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In this paper, we shall establish a rather general asymptotic formula in short intervals for a classe of arithmetic functions and announce two applications about the distribution of divisors of square-full numbers and integers representable as sums of two squares.

Introduction

This is the third paper of our series on the Selberg-Delange method for short intervals. Roughly speaking this method applies to evaluate mean values of arithmetic functions whose associated Dirichlet series are close to complex powers of the Riemann ζ-function. In the first part, by using a suitable contour (located to the left of the Korobov-Vinogradov zero-free region of ζ(s)) instead of Hankel's contour used in the original version of the Selberg-Delange method, Cui and Wu [START_REF] Cui | The Selberg-Delange method in short intervals with an application[END_REF] extended this method to handle mean values of arithmetic functions over a short interval, when their corresponding Dirichlet series is close to a positive power of ζ-function. In the second one, Cui, Lü and Wu [START_REF] Cui | The Selberg-Delange method in short intervals with some applications[END_REF] treated the complex power case with the help of the well-known Hooley-Huxley-Motohashi contour. Some similar results have were appeared in Ramachandra's paper [START_REF] Ramachandra | Some problems of analytic number theory[END_REF]. In this paper, we shall consider a more general case and give some arithmetic applications.

Assumptions.

Let us fix some notation: -ζ(s) is the Riemann ζ-function, -L(s, χ) is the Dirichlet L-function of χ, -ε is an arbitrarily small positive constant, -r ∈ N, α > 0, δ 0, A 0, M > 0 (constants), -z := (z 1 , . . . , z r ) ∈ C r and w := (w 1 , . . . , w r ) ∈ C r , -κ := (κ 1 , . . . , κ r ) ∈ (R + * ) r with 1 κ 1 < • • • < κ r 2κ 1 , -χ := (χ 1 , . . . , χ r ) with χ i non principal Dirichlet characters, -B := (B 1 , . . . , B r ) ∈ (R + * ) r and C := (C 1 , . . . , C r ) ∈ (R + * ) r , -The notation |z| B means that |z i | B i for 1 i r. Let f : N → C be an arithmetic function and its corresponding Dirichlet series is given by (1.1)

F(s) := ∞ n=1 f (n)n -s .
We say that this Dirichlet series F(s) is of type P(κ, z, w, B, C, α, δ, A, M ) if the following conditions are verified: (a) For any ε > 0 we have As usual, we denote by N (σ, T ) and N χ (σ, T ) the number of zeros of ζ(s) and L(s, χ) in the region e s σ and | m s| T , respectively. It is well known that there are two constants ψ and η such that (1.7) N (σ, T ), N χ (σ, T ) T ψ(1-σ) (log T ) η for 1 2 σ 1 and T 2. Huxley [START_REF] Huxley | The difference between consecutive primes[END_REF] showed that (1.8) ψ = 12 5 and η = 9 are admissible for ζ(s). It is not difficult to extend it for L(s, χ). The zero density hypothesis is stated as (1.9) ψ = 2.

(1.2) |f (n)| ε M n ε ( n 
1.2. Set-up and main results.

Our main aim of this paper is to establish, under the previous assumptions, an asymptotic formula for the summatory function (1.10) x<n x+x 1-1/κ 1 y f (n) where y := x ϑ with ϑ ∈ (0, 1] as small as possible. In order to state our result, it is necessary to introduce some notation. Obviously the function Z(κs; z) := {(κs -1)ζ(κs)} z is holomorphic in the disc |s -1/κ| < 1/κ, and admits, in the same disc, the Taylor series expansion

Z(κs; z) = ∞ j=0 γ j (z, κ) j! (s -1/κ) j ,
where the γ j (z, κ)'s are entire functions of z satisfying the estimate

(1.11) γ j (z, κ) j! B,κ,ε (1 + ε) j (j 0, |z| B)
for all B > 0, κ and ε > 0. Write κ * = (κ 2 , . . . , κ r ) and z * = (z 2 , . . . , z r ). Under our hypothesis, the function

G(s)Z(κ 1 s; z 1 )ζ(κ * s) z * L(κs; χ) w is holomorphic in the disc |s -1/κ 1 | < 1/κ 1 -1/κ 2 and
(1.12)

|Z(κ 1 s; z 1 )ζ(κ * s) z * L(κs; χ) w G(s)| A,B,C,δ,ε M for |s -1/κ 1 | < 1/κ 1 -1/κ 2 -ε, |z| B and |w| C. Thus we can write (1.13) Z(κ 1 s; z 1 )ζ(κ * s) z * L(κs; χ) w G(s) = ∞ =0 g (κ, z, w, χ)(s -1/κ 1 ) for |s -1/κ 1 | 1 2 (1/κ 1 -1/κ 2 )
, where

(1.14) g (κ, z, w, χ) := j=0 γ j (z 1 , κ 1 ) ( -j)!j! • ∂ -j (ζ(κ * s) z * L(κs; χ) w G(s)) ∂s -j s=1/κ 1 .
The main result of this paper is as follows.

Theorem 1.1. Let r ∈ N, κ ∈ (R + * ) r , z ∈ C r , w ∈ C r , B ∈ (R + * ) r , C ∈ (R + * ) r , χ, α > 0, δ 0 
, A 0, M > 0 be given as before. Suppose that the Dirichlet series F(s) defined as in (1.1) is of type P(κ, z, w, B, C, χ, α, δ, A, M ). Then for any ε > 0, we have

(1.15) x<n x+x 1-1/κ 1 y f (n) = y (log x) z-1 N =0 λ (κ, z, w, χ) (log x) + O M R N (x)
uniformly for

x 3, x (1-1/(ψ+δ))/κ 1 +ε y x 1/κ 1 , N 0, |z| B, |w| C,
where

y := κ 1 ((x + x 1-1/κ 1 y) 1/κ 1 -x 1/κ 1 ), λ (κ, z, w, χ) := κ -z 1 1 g (κ, z, w, χ)/Γ(z 1 -), R N (x) := c 1 N + 1 log x N +1 + (c 1 N + 1) N +1 e c 2 (log x/ log 2 x) 1/3 + y x 1/κ 1 log x
for some constants c 1 > 0 and c 2 > 0 depending only on B, C, δ and ε. The implied constant in the O-term depends only on κ, B, C, χ, A, α, δ and ε. In particular, ψ = 12 5 is admissible.

The admissible length of short intervals in Theorem 1.1 depends only on the zero density constant ψ of ζ(s) and δ in (1.6) (for which we take δ = 0 in most applications). Its independence from the power z of ζ(s) in the representation of F(s) seems interesting. Theorem 1.1 generalizes and improves [2, Theorem 1] to the case of complex powers and intervals of shorter length.

Taking N = 0 in Theorem 1.1, we obtain readily the following corollary.

Corollary 1.1. Under the conditions of Theorem 1.1, for any ε > 0, we have

(1.16
) In order to study the distribution of divisors of integers, Deshouillers, Dress & G. Tenenbaum [START_REF] Deshouillers | Lois de répartition des diviseurs[END_REF] introduced the random variable D n , which takes the value (log d)/ log n, as d runs through the set of the τ (n) divisors of n, with the uniform probability 1/τ (n), and consider its distribution function

x<n x+x 1-1/κ 1 y f (n) = y (log x) z-1 λ 0 (κ, z, w, χ) + O M log x uniformly for x 3, x (1-1/(ψ+δ))/κ 1 +ε y x 1/κ 1 , |z| B, |w| C, where λ 0 (κ, z, w, χ) := G(1/κ 1 ) κ z 1 1 Γ(z 1 ) 2 i r ζ(κ i /κ 1 ) z i 1 i r L(κ i /κ 1 , χ i ) w i
F n (t) = Prob(D n t) = 1 τ (n) d|n, d n t 1 (0 t 1).
It is clear that the sequence {F n } n 1 does not converge pointwisely on [0, 1]. However Deshouillers, Dress & Tenenbaum ( [START_REF] Deshouillers | Lois de répartition des diviseurs[END_REF] or [START_REF] Tenenbaum | Introduction to analytic and probabilistic number theory[END_REF]Theorem II.6.7]) proved that its Cesàro mean converges uniformly to the arcsin law. More precisely, they showed that the asymptotic formula

(1.17) 1 x n x F n (t) = 2 π arcsin √ t + O 1 √ log x
holds uniformly for x 2 and 0 t 1. Here we shall announce two applications of Corollary 1.1: the distribution of divisors of square-full numbers and of integers representable as sums of two squares. The proof will be given in another paper [START_REF] Wu | On the distribution of divisors de certains integers in short intervals[END_REF].

A. Beta law on divisors of square-full numbers in short intervals An integer n is called square-full if p | n ⇒ p 2 | n. Denote by 1 sf (n) the characteristic function of such integers and define

(1.18) U (x, y) := x<n x+x 1/2 y 1 sf (n).
Our first result is as follows.

Theorem 1.2. For any ε ∈ (0, 5 48 ), we have

(1.19) 1 U (x, y) x<n x+x 1/2 y 1 sf (n)F n (t) = B( 2 3 , 1 3 ) -1 t 0 w -1 3 (1 -w) -2 3 dw + O 1 3 √ log x
uniformly for x 3 and x 19/48+ε y x 1/2 , where B(u, v) is the beta function defined by

(1.20) B(u, v) := 1 0 w u-1 (1 -w) v-1 dw
for u > 0 and v > 0.

B. Beta law on divisors of integers representable as sums of two squares Define (1.21)

1 + (n) := 1 if n = + 0 otherwise and V (x) := n x 1 + (n).
They proved that the mean of F n (t) over integers representable as sum of two squares converges to the beta law [7, Theorem 1]: For x → ∞, we have

(1.22) 1 V (x) n x 1 + (n)F n (t) = B( 1 4 , 1 4 ) -1 t 0 w -3 4 (1 -w) -3 4 dw + O 1 4 √ log x .
Here we shall generalise (1.22) to the short interval case. Put Our result is as follows.

Theorem 1.3. For any ε ∈ (0, 5 12 ), we have

(1.24) 1 V (x, y) x<n x+y 1 + (n)F n (t) = B( 1 4 , 1 4 ) -1 t 0 w -3 4 (1 -w) -3 4 dw + O 1 4 √ log x
uniformly for x 3 and x 19/24+ε y x.

The Hooley-Huxley-Motohashi contour

The Hooley-Huxley-Motohashi contour appeared in Ramachandra [START_REF] Ramachandra | Some problems of analytic number theory[END_REF] and Motohashi [START_REF] Motohashi | On the sum of the Möbis function in a short segment[END_REF], independently. In [START_REF] Hooley | On intervals between numbers that are sums of two squares III[END_REF], Hooley stated, without proof, his joint result with Huxley:

x<n x+x θ 1 + (n) ∼ 2 -1/2 p≡1(mod 4) (1 -p -2 ) -1/2 x θ √ log x for x → ∞, provided θ > 7 12
. According to Ramachandra [14, page 314], Hooley and Huxley have educated him on their method and allowed him make some comments about their method. A key point of this method is to use an ingeneous contour, which is called the Huxley-Hooley contour by Ramachandra. In [START_REF] Motohashi | On the sum of the Möbis function in a short segment[END_REF], Motohashi constructed a essential same contour to prove

x<n x+x θ µ(n) = o(x θ ) (x → ∞) provided θ > 7 12 .
Here we shall follow Motohashi's argument and construct a Hooley-Huxley-Motohashi contour for our purpose.

Notation.

Let (κ, χ) be as before. First we write ζ(κs)L(κs, χ) :=

1 i r ζ(κ i s)L(κ i s, χ i ) =: n 1 τ κ (n; χ)n -s , (2.1) (ζ(κs)L(κs, χ)) -1 := 1 i r (ζ(κ i s)L(κ i s, χ i )) -1 =: n 1 τ -1 κ (n; χ)n -s (2.2)
for σ > 1/κ 1 , respectively. Here and in the sequel, we define implicitly the real numbers σ and τ by the relation s = σ + iτ . A simple computation shows that

τ κ (n; χ) = m κ 1 1 •••m κr r n κ 1 1 •••n κr r =n 1 i r χ i (n i ), (2.3) τ -1 κ (n; χ) = m κ 1 1 •••m κr r n κ 1 1 •••n κr r =n 1 i r µ(m i )µ(n i )χ i (n i ). (2.4)
From these, we deduce that (2.5)

|τ κ (n; χ)| τ κ,κ (n), |τ -1 κ (n; χ)| τ κ,κ (n), τ κ * τ -1 κ = 1 {1}
for all n 1, where

(2.6) τ κ,κ (n) := m κ 1 1 •••m κr r n κ 1 1 •••n κr r =n
1 and 1 {1} is the unit with respect to the Dirichlet convolution.

Upper bounds for ζ(s)

±1 and L(s, χ) ±1 in their zero-free regions.

It is well known that there is an absolute positive constant c such that ζ(s) = 0 for

(2.7) σ 1 -c(log |τ |) -2/3 (log 2 |τ |) -1/3 , |τ | 3
(the zero-free region, due to Korobov and Vinogradov) and in this region we have

(2.8) ζ(s) ±1 (log |τ |) 2/3 (log 2 |τ |) 1/3
(see [21, page 135] or [19, page 162]). For the Dirichlet L-functions, Richert [START_REF] Richert | Zur abschatzung der Riemannschen zetafunktion in der nähe der vertikalen σ = 1[END_REF] has established similar results.

Lemma 2.1. Let χ be a non-principal Dirichlet character module q and let L(s, χ) be the corresponding Dirichlet L-function. Then we have

(2.9) |L(s, χ)| |τ | 100(1-σ) 3/2 (log τ ) 4/3 if 1 2 σ 1 and |τ | 3, log |τ | if σ 1 and |τ | 3.
Further there is a positive constant c χ depending on χ such that

(2.10) |L(s, χ)| -1 (log |τ |) 2/3 (log 2 |τ |) 1/3 for σ 1 -500c χ (log |τ |) -2/3 (log 2 |τ |) -1/3 and |τ | 3.
Here the implied constants depend on χ only.

Proof. Let s = σ + iτ . Without loss of generality, we can suppose that τ 2. For σ := e s > 1 and 0 < w 1, the Hurwitz ζ-function is defined by

ζ(s, w) := ∞ n=0 (n + w) -s .
This function can be extended to a meromorphic function over C {1}. According to [START_REF] Richert | Zur abschatzung der Riemannschen zetafunktion in der nähe der vertikalen σ = 1[END_REF]Satz], there is a absolute constant c > 0 such that we have

(2.11) ζ(s, w) -w -s c|τ | 100(1-σ) 3/2 log |τ | 2/3 uniformly for 0 < w 1, 1 2 σ 1 and |τ | 3. Since χ(n) is of period q, we can write, for σ > 1, L(s, χ) = q a=1 ∞ n=0 χ(a + nq)(nq + a) -s = q -s q a=1 χ(a) ζ(s, a/q) -(a/q) -s + q a=1 χ(a)a -s .
This relation also holds for all s ∈ C {1} by analytic continuation. Inserting (2.11), we immediately get the first inequality in (2.9). The second one is classical.

In view of (2.9), we can prove (2.10) exactly as [START_REF] Titchmarsh | The theory of the Riemann zeta-function[END_REF]Theorem 3.11] with the choice of

θ(τ ) = log 2 τ 100 log τ 2/3 and φ(τ ) = log 2 τ.
This completes the proof of Lemma 2.1.

Definition of the Hooley-Huxley-Motohashi contour L T .

Let (ε, κ, χ) be as before and let T 0 = T 0 (ε, κ, χ), c 0 = c 0 (κ, χ) be two large constants and let C 0 = C 0 (κ, χ) be a suitable positive constant. For T T 0 , put (2.12)

δ T := C 0 (log T ) -2/3 (log 2 T ) -1/3 .
According to (2.8), (2.9) and (2.10) where such that

(2.13) (log |τ |) -c 0 r |ζ(κs)L(κs, χ)| (log |τ |) c 0 r
for σ (1 -100δ T )/κ 1 and 3 |τ | 100T , where the implied constants depend on (κ, χ). For T T 0 , write (2.14)

J T := [( 1 2 -δ T ) log T ] and K T := [T (log T ) -1 ].
For each pair of integers (j, k) with 0 j J T and 0 k K T , we define (2.15)

σ j := ( 1 2 + j(log T ) -1 )/κ 1 , τ k := (1 + k log T )/κ 1 and (2.16) ∆ j,k := {s = σ + iτ : σ j σ < σ j+1 and τ k τ < τ k+1 }. Define M x (s) = M x (s; κ, χ) := n x τ -1 κ (n; χ) n s , (2.17) M(ς, T ) = M(ς, T ; κ) := max σ ς 1 |τ | T |ζ(κs)| 2 . (2.

18)

Let A be a fix large integer, and put

(2.19) N j := A (log T ) 5 M(4σ j -3/κ 1 , 8T ) 1/2(1/κ 1 -σ j ) .
We divide ∆ j,k into two classes (W ) and (Y ) as follows.

• The case of

σ j (1 -ε)/κ 1 . ∆ j,k ∈ (W ) if ∆ j,k contains at least one zero of ζ(κs)L(κs, χ), and ∆ j,k ∈ (Y ) otherwise. • The case of (1 -ε)/κ 1 < σ j (1 -δ T )/κ 1 .
We write

(2.20) ∆ j,k ∈ (W ) ⇔ ∃ s ∈ ∆ j,k such that |ζ(κs)L(κs, χ)M N j (s)| < 1 2 and (2.21) ∆ j,k ∈ (Y ) ⇔ ζ(κs)L(κs, χ)M N j (s) 1 2 for all s ∈ ∆ j,k .
For each k, we define j k := max{j : ∆ j,k ∈ (W )} and put 

(2.22) D := ∪ 0 k K T ∪ 0 j j k ∆ j,k and D 0 := ∪ 0 k K T ∪ j k <j J T ∆ j,k . Clearly D 0 consists of ∆ j,
d h := (log 2 T )/κ 1 , d v := ε 2 /κ 1 if σ (1 -ε)/κ 1 , (log T ) -1 /κ 1 if (1 -ε)/κ 1 < σ < (1 -δ T )/κ 1 .
Clearly L T is symmetric about the real axis. The following figure shows its upper part The aim of this section is to prove the following proposition.

[from the point ((1 -ε)/κ 1 , 0) to the point ((1 -δ T )/κ 1 , T )]. T ∆ j,k σ j σ j+1 τ k τ k+1 ∆ j 0 ,0 ∆ j k ,k ∆ j K ,K M T r dv d h D D 0 (1 -δ T )/κ 1 (1 -ε)/κ 1 1/2κ 1 b 1/κ 1 σ τ O
Proposition 3.1. Under the previous notation, we have

(3.1) T -544 √ 2ε(1-κ 1 σ) (log T ) -4 |ζ(κs)L(κs, χ)| T 136 √ 2ε(1-κ 1 σ) (log T ) 4 .
for all s ∈ L T , where the implied constants depend on (ε, κ, χ).

First we establish two preliminary lemmas.

Lemma 3.1. Under the previous notation, we have

(3.2) e -(log T ) 1-ε 2 |ζ(κs)L(κs, χ)| e (log T ) 1-ε 2 for s ∈ L T with σ (1 -ε)/κ 1 , or s with (1 -ε)/κ 1 < σ 1 κ 1 (1 -ε + ε 2 )
on the horizontal segments in L T that intersect the vertical line e s = (1 -ε)/κ 1 . Here the implied constant depends only on ε.

Proof. Let s = σ + iτ satisfy the conditions in this lemma. Without loss of generality, we can suppose that τ T 0 (ε, κ, χ). Let us consider the four circles C 1 , C 2 , C 3 and C 4 , all centered at s 0 := log 2 τ + iτ , with radii

r 1 := log 2 τ -(1 + η)/κ 1 , r 2 := log 2 τ -σ, r 3 := log 2 τ -σ + ε 2 /(2κ 1 ), r 4 := log 2 τ -σ + ε 2 /κ 1 ,
respectively. Here η > 0 is a parameter to be chosen later. We note that these four circles pass through the points (1 + η)/κ 1 + iτ , σ + iτ , σ -ε 2 /(2κ 1 ) + iτ and σ -ε 2 /κ 1 + iτ , respectively.

Clearly ζ(κs)L(κs, χ) = 0 in a region containing the disc |s -s 0 | r 4 . Thus we can unambiguously define log(ζ(κs)L(κs, χ)) in this region. We fix a branch of the logarithm throughout the remaining discussion.

Let M i denote the maximum of | log(ζ(κs)L(κs, χ))| on C i relative to this branch. By Hadamard's three-circle theorem and the fact that s = σ + iτ is on C 2 , we have

(3.3) | log(ζ(κs)L(κs, χ))| M 2 M 1-φ 1 M φ 3 , where φ = log(r 2 /r 1 ) log(r 3 /r 1 ) = log(1 + (1 + η -κ 1 σ)/(κ 1 log 2 τ -1 -η)) log(1 + (1 + η -κ 1 σ + ε 2 /2)/(κ 1 log 2 τ -1 -η)) = 1 + η -κ 1 σ 1 + η -κ 1 σ + ε 2 /2 + O 1 log 2 τ . On taking η = κ 1 σ -1 2 1 + ε 2 + ε 2 1+ε 2 (η ε 4 2(1+ε 2 ) , since σ 1 κ 1 ( 1 2 + ε 2 )), we have (3.4) φ = 1 -ε 2 -ε 4 + O((log 2 τ ) -1
).

On the circle C 1 , we have

(3.5) M 1 max e s (1+η)/κ 1 ∞ n=2 Λ(n) n κ 1 s log n ∞ n=2 1 n 1+η 1 η ,
where Λ(n) is the von Mangoldt function.

In order to bound M 3 , we shall apply the Borel-Carathéodory theorem to the function log 

M 3 2r 3 r 4 -r 3 max |s-s 0 | r 4 log |ζ(κs)L(κs, χ)| + r 4 + r 3 r 4 -r 3 | log(ζ(κs 0 )L(κs 0 , χ))| 2(log 2 τ -σ + ε 2 /(2κ 1 )) ε 2 /(2κ 1 ) log τ + 2(log 2 τ -σ + ε 2 /(2κ 1 )) ε 2 /(2κ 1 ) (log 2 τ ) log τ.
From (3.3), (3.4), (3.5) and (3.6), we deduce that

| log(ζ(κs)L(κs, χ))| (η -1 ) 1-φ ((log 2 τ ) log τ ) φ ε ((log 2 τ ) log τ ) 1-ε 2 -ε 4 ε (log τ ) 1-ε 2 .
This leads to the required estimates. Lemma 3.2. Under the previous notation, we have

(3.7) T -544r(1-κ 1 σ j ) 3/2 (log T ) -c 0 r |ζ(κs)L(κs, χ)| T 136r(1-κ 1 σ j ) 3/2 (log T ) c 0 r for s ∈ L T with (1 -ε)/κ 1 < σ j σ < σ j+1 .
Here the implied constants depend on (κ, χ).

In particular we have

(3.8) T -544r √ 2ε(1-κ 1 σ j ) (log T ) -c 0 r |ζ(κs)L(κs, χ)| T 136r √ 2ε(1-κ 1 σ j ) (log T ) c 0 r for s ∈ L T with (1 -ε)/κ 1 < σ j σ < σ j+1 .
All the implied constants are absolute.

Proof. By (2.11) with w = 1 and Lemma 2.1, we have

(3.9) |ζ(κs)L(κs, χ)| τ 100r(1-κ 1 σ) 3/2 (log τ ) c 0 r ( 1 2κ 1 σ 1 κ 1 , τ 2 
). This immediately implies the second inequality in (3.7).

Next we consider the first inequality in (3.7). Let s ∈ L T with (1-ε)/κ 1 < σ j σ < σ j+1 . Since 1/κ 1 4σ j -3/κ 1 (1 -4ε)/κ 1 1/2κ 1 , the inequality (2.11) with w = 1 allows us to derive that (3.10)

N 2(1/κ 1 -σ j ) j = A (log T ) 5 max σ 4σ j -3/κ 1 1 |τ | 8T |ζ(κs)| 2 T 200 √ 2r(1-κ 1 σ j ) 3/2 (log T ) c 0 r .
According to the definition of L T , there is an integer k such that s ∈ ∆ j,k and this ∆ j,k must be in (Y ) and (2.21) holds for all s of this ∆ j,k . On the other hand, (2.5) and (3.10) imply that for σ j σ < σ j+1 ,

|M N j (s)| n N j τ κ,κ (n)n -σ j (1 -κ 1 σ j ) -2 N 1/κ 1 -σ j j T 544(1-κ 1 σ j ) 3/2 (log T ) c 0 r .
Combining this with (2.21) immediately yields

|ζ(κs)L(κs, χ)| (2|M N j (s)|) -1 T -544(1-κ 1 σ j ) 3/2 (log T ) -c 0 r for s ∈ L T with (1 -ε)/κ 1 < σ j σ < σ j+1 . Finally we note (3.8) is a simple consequence of (3.7) since (1 -ε)/κ 1 < σ j implies that (1 -κ 1 σ j ) 1/2 √ ε.
Now we are ready to prove Proposition 3.1.

Proof. When s ∈ L T with |τ | 1, the estimations (3.1) are trivial. Next suppose that s ∈ L T with |τ | > 1.
Then there is a j such that σ j σ < σ j+1 . We consider the three possibilities.

• The case of (1 -ε)/κ 1 < σ j .

The inequality (3.1) follows immediately from (3.8) of Lemma 3.2.

• The case of σ j σ (1 -ε)/κ 1 .

In this case, the first part of Lemma 3.1 shows that (3.1) holds again since √ ε(1 -κ j σ) ε 3/2 (log T ) -ε 2 for T T 0 (ε, κ, χ).

• The case of σ j (1 -ε)/κ 1 < σ.

In this case, s must be on the horizontal segment in L T , because the vertical segment keeps the distance ε 2 from the line e s = σ j and σ j < σ < σ j+1 . Thus we can apply the second part of Lemma 3.1 to get (3.1) as before.

4. Montgomery's method 4.1. Montgomery's mean value theorem.

Let τ κ,κ (n) and M(ς, T ) be defined as in (2.6) and (2.18), respectively. The following proposition is a variant of [START_REF] Montgomery | Topics in multiplicative number theory[END_REF]Theorem 8.4] for our purpose, which will play a key role in the proof of Proposition 5.1 below. Proposition 4.1. Let σ 0 > 0, > 0 and T 2 three real numbers. Let r ∈ N and κ be as before. Let S = S T (σ 0 , ) be a finite set of complex numbers s = σ + iτ such that for any distinct points s = σ + iτ and s = σ + iτ in S. For any sequence of complex numbers {a n } verifying

(4.3) a n = 0 ⇒ τ κ,κ (n) 1, real numbers θ ∈ (1/κ 2 , 1/κ 1 )
and N 1, we have

(4.4) s∈S n N a n n -s 2 (1 + -1 )N 1/κ 1 + M(θ, 4T ) + 1 (1 -κ 1 θ)(κ 2 θ -1) N θ |S| n N |a n | 2 n 2σ 0 ,
where the implied constant depends on κ only.

First we prove two preliminary lemmas. The first one is due to Bombieri (see also [START_REF] Montgomery | Topics in multiplicative number theory[END_REF]Lemma 5.1]). For the convenience of reader, we give a direct proof. Lemma 4.1. Let S be a finite set of complex numbers s. For any {a n } 1 n N ⊂ C, we have

(4.5) s∈S n N a n n -s 2 n N |a n | 2 b -1 n max s∈S s ∈S |B(s + s )| where B(s) := n 1 b n n -s
is absolutely convergent at the points s + s , and the b n are non-negative real numbers for which b n > 0 whenever a n = 0. Here the implied constant is absolute.

Proof. According our hypothesis on a n and b n , we can write

a n = a n b -1/2 n b 1/2
n for all n N . Introducing the notation

A(s) := n N a n n -s , then we can write s∈S |A(s)| 2 = s∈S n N a n b -1/2 n b 1/2 n n -s m N a m m -s = n N (a n b -1/2 n ) b 1/2 n s∈S n -s m N a m m -s .
By the Cauchy inequality, it follows that

(4.6) s∈S |A(s)| 2 2 n N |a n | 2 b -1 n Υ,
where

Υ := n N b n s∈S n -s m N a m m -s 2 .
Since B(s) is absolutely convergent at the points s + s , we can deduce

Υ n 1 b n s∈S n -s m N a m m -s 2 = n 1 b n s ∈S n -s d N a d d -s s∈S n -s m N a m m -s = s∈S s ∈S d N a d d -s m N
a m m -s B(s + s ).

On the other hand, the trivial inequality |ab| 1 2 (|a| 2 + |b| 2 ) allows us to write 

d N a d d -s m N a m m -s 1 2 |A(s)| 2 + |A(s )| 2 . Thus Υ s∈S s ∈S 1 2 |A(s)| 2 + |A(s )| 2 |B(s + s )| 1 2 s∈S s ∈S |A(s)| 2 |B(s + s )| + 1 2 s∈S s ∈S |A(s )| 2 |B(s + s )|
n 1 τ κ,κ (n) n s e -n/(2N ) -e -n/N N 1/κ 1 e -|τ | + M(θ, 2|τ |) + (1 -κ 1 θ) -1 (κ 2 θ -1) -1 N θ ,
where the implied constant depends on κ only.

Proof. Denote by S N (s) = S N (s; κ, χ) the series on the left-hand side of (4.7). By the Perron formula [21, page 151, Lemma], we can write

(4.8) S N (s) = 1 2πi 2/κ 1 +i∞ 2/κ 1 -i∞ ζ(κ(w + s)) 2 Γ(w) (2N ) w -N w dw,
where ζ(κs) is defined as in (2.1) above. We take the contour to the line e w = θ -σ with 1/κ 2 -σ < θ -σ < 1/κ 1 -σ, and in doing so we pass a simple pole at w = 1/κ 1 -s. Put G(w) :=

2 j r ζ(κ j (w + s)) 2 Γ(w) (2N ) w -N w .
The residue of the integrand at this pole is, in view of the hypothesis σ 0,

Res w=1/κ 1 -s ζ(κ(w + s)) 2 Γ(w) (2N ) w -N w = γG(1/κ 1 -s) + G (1/κ 1 -s)/κ 1 /κ 1 N 1/κ 1 e -|τ | ,
where we have used the Stirling formula [20, page 151]:

(4.9) |Γ(s)| = √ 2π e -(π/2)|τ | |τ | σ-1/2 1 + O | tan( arg s 2 )| |τ | + |a| 2 + |b| 2 |τ | 2 + |a| 3 + |b| 3 |τ | 3
valable uniformly for a, b ∈ R with a < b, a σ b and |τ | 1, where the implied O-constant is absolute.

On the other hand, by using the Stirling formula again it is easy to see that for e w = θ-σ and | m w| |τ |, the integrand in (4.8) is

M(θ, 2|τ |) + (1 -κ 1 θ) -1 (κ 2 θ -1) -1 N θ-σ e -| m w| ,
while otherwise the Stirling formula and the convexity bounds of ζ-function imply that

N θ-σ e -| m w| M(θ, 2|τ |) + (1 -κ 1 θ) -1 (κ 2 θ -1) -1 N θ-σ e -| m w| .
The required result follows from this. Now we are ready to prove Proposition 4.1.

Proof. We shall apply Lemma 4.1 with the choice of

b n := τ κ,κ (n)n 2σ 0 e -n/(2N ) -e -n/N .
In view of the simple fact that e -n/(2N ) -e -n/N 1 for N n 2N and the hypothesis (4.3), we have (4.10)

s∈S N n 2N a n n -s 2 N n 2N |a n | 2 n -2σ 0 max s∈S s ∈S |B(s + s )|, where 
B(s) := n 1 τ κ,κ (n) n s-2σ 0 e -n/(2N ) -e -n/N .
In view of (4.1) and (4.2), we can apply Lemma 4.2 to deduce

|B(s + s )| = n 1 τ κ,κ (n) n σ+σ -2σ 0 +i(τ -τ ) e -n/(2N ) -e -n/N N 1/κ 1 e -|τ -τ | + M(θ, 2|τ -τ |) + (1 -κ 1 θ) -1 (κ 2 θ -1) -1 N θ
for any distinct points s = σ + iτ ∈ S and s = σ + iτ ∈ S. By (4.2), the contribution of the term N 1/κ 1 e |τ -τ | to the sum s ∈S

s =s |B(s + s )| is N 1/κ 1 s ∈S |τ -τ | e -|τ -τ | N 1/κ 1 n 0 e -n s ∈S n<|τ -τ | n+1 1 (1 + -1 )N 1/κ 1 .

Thus (4.11)

s ∈S, s =s

|B(s + s )| (1 + -1 )N 1/κ 1 + M(θ, 2|τ -τ |) + (1 -κ 1 θ) -1 (κ 2 θ -1) -1 N θ |S|.
When s = s , we have (4.12)

B(s + s ) = B(2σ) n 1 τ κ,κ (n) e -n/(2N ) -e -n/N N 1/κ 1 .
Now the required result follows from (4.10), (4.11) and (4.12).

Density estimation of small value points

In [START_REF] Montgomery | Topics in multiplicative number theory[END_REF], Montgomery developed a new method for studying zero-densities of the Riemann ζ-function and of the Dirichlet L-functions. Subsequently by modifying this method, Huxley [START_REF] Huxley | The difference between consecutive primes[END_REF] established his zero-density estimation (1.8). In [START_REF] Motohashi | On the sum of the Möbis function in a short segment[END_REF], Motohashi noted that Montgomery's method can be adapted to estimate the density of "small value points" of ζ(s) (see [START_REF] Cui | The Selberg-Delange method in short intervals with some applications[END_REF]Section 2.3] for a detail description). Here we shall adapt this method to prove the following proposition.

Proposition 5.1. Under the previous notation, for j = 0, 1, . . . , J T we have

(5.1) k K T : ∆ j,k ∈ (W ) T ψ(1-κ 1 σ j ) (log T ) η if κ 1 σ j 1 -ε, and 
(5.2) k K T : ∆ j,k ∈ (W ) T 500r(1-κ 1 σ j ) 3/2 (log T ) 10r if 1 -ε κ 1 σ j 1 -δ T .
Here the implied constants depend on κ and ε only.

Proof. When κ 1 σ j 1 -ε, the number of ∆ j,k of type (W ) does not exceed the number of non-trivial zeros of ζ(κs)L(κs, χ). Thus

|{k K T : ∆ j,k ∈ (W )}| 1 i r N (κ i σ j , 2T ) + N χ i (κ i σ j , 3T ) .
Now the required bound follows from (1.7).

Next we suppose 1 -ε κ 1 σ j 1 -δ T . Let K j (T ) be a subset of the set {log T k K T : ∆ j,k ∈ (W )} such that the difference of two distinct integers of K j (T ) is at least 3A , where A is the large integer specified in (2.17). Obviously

|{(log T ) 2 k K T : ∆ j,k ∈ (W )}| 3A |K j (T )|.
Therefore it suffices to show that (5.3) |K j (T )| ε T 170(1-κ 1 σ j ) 3/2 (log T ) 13 for T T 0 (ε, κ, χ).

Let M x (s) be defined as in (2.17 Let φ x (n) be the nth coefficient of the Dirichlet series Φ x (s), then

(5.5)

φ x (n) = d|n, d x τ -1 κ (d; χ)τ κ (n/d; χ).
By the Perron formula [21, Lemma, page 151], we can write

n 1 φ x (n) n s e -n/y = 1 2πi 2/κ 1 +i∞ 2/κ 1 -i∞ Φ x (w + s)Γ(w)y w dw
for y > x 3 and s = σ + iτ ∈ C with σ j σ < σ j+1 . We take the contour to the line e w = α j -σ < 0 with α j := 4σ j -3/κ 1 < σ j < 1/κ 1 , and in doing so we pass two simple poles at w = 0 and w = 1/κ 1 -s. Our equation becomes

n 1 φ x (n)
n s e -n/y = Φ x (s) + Ψ x,y (s) + I(s; x, y), where Ψ x,y (s) :=

2 j r ζ(κ j /κ 1 )L(κ/κ 1 , χ)M x (1/κ 1 )Γ(1/κ 1 -s)y 1/κ 1 -s , I(s; x, y) := 1 2π +∞ -∞ Φ x (α j + iτ + iu)Γ(α j -σ + iu)y α j -σ+iu du.
In view of (5.5) and (2.5), we have

(5.6) φ x (n) = 1 if n = 1, 0 if 1 < n x,

and

(5.7)

|φ x (n)| (τ κ,κ * τ κ,κ )(n) (n > x),
where τ κ,κ (n) is defined as in (2.6) above. It is easy to see that

n t (τ κ,κ * τ κ,κ )(n) t 1/κ 1 (log t) 3 .
By a simple partial integration, we can deduce that

n>y 2 φ x (n) n s e -n/y ∞ y 2 t -σ e -t/y d n t (τ κ,κ * τ κ,κ )(n) e -y y 1-2σ (log y) 3 + y -1 ∞ y 2 e -t/y t 1/κ 1 -σ (log t) 3 dt e -y/2
for σ 1/(2κ 1 ). Inserting it into the precedent relation, we find that (5.8) e -1/y + x<n y 2 φ x (n) n s e -n/y + O(e -y/2 ) = Φ x (s) + Ψ x,y (s) + I(s; x, y)

for s ∈ C with σ j σ < σ j+1 and y > x 3.

If k ∈ K j (T ), then there is at least a s k := v k + it k ∈ ∆ j,k such that (5.9)

|Φ N j (s k )| = |ζ(κs k )L(κs k ; χ)M N j (s k )| 1 2
• By the definition of K j (T ), we have

σ j v k σ j+1 , (log T ) 2 t k T and |t k 1 -t k 2 | 3A log T (k 1 = k 2 ).
Since |t k | (log T ) 2 , the Stirling formula (4.9) allows us to deduce (5.10)

|Ψ x,y (s k )| = 2 j r ζ(κ j /κ 1 )L(κ/κ 1 , χ)M x (1/κ 1 )Γ(1/κ 1 -s k )y 1/κ 1 -s k (log x)y 1/2-v k e -(π/2)|t k | |t k | 1/2-v k 1 10
for all 3 x y T 100 .

Similarly, using the estimates

ζ(κ(α j + it k + iu)) (T + |u|) r , L(κ(α j + it k + iu), χ) (T + |u|) r , M x (α j + it k + iu) x 1/κ 1 -α j log x T 100
and the Stirling formula (4.9), we derive that (5.11)

|u| A log T Φ x (α j + it k + iu)Γ(α j -v k + iu) y α j -v k du 1 10
for all 3 x y T 100 . Taking (s, x) = (s k , N j ) in (5.8) and combining with (5.9), (5.10) and (5.11), we easily see that (5.12)

N j <n y 2 φ N j (n) n s k e -n/y 1 6
or (5.13)

A log T -A log T Φ N j (α j + it k + iu)Γ(α j -v k + iu)y α-v k +iu du 1 6
or both. Let K j (T ) and K j (T ) be the subsets of K j (T ) for which (5.12) and (5.13) hold respectively. Then (5.14)

|K j (T )| |K j (T )| + |K j (T )|.
First we bound |K j (T )|. By a dyadic argument, there is a U ∈ [N j , y 2 ] such that (5.15)

U <n 2U φ N j (n) n s k e -n/y 1 18 log y holds for |K j (T )|(log y) -1 integers k ∈ K j (T ).
Let S be the set of corresponding points s k . With the help of (5.6), it is easy to see that φ N j (n) = 0 ⇒ τ κ,κ (n) 1. Thus we can apply Proposition 4.1 with a n = φ N j (n) and θ = α j := 4σ j -3/κ 1 . In view of the bound

U <n 2U (τ κ,κ * τ κ,κ )(n) 2 n 2σ j e -2n/y e -2U/y 2U U t -2σ j d U <n t (τ κ,κ * τ κ,κ )(n) 2
U 1/κ 1 -2σ j (log T ) 3 e -2U/y , it follows that (5.16)

s k ∈S U <n 2U φ N j (n) n s k e -n/y 2 U 2(1/κ 1 -σ j ) + |S |U -2(1/κ 1 -σ j ) M(α j , 4T ) e -2U/y (log T ) 3 .
Since U N j , we have

U -2(1/κ 1 -σ j ) (log T ) 3 M(α j , 4T ) A -1 (log T ) -2 .
On the other hand, the inequality (5.15) implies that the member on the left-hand side of (5.16) is |S |(18 log y) -2 |S |(1800 log T ) -2 . Since A is a fixed large integer, the last term on the right-hand side of (5.16) is smaller than this lower bound. Thus it can be simplified as

|S |(log T ) -2 U 2(1/κ 1 -σ j ) (log T ) 3 e -2U/y
for all N j y T 100 and some U ∈ [N j , y 2 ]. Noticing that

|S | |K j (T )|(log T ) -1 ,
we obtain

(5.17)

|K j (T )| y 2(1/κ 1 -σ j ) (log T ) 6
(for all N j y T 100 )

N (10/3)(1/κ 1 -σ j ) j (log T ) 7/3
(for y given by (5.19)).

Next we bound

|K j (T )|. Let u k ∈ [-A log T, A log T ] such that Φ N J (s k ) = max |u| A log T |Φ N j (α j + i(t k + u))|
where s k := α j + it k and t k := t k + u k . Thus from (5.13) we deduce that 1 6

A log T -A log T Φ N j (α j + i(t k + u))Γ(α j -v k + iu)y α j -v k +iu du y α j -v k Φ N j (s k ) A log T -A log T Γ(α j -v k + iu) du.
Since Γ(s) has a simple pole at s = 0 and |α j -v k | (log T ) -1 , we can derive, via (4.9), that

A log T -A log T Γ(α j -v k + iu) du log T
and thus 1 y α j -σ j M N j (s k ) M(α j , 8T ) log T, or equivalently

M N j (s k ) y σ j -α M(α j , 8T ) log T -1 .
Hence there is a V ∈ [1, N j ] such that

V <n 2V τ -1 κ (n; χ)n -s k y σ j -α M(α j , 8T ) -1 (log T ) -2
holds for |K j (T )|(log T ) -1 integers k ∈ K j (T ). Let S be the corresponding set of points s k . We note |t k | 2T and

|t k 1 -t k 2 | |t k 1 -t k 2 | -|u k 1 -u k 2 | A log T.
Using Proposition 4.1 with θ = α j := 4σ j -3/κ 1 and a n = τ -1 κ (n; χ) and in view of the bound

V <n 2V τ κ,κ (n) 2 n -2α j V 1/κ 1 -2α j (log V ) 3 V 7/κ 1 -8σ j (log V ) 3 ,
it follows that (5.18)

s k ∈S V <n 2V τ -1 κ (n; χ)n -s k 2 V 8(1/κ 1 -σ j ) + |S |M(α j , 8T )V 4(1/κ 1 -σ j ) (log V ) 3 .
Take y such that

(5.19) y 2(σ j -α j ) = A 3 N 4(1/κ 1 -σ j ) j M(α j , 8T ) 3 (log T ) 4 = N 10(1/κ 1 -σ j ) j (log T ) -11 .
The left-hand side of (5.18) is |S |y 2(σ j -α j ) M(α j , 8T ) -2 (log T ) -4 .

Hence the inequality (5.18) can be simplified as

|S |y 2(σ j -α j ) M(α j , 8T ) -2 (log T ) -4 N 8(1/κ 1 -σ j ) j . With |S | |K j (T )|(log T ) -1 ,
we deduce that (5.20)

|K j (T )| N 8(1/κ 1 -σ j ) j y 2(α j -σ j ) M(α j , 8T ) 2 (log T ) 5 N 2(1/κ 1 -σ j ) j (log T ) 7 .
On combining (5.14), (5.17) and (5.20), it follows that

|K j (T )| N (10/3)(1/κ 1 -σ j ) j (log T ) 3 .
Now the required inequality follows from (3.10). This completes the proof.

6. Proof of Theorem 1.1

We shall conserve the notation in Section 2. First we prove a lemma. Lemma 6.1. Let r ∈ N, κ := (κ 1 , . . . , κ r ) ∈ N r with 1 κ 1 < • • • < κ r 2κ 1 , z := (z 1 , . . . , z r ) ∈ C r , B := (B 1 , . . . , B r ) ∈ (R + * ) r , and let α > 0, δ 0, A 0, M > 0 be some constants. Suppose that the Dirichlet series

F(s) := ∞ n=1 f (n)n -s
is of type P(κ, z, w, B, C, α, δ, A, M ). Then there is an absolute positive constant D and a constant

B = B 1 + • • • + B r + C 1 + • • • + C r such that we have (6.1) F(s) M D B T (δ+B √ ε)(1-κ 1 σ) (log T ) A+B
for all s ∈ L T , where the implied constant depends only on ε.

Proof. Since we have chosen the principal value of complex logarithm, we can write

ζ(κs) z L(κs, χ) w = 1 i r |ζ(κ i s)| e z i |L(κ i s, χ i )| e w i e -( m z i ) arg ζ(κ i s)-( m w i ) arg L(κ i s,χ i ) e π(B 1 +•••+Br+C 1 +•••+Cr) 1 i r |ζ(κ i s)| e z i |L(κ i s, χ i )| e w i
for all s ∈ C verifying 1 i r ζ(κ i s)L(κ i s, χ i ) = 0. Invoking Proposition 3.1, we see that there is a suitable absolute constant D and a constant B = B(B, C) depending on (B, C) such that (6.2)

ζ(κs) z L(κs, χ) w ε,χ D B T B √ ε(1-κ 1 σ) (log T ) B
for all s ∈ L T , where the implied constant depends only on (ε, χ).

Finally the required bound (6.1) follows from (6.2) and the hypothesis (1.6).

Now we are ready to prove Theorem 1.1. Since the Dirichlet series F(s) is of type P(κ, z, w, B, C, α, δ, A, M ), we can apply [19, Corollary II.2.2.1] with the choice of parameters σ a = 1/κ 1 , α = α, σ = 0 to write

x<n x+x 1-1/κ 1 y f (n) = 1 2πi b+iT b-iT F(s) (x + x 1-1/κ 1 y) s -x s s ds + O ε M x 1/κ 1 +ε T ,
where b = 1/κ 1 + 1/ log x and e

√ log x
T x is a parameter to be chosen later. Denote by Γ T the path formed from the circle |s -1/κ 1 | = r 0 := 1/(2κ 1 log x) excluding the point s = 1/κ 1 -r 0 , together with the segment [(1 -δ T )/κ 1 , 1/κ 1 -r 0 ] traced out twice with respective arguments +π and -π. By the residue theorem, the path

[b -iT, b + iT ] is deformed into Γ T ∪ [(1 -δ T )/κ 1 -iT, (1 -δ T )/κ 1 + iT ] ∪ [(1 -δ T )/κ 1 ± iT, b ± iT ].
In view of Lemma 6.1, for any a ∈ (1/(2κ 1 ), 1/κ 1 ), the integral over the horizontal segments

[a ± iT, b ± iT ] is b±iT a±iT F(s) (x + x 1-1/κ 1 y) s -x s s | ds| M D C (log T ) A+B T b a T max{(δ+B √ ε)(1-κ 1 σ), 0} x σ dσ M D C x 1/κ 1 T (log T ) A+B 1/κ 1 a x 1/κ 1 T δ+B √ ε κ 1 σ-1 dσ + 1 M D C x 1/κ 1 T (log T ) A+B , provided (6.3) T δ+B √ ε x 1/κ 1 .
Thus (6.4)

x<n x+x 1-1/κ 1 y f (n) = I + O M D C x 1/κ 1 +ε T ,
where

I := 1 2πi Γ T ∪[(1-δ T )/κ 1 -iT, (1-δ T )/κ 1 +iT ] F(s) (x + x 1-1/κ 1 y) s -x s s ds.
and the implied constant depends on (ε, χ) only. Let L T be the Motohashi contour defined as in Section 2. Consider the two symmetric simply connected regions bounded by L T , the segment [(1 -δ T )/κ 1 -iT, (1 -δ T )/κ 1 + iT ] and the two line segments [σ j 0 +1 + d v , (1 -δ T )/κ 1 ] with respective arguments +π and -π measured from the real axis on the right of 1 -δ T . It is clear that F(s) is analytic in these two simply connected regions. Denote by Γ * T the path joining (the two end-points of) Γ T with the two line segments [σ j 0 +1 + d v , (1 -δ T )/κ 1 ] of the symmetric regions. Thanks to the residue theorem, we can write (6.5)

I = I 1 + I 2 ,
with

I 1 := 1 2πi Γ * T F(s) (x + x 1-1/κ 1 y) s -x s s ds, I 2 := 1 2πi L T F(s) (x + x 1-1/κ 1 y) s -x s s ds.
A. Evaluation of I 1 According to our hypothesis, the function s → Z(κ

1 s; z 1 )ζ(κ * s) z * L(κs, χ) w G(s) is holo- morphic in the disc |s -1/κ 1 | < 1/κ 1 -1/κ 2 .
In view of (1.12), the Cauchy integral formula implies that

(6.6) g (κ, z, w, χ) M c - ( 0, |z| |B|, |w| |C|),
where g (κ, z, w, χ) is defined as in (1.14) and c := 2 3 (1/κ 1 -1/κ 2 ). From this and (1.13), we deduce that for any integer N 0 and |s -

1/κ 1 | 1 2 (1/κ 1 -1/κ 2 ), Z(κ 1 s; z 1 )ζ(κ * s) z * L(κs, χ) w G(s) = N =0 g (κ, z, w, χ) s -1 κ 1 + O M (|s -1 κ 1 |/c) N +1 .
Thus we have (6.7)

I 1 = N =0 κ -z 1 1 g (κ, z, w, χ)M (x, y) + O M c -N E N (x, y) ,
where

M (x, y) := 1 2πi Γ * T (s -1/κ 1 ) -z 1 (x + x 1-1/κ 1 y) s -x s s ds, E N (x, y) := Γ * T (s -1/κ 1 ) N +1-z 1 (x + x 1-1/κ 1 y) s -x s s | ds|.
Firstly we evaluate M (x, y). Using the formula (6.8)

(x + x 1-1/κ 1 y) s -x s s = x+x 1-1/κ 1 y x t s-1 dt
and Corollary II.5.2.1 of [START_REF] Tenenbaum | Introduction to analytic and probabilistic number theory[END_REF], we write

M (x, y) = x+x 1-1/κ 1 y x 1 2πi Γ * T (s -1/κ 1 ) -z 1 t s-1 ds dt = x+x 1-1/κ 1 y x t 1/κ 1 -1 (log t) z 1 -1- 1 Γ(κ 1 -) + O (c 1 + 1) t δ T /2 dt,
where we have used the following inequality

47 |z 1 -| Γ(1 + |z 1 -|) B 1 (c 1 + 1) ( 0, |z 1 | B 1 ).
The constant c 1 and the implied constant depend at most on B 1 . Besides for |z 1 | B 1 , an elementary computation shows that

x+x 1-1/κ 1 y x t 1/κ 1 -1 (log t) z 1 -1-dt = x 1-1/κ 1 y 0 (x + t) 1/κ 1 -1 (log(x + t)) z 1 -1-dt = y (log x) z 1 -1-1 + O B 1 ( + 1)y x 1/κ 1 log x .
Inserting this into the preceeding formula, we obtain (6.9) M (x, y) = y (log x)

z 1 -1- 1 Γ(z 1 -) + O B 1 ( + 1)y Γ(z 1 -)x 1/κ 1 log x + (c 1 + 1) x δ T /2
for 0 and |z 1 | B 1 . Next we estimate E N (x, y). In view of the trivial inequality (6.10)

(x + x 1-1/κ 1 y) s -x s s yx σ-1/κ 1 ,
we deduce that (6.11)

E N (x, y)

1/κ 1 -1/ log x 1/2κ 1 +ε 2

(1/κ 1 -σ) N +1-e z 1 x σ-1/κ 1 y dσ + y (log x) N +2-e z 1 y (log x) N +2-e z 1 ∞ 1 t N +1-e z 1 e -t dt + 1 y(log x) e z 1 -1 c 1 N + 1 log x N +1

uniformly for x y 2, N 0 and |z 1 | B 1 , where the constant c 1 > 0 and the implied constant depends only on B 1 . Inserting (6.9) and (6.11) into (6.7) and using (6.6) and the fact that y y, we find that (6.12) 

I
I 2 M D B x 1/2κ 1 +ε 2 T (δ+B √ ε)(1/2-κ 1 ε 2 ) (log T ) A+4B+1
M x (1/2+δ/2(ψ+δ))/κ 1 + √ ε M x (1-1/(ψ+δ))/κ 1 + √ ε with the value of T given by (6.15) below and ψ 2.

Next we bound I 2 . In view of (6.10), we can write that T (δ+B √ ε)(1-κ 1 (σ j +dv)) x σ j +dv-1/κ 1 • T ψ(1-κ 1 σ j ) , I 2, † := J T,0 <j J T T (δ+B √ ε)(1-κ 1 (σ j +dv)) x σ j +dv-1/κ 1 • T 100 √ ε(1-σ j ) .

Taking (6.15)

T := x (1-κ 1 √ ε)/κ 1 (ψ+δ+B √ ε)
and in view of (2.23), it is easy to check that I 2, * x ε 2 /κ 1 0 j J T,0

x 1/κ 1 /T ψ+δ+B √ ε -(1-κ 1 σ j ) log x x 2ε 2 /κ 1 -ε 3/2 x -ε 2 and I 2, † J T,0 <j J T x/T δ+100(B+1) √ ε -(1-κ 1 σ j )
e -2c 2 (log x) 1/3 (log 2 x) -1/3 .

Inserting it into the preceeding estimate for I 2 , we conclude that (6.16) I 2 B M ye -c 2 (log x) 1/3 (log 2 x) -1/3 . Now from (6.4), (6.5), (6.12), (6.13) and (6.16). we deduce that + (c 1 N + 1) N +1 e c 2 (log x) 1/3 (log 2 x) -1/3 for some constants c 1 > 0 and c 2 > 0 depending only on B, C, δ and ε.

It remains to prove that the first term on the right-hand side can be absorbed by the third. In view of (1.12), the Cauchy formula allows us to write g (κ, z, w, χ) M y x 1/κ 1 log x holds uniformly for x 3, x (1-1/(ψ+δ))/κ 1 +ε y x 1/κ 1 , N 0, |z| B and |w| C. This completes the proof.

  [START_REF] Bateman | On a theorem of Erdős and Szekeres[END_REF], where the implied constant depends only on ε;(b) We have∞ n=1 |f (n)|n -σ M (σ -1/κ 1 ) -α (σ > 1/κ 1 );(c) The Dirichlet series F(s) has the expression(1.3) F(s) = ζ(κs) z L(κs; χ) w G(s),whereζ(κs) z := 1 i r ζ(κ i s) z i , (1.4) L(κs; χ) w := 1 i r L(κ i s, χ i ) w i (1.5) and the Dirichlet series G(s) is a holomorphic function in (some open set containing) σ (2κ 1 ) -1 and, in this region, G(s) satisfies the bound (1.6) |G(s)| M (|τ | + 1) max{δ(1-κ 1 σ),0} log A (|τ | + 3) uniformly for |z| B and |w| C, where and in the sequel we implicitly define the real numbers σ and τ by the relation s = σ + iτ and choose the principal value of the complex logarithm.

1 . 3 .

 13 and the implied constant in the O-term depends only on A, B, C, α, δ and ε. Note that ψ =12 5 is admissible. Takning r = 2, κ = (1, 2), z = (z, w), w = (0, 0) in Theorem 1.1 and Corollary 1.1, we can obtain Theorem 1.1 and Corollary 1.2 of Cui, Lü & Wu[START_REF] Cui | The Selberg-Delange method in short intervals with some applications[END_REF]. Distribution of divisors de certains integers.

  k of class (Y ) only. The Hooley-Huxley-Motohashi contour L T = L T (ε, κ, χ) is sysmmetric about the real axe. Its supérieur part is the path in D 0 consisting of horizontal and vertical line segments whose distances away from D are respectively d h and d v , where d h and d v are defined by (2.23)

Figure 1 - 3 .

 13 Figure 1 -Superieur part of the contour L T

  (ζ(κs)L(κs, χ)) on the circles C 3 , C 4 . On the circle C 4 , it is well known that e log(ζ(κs)L(κs, χ)) = log |ζ(κs)L(κs, χ)| log τ thanks to the convexity bounds of ζ(s) and of L(s, χ). Hence the Borel-Carathéodory theorem gives (3.6)

( 4 . 1 )

 41 σ σ 0 , 1 |τ | T for all s ∈ S and (4.2) |τ -τ |

Lemma 4 . 2 .

 42 + s )|. Noticing that |B(s + s )| = |B(s + s )| = |B(s + s )| = |B(s + s )|, the precede inequality becomes Υ s∈S |A(s)| 2 max s∈S s ∈S |B(s + s )|. Inserting it into (4.6), we get the required result. The next lemma is an analogue of [12, page 157, Theorem II.2]. Let r, κ, τ κ,κ (n) and M(θ, T )be as before. For any s = σ + iτ with σ 0 and |τ | 1, real numbers θ ∈ (1/κ 2 , 1/κ 1 ) and N 1, we have

  ) and write (5.4) Φ x (s) := ζ(κs)L(κs, χ)M x (s).

1 2κ 1 +

 11 1 = y (log x) z-1 N =0 λ (κ, z, w, χ) (log x) + O B 1 E * N (x, y), Evaluation of I 2 Let L T be the union of those vertical line segments of L T whose real part is equal to ε 2 and L T := L T L T . Denote by I 2 and I 2 the contribution of L T and L T to I 2 , respectively. Using the trivial inequality(x + x 1-1/κ 1 y) s -x s s x 1/2κ 1 +ε 2 |τ | + 1 (s ∈ L T )and Lemma 6.1, we can deduce(6.13) 

  |x σ-1/κ 1 | ds| y 0 j J T 0 k K T ∆ j,k ∈(W ) L [j,k] T |F(s)|x σ-1/κ 1 | ds|,where L [j,k] T is the vertical line segment of L T around ∆ j,k and the horizontal line segments with σ σ j + d v . Clearly the length of L [j,k] T is log T . Thus by Lemma 6.1, it followsL [j,k] T |F(s)|x σ-1 | ds| M D B (log T ) A+4B+1 T (δ+B √ ε)(1-κ 1 (σ j +dv)) x σ j +dv-1/κ 1for all 0 k K T . Inserting it into (6.14) and using Proposition 5.1, we can deduce, with the notation J T,0 := [( 1 2 -ε) log T ], that I 2 M D B y(log T ) A+4B+18+η (I 2, * + I 2, † ), where I 2, * := 0 j J T,0

x<n x+x 1

 1 -1/κ 1 y f (n) = y (log x) z-1 N =0 λ (κ, z, w, χ) (log x) + O R * N (x, y)uniformly for x 3, x (1-1/(ψ+δ))/κ 1 +ε y x 1/κ 1 , N 0, |z| B and |w| C, where R * N (x, y)

  A,B,C,δ M 3 for |z| B, |w| C and 1. Combining this with the Stirling formula, we easily derive λ (κ, z, w, χ) A,B,C,δ M (9/ ) for |z| B, |w| C and 1. This implies that y x 1/κ 1 N +1 =1 |λ -1 (κ, z, w, χ)| (log x) A,B,C,δ
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