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Abstract 
   A practical guide for the R package 
‘Luminescence’  is  provided.  An  introduction  on  data  
types in R is given first, followed by a guideline on 
how to import, analyse and visualise typical SAR-
OSL measurement data.  
 
Keywords: R, luminescence dating, data analysis, 
plotting 
 
Introduction 
   Since the R package   ‘Luminescence’   has   been  
introduced by Kreutzer et al. (2012) the developer 
team is continuously asked for advice from the 
luminescence dating community. Such requests 
considerably help us to further improve the package 
and make the tools more efficient and user friendly. 
However, most of these queries are not directed to 
specific problems of the provided functions but rather 
on the usage of R and the package in general. 
Motivated by an e-mail conversation with Geoff 
Duller this contribution aims to provide an example-
based, short practical guide to R and the package 
‘Luminescence’.   First,   we   focus   on   properties   and  
ways to index different sorts of data structures, which 
are essential for an efficient use of the R package 
‘Luminescence’.   A   second   section   describes  
processing steps for luminescence data, from 
importing a BIN-file to plotting a De distribution. A 
third section comprises the examples in a 
comprehensive code section. 
   Throughout the manuscript R calls or R related 
code snippets are typed in monospaced 
letters. In some cases, numerical and graphical 
output was truncated for illustrative reasons. 
 
 

Working with R and RStudio 
   R (R Development Core Team, 2013) is a freely 
available language and environment for statistical 
computing and graphics. RStudio (RStudio, 2013) is 
a free and open source integrated development 
environment (IDE) for R. It allows for a comfortable 
use of R.  
   Working with R usually means writing of scripts 
that can be executed to generate results. The 
fundamental advantage of working with scripts rather 
than clicking through graphical user interfaces or 
tabular calculation software is that all processed steps 
are formulated explicitly, i.e. every command or 
function call is and has to be written down. This 
guaranties transparent and reproducible results, easy 
sharing of analysis routines and flexible modification 
of existing approaches. 
   A script is a text document composed of several 
lines of commands, and of course explanatory 
comments, that can be executed by software, such as 
R. Script-based execution of command line series is 
much more efficient than typing of function calls into 
the terminal window (although this is possible). 
   RStudio is a comfortable "second skin" to work 
with R even more conveniently. It comprises several 
windows; for scripts, the command line, the 
workspace, plot outputs, help or a file manager. 
RStudio allows storing entire sessions, including the 
actual script and generated objects (e.g. data sets and 
plots), to continue working at any time. 
   There are a series of excellent tutorials and books 
about R (e.g. Adler, 2012; Crawley, 2012) and 
RStudio (e.g. Verzani, 2011) that cannot be discussed 
here. However, on the official website of the R 
package   ‘Luminescence’   (http://www.r-
luminescence.de) there are plenty of suggestions and  
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Figure 1. Data structures in R, commonly used in the package 'Luminescence'. The colour and the shape of 
individual objects indicate similar data types (e.g. logical, integer, character) whereas their alignment represents 
the structure. Code under each structure definition corresponds to the creation of the structures in R. From left to 
right structures increase in complexity: scalar, vector, matrix, data frame, list. For further data structures and 
information cf. Crawley (2012). 
 
 
some tutorials dedicated to the use of R for 
luminescence data analysis. 
 
Data types and structures in R 
   Data can be of various type. Common data types 
are logical (i.e. TRUE, FALSE), integer (e.g. 1, 
2), double (e.g. 1.2, 2.3), complex (e.g. 2+3i, 
1.3+3.2i) and character (e.g. "a", "b"). There 
are more data types in R but these are of minor 
relevance here. The type of data determines which 
operations are possible (or meaningful) with this 
data. To infer the data type of a variable use the 
function typeof(). 
   Regardless of their type, data always shows a 
certain structure, which defines how values are 
organised and may be addressed. For convenient 
usage data may be stored in variables (or more 
generally in objects). It is of crucial importance to 
note that one variable must not necessarily comprise 
only one but can contain millions of individual 
values. R allows for checking the data structure of a 
variable with the function str(). To actually work 
with the data, it is necessary to "recall" the content of 
a variable, or parts of it. This is referred to as 
indexing. The following structures are commonly 
encountered when working with R and should 
therefore be introduced here. Fig. 1 shows illustrative 
sketches of the data structures. 
 
Scalars: Scalars are the most simple data structure. 
One variable represents precisely one value (1,1 
structure). Scalars can therefore be described as zero-
dimensional data structures. In R, scalars are in fact 
vectors of length one. The command x <- 1 

assigns the value 1 to the variable x. A scalar is 
indexed simply by calling the variable name. 
 
Vectors: Vectors are different from scalars in that 
they comprise more than one value. They contain m 
rows of values, organised in one column (m,1 
structure). Hence, vectors can be described as one-
dimensional data structures. Vectors may contain any 
data type but this must be consistent throughout. To 
infer the number of elements, the length of a vector, 
use the function length(). To index an element of 
a vector, its position in the vector must be specified 
in angular brackets after the variable name: x[m]. 
To index more than one element use either a 
sequence (x[1:5]) or a concatenation of values 
(x[c(1, 2, 3, 4, 5)]). 
 
Matrices: Adding a further dimension yields a matrix 
structure. Matrices contain m rows and n columns of 
data (m,n structure). Hence, matrices can be 
described as two-dimensional data structures. 
Matrices can be of any, consistent data type.  
Indexing matrix elements requires row- and column-
numbers of the target elements in angular brackets: 
X[m,n]. To index an entire row or column, just skip 
the respective index value: X[1,] or X[,1]. 
 
Data frames: Data frames consist of components with 
the same geometry (same length of vectors or matrix 
rows and columns) but may contain different data 
types. Data frames are the most common data 
structure in R, as many functions require data frames 
as input arguments. Indexing elements of a data 
frame is a two-step task. First, the component and 
then the element of the respective component must be 
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indexed. The component is expressed by two nested 
angular brackets ([[ ]]). So indexing one element 
of a vector in a data frame may be similar to 
dataframe[[1]][8]. 
 
   Alternatively, the components of a data frame can 
be named. If names are present, the operator $ can be 
used for indexing as well. For example, if there is a 
data frame (dataframe) comprising two vectors 
(data and metadata), one may index the first 
element of metadata by typing: 
 
dataframe$metadata[1] 
 
or  
 
dataframe[[2]][1]. 
 
Lists: Similar to data frames, but also deregulating 
the constraint of consistent geometry and data types, 
lists allow handling different types and structures of 
data. Lists are therefore the most flexible - but not 
necessarily the most appropriate - data structure. 
Indexing follows the same rules as for data frames. 
 
S4-objects: S4 objects are of fundamentally different 
data structure. They are related to object-oriented 
programming but may be tentatively compared to 
lists. They can contain several components, stored in 
so called slots. Details on S4-objects may be not 
relevant in this context. Components of S4-objects 
are indexed by the operator @. Apart from this 
difference, indexing is quite similar to that of data 
frames. Note: Although the R package 
‘Luminescence’   already   utilises   S4-objects (e.g. 
Risoe.BINfileData-class) and the upcoming 
package version later this year will considerably 
benefit from the usage of S4-objects, details on S4-
objects are not relevant for this tutorial. 
 
From BIN-files to De-distributions 
 
Prerequisites for analysing luminescence data 
   To work with the R package ‘Luminescence’   it   is  
first of all necessary to install the package from 
CRAN; either via command line 
(install.packages("Luminescence", 
dependencies = TRUE)) or in RStudio via 
menu Tools > Install Packages. Note that the 
checkbox   “Install   dependencies”   should be selected. 
To actually use the functionalities of the package, it 
must be loaded at the beginning of each R session. 
Furthermore the working directory should be set. It is 
good practice to load the library (i.e. the functions 
part of a package) and define the working directory at 
the beginning of a script. 

> ## load the library 
> library("Luminescence") 
 
> ## set the working directory 
> setwd("/analysis/project_0815") 
 
Import and inspect BIN-files 
   In general, analysis of luminescence data will start 
with importing a BIN-file to the R workspace. The 
package provides the function readBIN2R() to 
import BIN-files from typical luminescence 
measurements. It creates an S4-object with two slots: 
METADATA (a data frame) and DATA (a list). 
METADATA contains meta-information for all 
measurements and is primarily used to select 
measurements (stored in DATA) based on e.g. sample 
position. Once imported, calling the variable displays 
a short summary of the object.  
 
> ## import the BIN-file 
> SAR.data <-  
+ readBIN2R("example.BIN") 
 
> ## show a short summary  
> SAR.data 
 
> Risoe.BINfileData Object 
>  Version:         03 
>  Object Date:     060120 
>  User:            krb 
>  System ID:       30 
>  Overall Records: 600 
>  Records Type:    IRSL  (n = 20) 
                    OSL   (n = 340) 
                    TL    (n = 220) 
>  Position Range:  1 : 20 
>  Run Range:       1 : 44 
>  Set Range:       1 : 2 
 
   The example data set (example.BIN) resulted from 
a standard SAR protocol, applied to a sample of 
fluvial quartz (coarse grains, 90-160 µm) from the 
Pamir Plateau, analysed at TU Bergakademie 
Freiberg in 2013, and can be downloaded from the 
Ancient TL website. To create a more elaborated 
overview, the data frame METADATA must be 
indexed by specifying the desired columns. To show, 
as an example, the parameters ID (1), SEL (2), 
LTYPE (7), POSITION (17), RUN (18), DTYPE 
(23) and IRR_TIME (24) for the first five 
measurements, the respective column-numbers must 
be known (see below). In practice this includes 
indexing the slot METADATA of the S4-object 
SAR.data and then indexing the first five rows and 
respective columns therein: 
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> SAR.data@METADATA[1:5, c(1, 2, 7, 
+ 17, 18, 23, 24)] 
>   ID  SEL LTYPE POSITION RUN       
+ DTYPE IRR_TIME 
> 1 1 TRUE  TL  1 1 Natural     0 
> 2 2 TRUE OSL  1 2 Natural     0 
> 3 3 TRUE  TL  1 4 Natural     0 
> 4 4 TRUE OSL  1 5 Bleach+dose 80 
> 5 5 TRUE  TL  1 7 Bleach+dose 0 
 
   If this summary content is used frequently, it may 
be useful to store the column-numbers in a separate 
variable (summary.01 <- c(1, 2, 7, 17, 
18, 23, 24)) for convenient use later on 
(SAR.data@METADATA[,summary.01]). This 
way, different summary templates can be created. A 
complete list of column-numbers can be displayed by 
cbind(1:length(SAR.data@METADATA), 
colnames(SAR.data@METADATA)). 
 
Analyse SAR-data 
   Currently, the package is focused on the analysis of 
measurements following the SAR protocol (Murray 
& Wintle, 2000). The function Analyse_SAR. 
OSLdata()returns a set of parameters from 
individual measurement cycles in order to determine 
background- and sensitivity-corrected signals that 
may be used for growth curve estimation (see below). 
The function requires information about the sample 
(i.e. position) to be analysed, the signal integral and 
the background integral, along with a sample ID. By 
default the function Analyse_SAR.OSLdata() 
creates a graphical output for visual inspection of 
measurement curves (one composite plot for each 
position). However, for further analysis the numeric 
output is more important. The following example 
shows how to set the necessary parameters, perform 
an SAR analysis and what the numerical output looks 
like.  
 
> ## define analysis parameters 
> signal <- 1:5 
> backgrd <- 200:250 
> position <- 1:2 
> info <- "Arbitrary sample 1" 
 
> ## analyse position 1 to 2 
> SAR.results <- 
+ Analyse_SAR.OSLdata( 
+   input.data = SAR.data, 
+   signal.integral = signal, 
+   background.integral = backgrd, 
+   position = position, 
+   info.measurement = info) 
 
> ## display the output 
> str(SAR.results) 

   The created object (SAR.results) is a list with 
three components: LnLxTnTx, Rejection 
Criteria and SARParameters, each of them 
composed of further objects. To access them, just 
move through the data structure step by step. For 
example if you are interested in the second cut heat 
temperature type SAR.results$SARParamet-
ers$cutheat[2]. Most important (and most 
complex) is the LnLxTnTx-list. Since two positions 
were analysed (position <- 1:2) the list 
contains two data frames. Each data frame consists of 
the number of measurements according to the applied 
SAR protocol. Each measurement yielded 15 
parameters (such as Name, Dose, Repeated, 
LnLx and so on). To access the LnLx data from 
measurement 1 (natural dose) of position 1 type 
SAR.results$LnLxTnTx[[1]]$LxTx[1]. 
 
Create growth curves and estimate De-values 
   From the large output amount of Analyse_SAR 
.OSLdata() the most important data sets for 
subsequent analyses are Dose, LxTx, 
LxTx.Error and TnTx. To create growth curves 
and estimate equivalent doses, these are needed in a 
data frame structure. The following code shows how 
to manage these steps. 
 
> ## create data frame 
> data.LxTx <- as.data.frame(cbind( 
+   SAR.results$LnLxTnTx[[1]][2],   
+   SAR.results$LnLxTnTx[[1]][12],  
+   SAR.results$LnLxTnTx[[1]][13],  
+   SAR.results$LnLxTnTx[[1]][6]))  
 
> ## show the results 
> data.LxTx 
 
>   Dose       LxTx LxTx.Error TnTx 
> 1    0  5.8947468 0.28838345 1862 
> 2 1000  5.3317223 0.32684141 2006 
> 3 1800  7.8098997 0.36604484 2239 
> 4 2200  9.5146256 0.47587953 2393 
> 5 3000 10.4157443 0.60718256 2891 
> 6    0  0.5314526 0.07193097 2045 
> 7 1800  7.1563381 0.46570722 2829 
 
   The function plot_GrowthCurve() creates a 
dose response curve from the measurement data. The 
uncertainty related to equivalent dose estimation is 
based on Monte Carlo simulations. The function 
returns the actual De-value, its associated error and 
the fit object. 
> ## create dose response curve  
> growth.curve <- plot_GrowthCurve( 
+   data.LxTx) 
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> ## show fit parameters 
> growth.curve$Fit 
 
> ## assign De and De.error 
> De.data <- cbind( 
+   growth.curve$De[1:2]) 
 
   For routine analysis it may be convenient to run 
this De modelling process in a loop for all samples of 
a data set. 
 
> ## define analysis parameters 
> signal <- 1:5 
> backgrd <- 200:250 
> position <- 1:20 
 
> ## analyse positions 1 to 20 
> SAR.results <- 
+ Analyse_SAR.OSLdata( 
+   input.data = SAR.data, 
+   signal.integral = signal, 
+   background.integral = backgrd, 
+   position = position) 
 
> ## Define output variable 
> De.data <- data.frame( 
+   De = NA, 
+   De.Error = NA) 
 
> ## Compute De values in a loop 
> for(i in 1:max(position)) { 
+   data.LxTx <- as.data.frame( 
+     cbind(SAR.results[[1]][[i]] 
+     [c(2, 12, 13, 6)])) 
+   curve <- plot_GrowthCurve( 
+     data.LxTx) 
 
> ## assign De value and De error 
>   De.data[i,] <- as.numeric( 
+     curve$De[1:2]) 
+ } 
 
Convert seconds to Gray 
   To convert the absorbed dose from seconds to the 
SI unit Gray the function Second2Gray() can be 
used. It includes error propagation, by default with 
the Gaussian approach. 
 
> De.data <- Second2Gray( 
+   values = De.data, 
+   dose_rate = c(0.0881, 0.0006), 
+   method = "gaussian") 
 
Display De-values 
   There are several methods to visualise De 
distributions. Perhaps the most common ones are 
histograms, probability density functions based on 

kernel density estimates (KDE) and the radial plot 
(Galbraith, 1988). The chapter above illustrated how 
to obtain numeric data for plot outputs. One 
mandatory preparation step is to remove missing 
values (NA) from the De and De.Error data. This 
is easily done with De.data <- 
De.data[complete.cases(De.data),]. 
   A histogram with standard error overlay, rugs and 
statistical summary (Fig. 2A) can be created with the 
function plot_Histogram(). 
 
> plot_Histogram( 
+   values = De.data, 
+   summary = c("n", "mean", 
+     "median", "kdemax", "sdrel", 
+     "sdabs", "serel", "seabs")) 
 
   Plotting a probability density plot (Fig. 2B) can be 
done with the function plot_KDE(). Further 
statistical summary data can be added. The following 
example shows most of these statistical parameters. It 
is left to the user to decide which parameters allow 
for a meaningful interpretation. 
 
> plot_KDE( 
+   values = De.data, 
+   distribution.parameters = 
+    c("mean", "median", "kdemax"), 
+   summary = c("n", "mean",  
+     "median", "kdemax", "sdrel", 
+     "sdabs", "serel", "seabs"), 
+   xlim = c(0, 450)) 
 
   A radial plot (Fig. 2C) is created with the function 
plot_RadialPlot(). This function also supports 
grouped data plots, if a list with group indices is 
provided. For example, to plot values < 130 Gy as 
one group and values >= 130 Gy as a second group, 
the following code is needed: 
 
> group.indices <- list( 
+   which(De.data[,1] < 130),  
+   which(De.data[,1] >= 130)) 
> plot_RadialPlot( 
+   sample = De.data, 
+   zscale.log = TRUE,  
+   sample.groups = group.indices) 
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Figure 2: Examples of plot outputs. A: histogram 
with rugs, standard errors and statistical measures, 
B: KDE-based probability density function with 
statistical measures, C: radial plot of grouped values. 

Save the data 
   R saves data in a binary format (*.Rdata) with 
the function save(). To save tabular data as ASCII-
files use the function write.table(). Re-reading 
data is performed by read() or read.table(). 
 
> ## save R-internal data 
> save(SAR.data, SAR.results, 
+   De.data, file =  "SAR.RData") 
 
> ## save De data as ASCII-file 
> write.table(x = De.data, file = 
+ "De_data.txt", row.names = FALSE) 
 
> ## re-read the ASCII-FILE 
> De.data <- read.table( 
+   "De_data.txt", header = TRUE) 
 
Export graphical output 
   Saving graphical output when working with 
RStudio is quite easy. There is an export-button in 
the plots-window that allows for choosing from 
different formats and resolutions. However, it is also 
possible to export a plot directly using R commands. 
R can plot graphics to at least the following devices: 
bmp(), jpeg(), png(), tiff(), pdf(), 
postscript(), win.metafile(). Depending 
on the device, there are additional arguments such as 
filename, width, height, pointsize, res. 
Unless one wants to create further file output, it is 
important to close the respective device after a plot 
has been created. This is done by the function 
dev.off(). The function graphics.off() 
closes all open devices. To save for example a radial 
plot as jpg-file of 2000 by 2000 pixels with a 
resolution of 300 dpi the following code is needed: 
 
> ## open the graphics device jpeg 
> jpeg( 
+   filename = "radial_plot.jpg",  
+   width = 2000,  
+   height = 2000,  
+   res = 300) 
 
> ## generate the plot output 
> plot_RadialPlot(De.data, 
+   zscale.log = TRUE,  
+   zlab = expression(paste(D[e], 
+     " [s]")), 
+   sample.groups = group.indices, 
+   sample.col = c("royalblue", 
+     "orange3"), 
+   sample.pch = c(3, 4), 
+   cex.global = 0.9) 
 
## close the graphics device 
> dev.off() 
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## load the library 
library("Luminescence") 
 
## set the working directory 
setwd("/analysis/project_0815") 
 
## definition of analysis parameters 
signal.integral <- 1:5 
background.integral <- 200:250 
position <- 1:20 
 
## import the BIN-file 
SAR.data <- readBIN2R("example.BIN") 
 
## analyse the dataset 
SAR.results <- Analyse_SAR.OSLdata( 
  input.data = SAR.data, 
  signal.integral = signal.integral, 
  background.integral = background.integral, 
  position = position) 
 
## extract LxTx data and create De-values 
De.data <- data.frame(De = NA, De.Error = NA) 
for(i in 1:max(position)) { 
  data.LxTx <- as.data.frame( 
  cbind(SAR.results[[1]][[i]][c(2, 12, 13, 6)])) 
  growth.curve <- plot_GrowthCurve(data.LxTx) 
 
  ## extract and show De-value and delta De 
  De.data[i,] <- as.numeric(growth.curve$De[1:2]) 
} 
 
## convert seconds to Gray 
De.data <- Second2Gray( 
  values = De.data, 
  dose_rate = c(0.08812, 0.00059), 
  method = "gaussian") 
 
## show the resulting matrix 
De.data 
 
 
Table 1: Comprehensive script for routine SAR-OSL analysis 
 
 
A comprehensive script for routine SAR-OSL 
analysis 
   The code in Table 1 is a condensed, modified 
version of the explanations from above. It may serve 
as a skeleton for readers own scripts. The user is 
strongly advised to thoroughly inspect all graphical 
and numerical output to check data consistency and 
measurement appropriateness. An electronic version 
of the entire R script, and the example data set used 
in the analyses shown here, are provided as 
supplements to this paper and can be found at 
http://www.aber.ac.uk/ancient-tl.  

Summary 
   A practical guide for the R package 
‘Luminescence’  has  been  provided  showing  the  steps  
from importing a BIN-file to plotting a De 
distribution. Further reading, including extensive 
examples and detailed definitions can be found on 
http://www.r-luminescence.de. For further 
suggestions and questions the package developer 
team can be contacted via team@r-luminescence.de. 
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