
HAL Id: hal-01846155
https://hal.science/hal-01846155

Submitted on 27 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A practical guide to the R package Luminescence
Michael Dietze, Sebastian Kreutzer, Margret C Fuchs, Christoph Burow,

Manfred Fischer, Christoph Schmidt

To cite this version:
Michael Dietze, Sebastian Kreutzer, Margret C Fuchs, Christoph Burow, Manfred Fischer, et al.. A
practical guide to the R package Luminescence. Ancient TL, 2013, 31 (1), pp.11-18. �hal-01846155�

https://hal.science/hal-01846155
https://hal.archives-ouvertes.fr

Ancient TL Vol. 31 No.1 2013 11

A practical guide to the R package Luminescence

Michael Dietze1,*, Sebastian Kreutzer2, Margret C. Fuchs3, Christoph Burow4, Manfred
Fischer5, Christoph Schmidt5

1Institute of Geography, TU Dresden, 01069 Dresden, Germany
2Department of Geography, Justus-Liebig-University Giessen, 35390 Giessen, Germany

3Department of Geology, TU Bergakademie Freiberg, 09599 Freiberg, Germany

4Institute for Geography, University of Cologne, 50923 Cologne, Germany

5Geographical Institute, Geomorphology, University of Bayreuth, 95440 Bayreuth, Germany

* corresponding author: micha.dietze@mailbox.tu-dresden.de

 (Received 13 May 2013; in final form 14 June 2013)

Abstract
 A practical guide for the R package
‘Luminescence’ is provided. An introduction on data
types in R is given first, followed by a guideline on
how to import, analyse and visualise typical SAR-
OSL measurement data.

Keywords: R, luminescence dating, data analysis,
plotting

Introduction
 Since the R package ‘Luminescence’ has been
introduced by Kreutzer et al. (2012) the developer
team is continuously asked for advice from the
luminescence dating community. Such requests
considerably help us to further improve the package
and make the tools more efficient and user friendly.
However, most of these queries are not directed to
specific problems of the provided functions but rather
on the usage of R and the package in general.
Motivated by an e-mail conversation with Geoff
Duller this contribution aims to provide an example-
based, short practical guide to R and the package
‘Luminescence’. First, we focus on properties and
ways to index different sorts of data structures, which
are essential for an efficient use of the R package
‘Luminescence’. A second section describes
processing steps for luminescence data, from
importing a BIN-file to plotting a De distribution. A
third section comprises the examples in a
comprehensive code section.
 Throughout the manuscript R calls or R related
code snippets are typed in monospaced
letters. In some cases, numerical and graphical
output was truncated for illustrative reasons.

Working with R and RStudio
 R (R Development Core Team, 2013) is a freely
available language and environment for statistical
computing and graphics. RStudio (RStudio, 2013) is
a free and open source integrated development
environment (IDE) for R. It allows for a comfortable
use of R.
 Working with R usually means writing of scripts
that can be executed to generate results. The
fundamental advantage of working with scripts rather
than clicking through graphical user interfaces or
tabular calculation software is that all processed steps
are formulated explicitly, i.e. every command or
function call is and has to be written down. This
guaranties transparent and reproducible results, easy
sharing of analysis routines and flexible modification
of existing approaches.
 A script is a text document composed of several
lines of commands, and of course explanatory
comments, that can be executed by software, such as
R. Script-based execution of command line series is
much more efficient than typing of function calls into
the terminal window (although this is possible).
 RStudio is a comfortable "second skin" to work
with R even more conveniently. It comprises several
windows; for scripts, the command line, the
workspace, plot outputs, help or a file manager.
RStudio allows storing entire sessions, including the
actual script and generated objects (e.g. data sets and
plots), to continue working at any time.
 There are a series of excellent tutorials and books
about R (e.g. Adler, 2012; Crawley, 2012) and
RStudio (e.g. Verzani, 2011) that cannot be discussed
here. However, on the official website of the R
package ‘Luminescence’ (http://www.r-
luminescence.de) there are plenty of suggestions and

12 Ancient TL Vol. 31 No.1 2013

Figure 1. Data structures in R, commonly used in the package 'Luminescence'. The colour and the shape of
individual objects indicate similar data types (e.g. logical, integer, character) whereas their alignment represents
the structure. Code under each structure definition corresponds to the creation of the structures in R. From left to
right structures increase in complexity: scalar, vector, matrix, data frame, list. For further data structures and
information cf. Crawley (2012).

some tutorials dedicated to the use of R for
luminescence data analysis.

Data types and structures in R
 Data can be of various type. Common data types
are logical (i.e. TRUE, FALSE), integer (e.g. 1,
2), double (e.g. 1.2, 2.3), complex (e.g. 2+3i,
1.3+3.2i) and character (e.g. "a", "b"). There
are more data types in R but these are of minor
relevance here. The type of data determines which
operations are possible (or meaningful) with this
data. To infer the data type of a variable use the
function typeof().
 Regardless of their type, data always shows a
certain structure, which defines how values are
organised and may be addressed. For convenient
usage data may be stored in variables (or more
generally in objects). It is of crucial importance to
note that one variable must not necessarily comprise
only one but can contain millions of individual
values. R allows for checking the data structure of a
variable with the function str(). To actually work
with the data, it is necessary to "recall" the content of
a variable, or parts of it. This is referred to as
indexing. The following structures are commonly
encountered when working with R and should
therefore be introduced here. Fig. 1 shows illustrative
sketches of the data structures.

Scalars: Scalars are the most simple data structure.
One variable represents precisely one value (1,1
structure). Scalars can therefore be described as zero-
dimensional data structures. In R, scalars are in fact
vectors of length one. The command x <- 1

assigns the value 1 to the variable x. A scalar is
indexed simply by calling the variable name.

Vectors: Vectors are different from scalars in that
they comprise more than one value. They contain m
rows of values, organised in one column (m,1
structure). Hence, vectors can be described as one-
dimensional data structures. Vectors may contain any
data type but this must be consistent throughout. To
infer the number of elements, the length of a vector,
use the function length(). To index an element of
a vector, its position in the vector must be specified
in angular brackets after the variable name: x[m].
To index more than one element use either a
sequence (x[1:5]) or a concatenation of values
(x[c(1, 2, 3, 4, 5)]).

Matrices: Adding a further dimension yields a matrix
structure. Matrices contain m rows and n columns of
data (m,n structure). Hence, matrices can be
described as two-dimensional data structures.
Matrices can be of any, consistent data type.
Indexing matrix elements requires row- and column-
numbers of the target elements in angular brackets:
X[m,n]. To index an entire row or column, just skip
the respective index value: X[1,] or X[,1].

Data frames: Data frames consist of components with
the same geometry (same length of vectors or matrix
rows and columns) but may contain different data
types. Data frames are the most common data
structure in R, as many functions require data frames
as input arguments. Indexing elements of a data
frame is a two-step task. First, the component and
then the element of the respective component must be

Ancient TL Vol. 31 No.1 2013 13

indexed. The component is expressed by two nested
angular brackets ([[]]). So indexing one element
of a vector in a data frame may be similar to
dataframe[[1]][8].

 Alternatively, the components of a data frame can
be named. If names are present, the operator $ can be
used for indexing as well. For example, if there is a
data frame (dataframe) comprising two vectors
(data and metadata), one may index the first
element of metadata by typing:

dataframe$metadata[1]

or

dataframe[[2]][1].

Lists: Similar to data frames, but also deregulating
the constraint of consistent geometry and data types,
lists allow handling different types and structures of
data. Lists are therefore the most flexible - but not
necessarily the most appropriate - data structure.
Indexing follows the same rules as for data frames.

S4-objects: S4 objects are of fundamentally different
data structure. They are related to object-oriented
programming but may be tentatively compared to
lists. They can contain several components, stored in
so called slots. Details on S4-objects may be not
relevant in this context. Components of S4-objects
are indexed by the operator @. Apart from this
difference, indexing is quite similar to that of data
frames. Note: Although the R package
‘Luminescence’ already utilises S4-objects (e.g.
Risoe.BINfileData-class) and the upcoming
package version later this year will considerably
benefit from the usage of S4-objects, details on S4-
objects are not relevant for this tutorial.

From BIN-files to De-distributions

Prerequisites for analysing luminescence data
 To work with the R package ‘Luminescence’ it is
first of all necessary to install the package from
CRAN; either via command line
(install.packages("Luminescence",
dependencies = TRUE)) or in RStudio via
menu Tools > Install Packages. Note that the
checkbox “Install dependencies” should be selected.
To actually use the functionalities of the package, it
must be loaded at the beginning of each R session.
Furthermore the working directory should be set. It is
good practice to load the library (i.e. the functions
part of a package) and define the working directory at
the beginning of a script.

> ## load the library
> library("Luminescence")

> ## set the working directory
> setwd("/analysis/project_0815")

Import and inspect BIN-files
 In general, analysis of luminescence data will start
with importing a BIN-file to the R workspace. The
package provides the function readBIN2R() to
import BIN-files from typical luminescence
measurements. It creates an S4-object with two slots:
METADATA (a data frame) and DATA (a list).
METADATA contains meta-information for all
measurements and is primarily used to select
measurements (stored in DATA) based on e.g. sample
position. Once imported, calling the variable displays
a short summary of the object.

> ## import the BIN-file
> SAR.data <-
+ readBIN2R("example.BIN")

> ## show a short summary
> SAR.data

> Risoe.BINfileData Object
> Version: 03
> Object Date: 060120
> User: krb
> System ID: 30
> Overall Records: 600
> Records Type: IRSL (n = 20)
 OSL (n = 340)
 TL (n = 220)
> Position Range: 1 : 20
> Run Range: 1 : 44
> Set Range: 1 : 2

 The example data set (example.BIN) resulted from
a standard SAR protocol, applied to a sample of
fluvial quartz (coarse grains, 90-160 µm) from the
Pamir Plateau, analysed at TU Bergakademie
Freiberg in 2013, and can be downloaded from the
Ancient TL website. To create a more elaborated
overview, the data frame METADATA must be
indexed by specifying the desired columns. To show,
as an example, the parameters ID (1), SEL (2),
LTYPE (7), POSITION (17), RUN (18), DTYPE
(23) and IRR_TIME (24) for the first five
measurements, the respective column-numbers must
be known (see below). In practice this includes
indexing the slot METADATA of the S4-object
SAR.data and then indexing the first five rows and
respective columns therein:

14 Ancient TL Vol. 31 No.1 2013

> SAR.data@METADATA[1:5, c(1, 2, 7,
+ 17, 18, 23, 24)]
> ID SEL LTYPE POSITION RUN
+ DTYPE IRR_TIME
> 1 1 TRUE TL 1 1 Natural 0
> 2 2 TRUE OSL 1 2 Natural 0
> 3 3 TRUE TL 1 4 Natural 0
> 4 4 TRUE OSL 1 5 Bleach+dose 80
> 5 5 TRUE TL 1 7 Bleach+dose 0

 If this summary content is used frequently, it may
be useful to store the column-numbers in a separate
variable (summary.01 <- c(1, 2, 7, 17,
18, 23, 24)) for convenient use later on
(SAR.data@METADATA[,summary.01]). This
way, different summary templates can be created. A
complete list of column-numbers can be displayed by
cbind(1:length(SAR.data@METADATA),
colnames(SAR.data@METADATA)).

Analyse SAR-data
 Currently, the package is focused on the analysis of
measurements following the SAR protocol (Murray
& Wintle, 2000). The function Analyse_SAR.
OSLdata()returns a set of parameters from
individual measurement cycles in order to determine
background- and sensitivity-corrected signals that
may be used for growth curve estimation (see below).
The function requires information about the sample
(i.e. position) to be analysed, the signal integral and
the background integral, along with a sample ID. By
default the function Analyse_SAR.OSLdata()
creates a graphical output for visual inspection of
measurement curves (one composite plot for each
position). However, for further analysis the numeric
output is more important. The following example
shows how to set the necessary parameters, perform
an SAR analysis and what the numerical output looks
like.

> ## define analysis parameters
> signal <- 1:5
> backgrd <- 200:250
> position <- 1:2
> info <- "Arbitrary sample 1"

> ## analyse position 1 to 2
> SAR.results <-
+ Analyse_SAR.OSLdata(
+ input.data = SAR.data,
+ signal.integral = signal,
+ background.integral = backgrd,
+ position = position,
+ info.measurement = info)

> ## display the output
> str(SAR.results)

 The created object (SAR.results) is a list with
three components: LnLxTnTx, Rejection
Criteria and SARParameters, each of them
composed of further objects. To access them, just
move through the data structure step by step. For
example if you are interested in the second cut heat
temperature type SAR.results$SARParamet-
ers$cutheat[2]. Most important (and most
complex) is the LnLxTnTx-list. Since two positions
were analysed (position <- 1:2) the list
contains two data frames. Each data frame consists of
the number of measurements according to the applied
SAR protocol. Each measurement yielded 15
parameters (such as Name, Dose, Repeated,
LnLx and so on). To access the LnLx data from
measurement 1 (natural dose) of position 1 type
SAR.results$LnLxTnTx[[1]]$LxTx[1].

Create growth curves and estimate De-values
 From the large output amount of Analyse_SAR
.OSLdata() the most important data sets for
subsequent analyses are Dose, LxTx,
LxTx.Error and TnTx. To create growth curves
and estimate equivalent doses, these are needed in a
data frame structure. The following code shows how
to manage these steps.

> ## create data frame
> data.LxTx <- as.data.frame(cbind(
+ SAR.results$LnLxTnTx[[1]][2],
+ SAR.results$LnLxTnTx[[1]][12],
+ SAR.results$LnLxTnTx[[1]][13],
+ SAR.results$LnLxTnTx[[1]][6]))

> ## show the results
> data.LxTx

> Dose LxTx LxTx.Error TnTx
> 1 0 5.8947468 0.28838345 1862
> 2 1000 5.3317223 0.32684141 2006
> 3 1800 7.8098997 0.36604484 2239
> 4 2200 9.5146256 0.47587953 2393
> 5 3000 10.4157443 0.60718256 2891
> 6 0 0.5314526 0.07193097 2045
> 7 1800 7.1563381 0.46570722 2829

 The function plot_GrowthCurve() creates a
dose response curve from the measurement data. The
uncertainty related to equivalent dose estimation is
based on Monte Carlo simulations. The function
returns the actual De-value, its associated error and
the fit object.
> ## create dose response curve
> growth.curve <- plot_GrowthCurve(
+ data.LxTx)

Ancient TL Vol. 31 No.1 2013 15

> ## show fit parameters
> growth.curve$Fit

> ## assign De and De.error
> De.data <- cbind(
+ growth.curve$De[1:2])

 For routine analysis it may be convenient to run
this De modelling process in a loop for all samples of
a data set.

> ## define analysis parameters
> signal <- 1:5
> backgrd <- 200:250
> position <- 1:20

> ## analyse positions 1 to 20
> SAR.results <-
+ Analyse_SAR.OSLdata(
+ input.data = SAR.data,
+ signal.integral = signal,
+ background.integral = backgrd,
+ position = position)

> ## Define output variable
> De.data <- data.frame(
+ De = NA,
+ De.Error = NA)

> ## Compute De values in a loop
> for(i in 1:max(position)) {
+ data.LxTx <- as.data.frame(
+ cbind(SAR.results[[1]][[i]]
+ [c(2, 12, 13, 6)]))
+ curve <- plot_GrowthCurve(
+ data.LxTx)

> ## assign De value and De error
> De.data[i,] <- as.numeric(
+ curve$De[1:2])
+ }

Convert seconds to Gray
 To convert the absorbed dose from seconds to the
SI unit Gray the function Second2Gray() can be
used. It includes error propagation, by default with
the Gaussian approach.

> De.data <- Second2Gray(
+ values = De.data,
+ dose_rate = c(0.0881, 0.0006),
+ method = "gaussian")

Display De-values
 There are several methods to visualise De
distributions. Perhaps the most common ones are
histograms, probability density functions based on

kernel density estimates (KDE) and the radial plot
(Galbraith, 1988). The chapter above illustrated how
to obtain numeric data for plot outputs. One
mandatory preparation step is to remove missing
values (NA) from the De and De.Error data. This
is easily done with De.data <-
De.data[complete.cases(De.data),].
 A histogram with standard error overlay, rugs and
statistical summary (Fig. 2A) can be created with the
function plot_Histogram().

> plot_Histogram(
+ values = De.data,
+ summary = c("n", "mean",
+ "median", "kdemax", "sdrel",
+ "sdabs", "serel", "seabs"))

 Plotting a probability density plot (Fig. 2B) can be
done with the function plot_KDE(). Further
statistical summary data can be added. The following
example shows most of these statistical parameters. It
is left to the user to decide which parameters allow
for a meaningful interpretation.

> plot_KDE(
+ values = De.data,
+ distribution.parameters =
+ c("mean", "median", "kdemax"),
+ summary = c("n", "mean",
+ "median", "kdemax", "sdrel",
+ "sdabs", "serel", "seabs"),
+ xlim = c(0, 450))

 A radial plot (Fig. 2C) is created with the function
plot_RadialPlot(). This function also supports
grouped data plots, if a list with group indices is
provided. For example, to plot values < 130 Gy as
one group and values >= 130 Gy as a second group,
the following code is needed:

> group.indices <- list(
+ which(De.data[,1] < 130),
+ which(De.data[,1] >= 130))
> plot_RadialPlot(
+ sample = De.data,
+ zscale.log = TRUE,
+ sample.groups = group.indices)

16 Ancient TL Vol. 31 No.1 2013

Figure 2: Examples of plot outputs. A: histogram
with rugs, standard errors and statistical measures,
B: KDE-based probability density function with
statistical measures, C: radial plot of grouped values.

Save the data
 R saves data in a binary format (*.Rdata) with
the function save(). To save tabular data as ASCII-
files use the function write.table(). Re-reading
data is performed by read() or read.table().

> ## save R-internal data
> save(SAR.data, SAR.results,
+ De.data, file = "SAR.RData")

> ## save De data as ASCII-file
> write.table(x = De.data, file =
+ "De_data.txt", row.names = FALSE)

> ## re-read the ASCII-FILE
> De.data <- read.table(
+ "De_data.txt", header = TRUE)

Export graphical output
 Saving graphical output when working with
RStudio is quite easy. There is an export-button in
the plots-window that allows for choosing from
different formats and resolutions. However, it is also
possible to export a plot directly using R commands.
R can plot graphics to at least the following devices:
bmp(), jpeg(), png(), tiff(), pdf(),
postscript(), win.metafile(). Depending
on the device, there are additional arguments such as
filename, width, height, pointsize, res.
Unless one wants to create further file output, it is
important to close the respective device after a plot
has been created. This is done by the function
dev.off(). The function graphics.off()
closes all open devices. To save for example a radial
plot as jpg-file of 2000 by 2000 pixels with a
resolution of 300 dpi the following code is needed:

> ## open the graphics device jpeg
> jpeg(
+ filename = "radial_plot.jpg",
+ width = 2000,
+ height = 2000,
+ res = 300)

> ## generate the plot output
> plot_RadialPlot(De.data,
+ zscale.log = TRUE,
+ zlab = expression(paste(D[e],
+ " [s]")),
+ sample.groups = group.indices,
+ sample.col = c("royalblue",
+ "orange3"),
+ sample.pch = c(3, 4),
+ cex.global = 0.9)

close the graphics device
> dev.off()

Ancient TL Vol. 31 No.1 2013 17

load the library
library("Luminescence")

set the working directory
setwd("/analysis/project_0815")

definition of analysis parameters
signal.integral <- 1:5
background.integral <- 200:250
position <- 1:20

import the BIN-file
SAR.data <- readBIN2R("example.BIN")

analyse the dataset
SAR.results <- Analyse_SAR.OSLdata(
 input.data = SAR.data,
 signal.integral = signal.integral,
 background.integral = background.integral,
 position = position)

extract LxTx data and create De-values
De.data <- data.frame(De = NA, De.Error = NA)
for(i in 1:max(position)) {
 data.LxTx <- as.data.frame(
 cbind(SAR.results[[1]][[i]][c(2, 12, 13, 6)]))
 growth.curve <- plot_GrowthCurve(data.LxTx)

 ## extract and show De-value and delta De
 De.data[i,] <- as.numeric(growth.curve$De[1:2])
}

convert seconds to Gray
De.data <- Second2Gray(
 values = De.data,
 dose_rate = c(0.08812, 0.00059),
 method = "gaussian")

show the resulting matrix
De.data

Table 1: Comprehensive script for routine SAR-OSL analysis

A comprehensive script for routine SAR-OSL
analysis
 The code in Table 1 is a condensed, modified
version of the explanations from above. It may serve
as a skeleton for readers own scripts. The user is
strongly advised to thoroughly inspect all graphical
and numerical output to check data consistency and
measurement appropriateness. An electronic version
of the entire R script, and the example data set used
in the analyses shown here, are provided as
supplements to this paper and can be found at
http://www.aber.ac.uk/ancient-tl.

Summary
 A practical guide for the R package
‘Luminescence’ has been provided showing the steps
from importing a BIN-file to plotting a De
distribution. Further reading, including extensive
examples and detailed definitions can be found on
http://www.r-luminescence.de. For further
suggestions and questions the package developer
team can be contacted via team@r-luminescence.de.

18 Ancient TL Vol. 31 No.1 2013

References
Crawley, M.J. (2012). The R Book. pp. 1080, Wiley.
Galbraith, R.F. (1988). Graphical Display of

Estimates Having Differing Standard Errors.
Technometrics 30: 271–281.

Kreutzer, S., Schmidt, C., Fuchs, M.C., Dietze, M.,
Fischer, M., Fuchs, M. (2012). Introducing an R
package for luminescence dating analysis.
Ancient TL 30: 1–8.

Murray, A.S., Wintle, A.G. (2000). Luminescence
dating of quartz using an improved single-aliquot
regenerative-dose protocol. Radiation
Measurements 32: 57–73.

R Development Core Team (2013). R: A Language
and Environment for Statistical Computing.
http://ww.r-project.org

RStudio (2013). RStudio: Integrated development
environment for R (Version 0.97.449) [Computer
software]. Boston, MA. Retrieved May 09,
2013.Available from http://www.rstudio.org/

Verzani, J. (2011). Getting Started with RStudio: An
Integrated Development Environment for R. pp.
92. Sebastopol, CA USA.

Reviewer
G.A.T. Duller

Reviewers’ Comment
I am very grateful to the authors for putting this
together. The Luminescence package that they have
developed for R has enormous potential, and
hopefully this article will encourage those who are
less familiar with R to start to use it.

