1/2κ1+ε2

|τ |+ 1
(s ∈ L ′

T )

and Lemma 6.1, we can deduce

(6.13)

I ′2 �MDBx1/2κ1+ε2T (δ+B
√
ε)(1/2−κ1ε2)(log T )A+4B+1

�Mx(1/2+δ/2(ψ+δ))/κ1+
√
ε

�Mx(1−1/(ψ+δ))/κ1+
√
ε

with the value of T given by (6.15) below and ψ > 2.
Next we bound I ′′2 . In view of (6.10), we can write that

(6.14)

I ′′2 � y

∫
L ′′T

|F(s)|xσ−1/κ1| ds|

� y
∑

06j6JT

∑
06k6KT
∆j,k∈(W )

∫
L

[j,k]
T

|F(s)|xσ−1/κ1| ds|,

where L [j,k]
T is the vertical line segment of L ′′

T around ∆j,k and the horizontal line segments

with σ 6 σj + dv. Clearly the length of L [j,k]
T is � log T . Thus by Lemma 6.1, it follows∫

L
[j,k]
T

|F(s)|xσ−1| ds| �MDB(log T )A+4B+1T (δ+B
√
ε)(1−κ1(σj+dv))xσj+dv−1/κ1
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for all 0 6 k 6 KT . Inserting it into (6.14) and using Proposition 5.1, we can deduce, with
the notation JT,0 := [(1

2
− ε) log T ], that

I ′′2 �MDBy(log T )A+4B+18+η(I ′′2,∗ + I ′′2,†),

where

I ′′2,∗ :=
∑

06j6JT,0

T (δ+B
√
ε)(1−κ1(σj+dv))xσj+dv−1/κ1 · Tψ(1−κ1σj),

I ′′2,† :=
∑

JT,0<j6JT

T (δ+B
√
ε)(1−κ1(σj+dv))xσj+dv−1/κ1 · T 100

√
ε(1−σj).

Taking

(6.15) T := x(1−κ1
√
ε)/κ1(ψ+δ+B

√
ε)

and in view of (2.23), it is easy to check that

I ′′2,∗ � xε
2/κ1

∑
06j6JT,0

(
x1/κ1/Tψ+δ+B

√
ε
)−(1−κ1σj) log x� x2ε2/κ1−ε3/2 � x−ε

2

and

I ′′2,† �
∑

JT,0<j6JT

(
x/T δ+100(B+1)

√
ε
)−(1−κ1σj) � e−2c2(log x)1/3(log2 x)−1/3

.

Inserting it into the preceeding estimate for I ′′2 , we conclude that

(6.16) I ′′2 �B Mye−c2(log x)1/3(log2 x)−1/3

.

Now from (6.4), (6.5), (6.12), (6.13) and (6.16). we deduce that∑
x<n6x+x1−1/κ1y

f(n) = y′(log x)z−1

{ N∑
`=0

λ`(κ, z,w,χ)

(log x)`
+O

(
R∗N(x, y)

)}
uniformly for x > 3, x(1−1/(ψ+δ))/κ1+ε 6 y 6 x1/κ1 , N > 0, |z| 6 B and |w| 6 C, where

R∗N(x, y) :=
y

x1/κ1

N+1∑
`=1

`|λ`−1(κ, z,w,χ)|
(log x)`

+M

{(
c1N + 1

log x

)N+1

+
(c1N + 1)N+1

ec2(log x)1/3(log2 x)−1/3

}
for some constants c1 > 0 and c2 > 0 depending only on B, C, δ and ε.

It remains to prove that the first term on the right-hand side can be absorbed by the
third. In view of (1.12), the Cauchy formula allows us to write g`(κ, z,w,χ)�A,B,C,δ M3`

for |z| 6 B, |w| 6 C and ` > 1. Combining this with the Stirling formula, we easily derive
λ`(κ, z,w,χ)�A,B,C,δ M(9/`)` for |z| 6 B, |w| 6 C and ` > 1. This implies that

y

x1/κ1

N+1∑
`=1

`|λ`−1(κ, z,w,χ)|
(log x)`

�A,B,C,δ
My

x1/κ1 log x

holds uniformly for x > 3, x(1−1/(ψ+δ))/κ1+ε 6 y 6 x1/κ1 , N > 0, |z| 6 B and |w| 6 C. This
completes the proof.
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